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Abstract — The dielectric response of hard (Fe-doped) and soft (Nb-doped) rhombohedral 

Pb(Zr0.58Ti0.42)1-xMexO3 (PZT; Me= Fe or Nb) ceramics was studied at subswitching conditions 

over a wide range of temperatures (50°C to 450 °C) and frequencies (10 mHz to 10 kHz). The 

results show qualitative differences in behavior of the acceptor and donor doped samples. Hard 

materials exhibit a steep increase of the complex permittivity with decreasing frequency.  The 

onset of the dispersion is thermally activated with activation energy of about 0.6-0.8 eV and is 

attributed here to oxygen vacancy hopping. Activation energy for ac conductivity observed in 

soft materials is estimated to about 1.7 eV,  corresponding to the half of the energy gap of 

Pb(Zr,Ti)O3 and is thus consistent with electronic conduction. The relevance of ionic hopping 

conductivity in hard materials to ferroelectric aging / deaging and hardening is analyzed. Strong 

ionic conductivity in hard and its absence in soft samples agree well with the dipolar 

mechanism of ageing in hard materials and the absence of significant ageing in soft materials.  
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1. Introduction 

Hardening and softening of ferroelectric materials by doping are perhaps the most important 

tools to control their electro-mechanical properties. Perovskite ferroelectrics can be soften if 

material is doped with donor-type dopants and harden by the acceptor-type dopants.1 Under 

usual operating conditions soft materials exhibit large electromechanical coefficients, square 

hysteresis, large nonlinearity, weak aging, low conductivity and high dielectric losses while the 

hard ferroelectrics exhibit strong aging, pinched hysteresis loop in aged unpoled state, weak 

nonlinearity, lower coupling coefficients, low dielectric losses and moderate conductivity. 

Whereas softening of the ferroelectric properties is still not clearly understood,2 the hardening is 

intimately related to aging, i.e. gradual hardening of ferroelectric properties can be evidenced 

with time.3 Understanding of hardening as a result of aging is nowadays much advanced in 

comparison with the softening phenomenon in spite of the fact that several contradicting 

theories of aging exist.4-8 

The aging (evolution of the properties with time upon changing sample’s thermal, electrical 

or mechanical environment) originates principally from stabilization of domain structure and 

immobilization (clamping) of domain walls.9 With respect to interaction between mobile charge 

carriers and the spontaneous polarization, the following three mechanisms of the domain wall 

immobilization in hard ferroelectrics are the most often discussed in the literature.10  The first is 

the volume (or bulk) effect, which assumes alignment (or ordering) of microdipoles formed by 

charged point defects with ferroelectric polarization in the material bulk between adjacent 

domain walls (e.g.,   

! 

F " e Ti #VO
•• ; we use Kröger-Vink notation for defects11).12-23 The dipoles 

reorientation takes place through displacement of oxygen vacancies.4,20,22,23 Even though 

minimization of the electrostatic energy is usually discussed in the literature as the only driving 

force for the defect orientation, the minimization of the elastic energy associated with coupling 

of the elastic defect “dipoles” and lattice deformation can be significant.24-26 The volume effect 

has recently been studied in detail by Ren and coworkers4,27 and has been referred to as 

“symmetry conforming” mechanism. Displacement of   

! 

VO  within oxygen octahedron as a 

contributing factor to ageing is also supported by ab initio calculations.28 The second 

mechanism of domain walls immobilization is known as the domain wall effect, which assumes 

diffusion of defects (such as electrons or oxygen vacancies) into charged domain walls, thus 

fixing their position.29-33 The third mechanism is related to the interface effects, where space 

charges associated with defects collect at the grain boundaries, at the external perimeter of the 

crystal or other interfaces.6-8,34  
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The common feature of all abovementioned processes is the electrostatic rearrangement of 

charged carriers and their interaction with polarization, while the difference is in the final 

location of mobile charges. Thus, proposed scenarios of aging and deaging assume different 

distances for charge displacement: over a unit cell (bulk effect), over a domain width (domain 

wall effect), or over a part of grain or crystal (interface effect). More recently, Li et al.35 

suggested that mechanisms for domain wall structure stabilization in hard PZT and new, lead 

free (K,Na,Li)NbO3  ceramics are different, the bulk effect being dominant in PZT and long-

range migration of charges in the lead free material. It has been hinted in a previous study by 

the authors36,37 that more than one process of ageing may be active in a material: in hard PZT 

the bulk effect plays a key role, but the long-range charge migration may contribute to the 

deaging under strong electric fields. 

 An aged hard ferroelectric can be “deaged” by destroying the electrostatic order. This can be 

accomplished, for example, by cycling with an electric field10 quenching from a high 

temperature,36,38,39 or by illumination.31 Deaging of hard PZT by electric field is the best 

documented case.10,37 For a fixed amplitude of the applied field the deaging time depends on 

temperature and cycling field frequency, and can be presented as an Arrhenius-type process 

with characteristic activation energy.  

Jaffe et al.1 have interpreted the absence of ageing in soft materials by the increased mobility 

of domain walls with respect to undoped PZT.  Higher domain walls mobility was suggested to 

aid quick relief of internal stress upon removal of the poling field.40 If this is indeed so, it would 

be more correct to speak of rapid ageing in soft materials rather than its absence. As over longer 

times the two mean practically the same thing, we shall use here term “absence of aging” to 

contrast better hard and soft materials. If softening is a result of the higher domain wall 

mobility, the absence of ageing and softening seem to be intimately connected, just like ageing 

and hardening. Why “soft” materials have higher domain wall mobility than undoped materials 

of the same composition is presently not clear and several hypotheses have been advanced 

without theoretical or experimental proofs, including the following:  (i) donor dopants 

compensate effects of acceptor cations that are naturally present in undoped materials,1 (ii) lead 

vacancies assumed to compensate donor dopants (e.g.,   

! 

NbTi
• " # # V Pb) help to reduce internal 

stresses in ceramics and make domain walls more mobile,1,40 and (iii) softening is related to 

electron transfer between defects thus minimizing the space charges at domain walls.41 Clearly, 

charge transport (or its absence) is expected to be an important indicator of ageing, hardening 

and softening processes.  
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In this paper we present results of an experimental study of charge migration processes in 

hard, undoped and soft PZT ceramics. The charge migration was investigated using dielectric 

spectroscopy at temperatures from 50˚ to 450˚C and frequency range from 10-2 to 104 Hz. As 

other methods used to study dielectric response, the one employed here measures the total 

charge displacement and cannot distinguish directly between contributions from the ac 

conductivity (e.g., charge hopping) and polarization mechanisms (e.g., domain wall 

displacement). The used method, however, allows distinguishing between the ac processes 

associated with a short-distance migration of charge carriers and the quasi dc processes 

associated with migration of charge carriers over longer distances. In hard materials, both the ac 

and quasi-dc processes reveal themselves as thermally-activated phenomena whose activation 

energies can be compared with those for deaging process.10,37 Thus, we compare here the 

activation of the ac migration processes in hard PZT obtained in experiments performed at 

subswitching fields and in the frequency domain, with the activation of deaging in the same 

type of ceramics at switching conditions in the time domain using data from Ref. 10. In 

agreement with other studies12,15,19,23 our analysis of charge migration and ageing / deaging 

suggests that the defect dipole scenario (the bulk effect) is the most likely origin of the “pinched 

loop” – perhaps the best known manifestation of ferroelectric hardening in Fe-doped PZT 

ceramics. However, our earlier study of nonlinear dielectric response37 gives evidence in 

agreement with recent theoretical results6 that the hardening (ageing) and deaging processes 

may be assisted by a longer-range displacement of defects. The link between the conductivity 

and ageing suggests dominant ionic conduction in hard PZT materials. The present data further 

demonstrate that the conduction in soft ceramics is low below Curie temperature (  

! 

TC) and that 

electron conduction may dominate the conductivity around and above   

! 

TC.  Low conductivity 

below the   

! 

TC is in agreement with the absence of significant aging in soft materials.  

 

2. Materials preparation 

Undoped, Fe+3–doped (hard), and Nb+5–doped (soft) rhombohedral Pb(Zr0.58Ti0.42)O3 

ceramics were prepared by conventional solid state process using standard mixed oxide route. 

Processing details can be found in Ref. 36. A composition away from the morphotropic 

boundary was chosen to avoid complications with presence of mixed or monoclinic phases, and 

because the domain wall structure is simpler than in morphotropic phase boundary region.  The 

base composition was chosen the same as in Ref. 10 in order to use results from this source for 

comparison and analyses. The dopant substitution was assumed to be on (Zr,Ti) site so that the 



 5 

nominal formula of the samples is   

! 

Pb(Zr0.58Ti0.42 )1"xMexO3 where Me is either Fe or Nb and x =  

0.1 (only Fe), 0.2 (only Nb), 0.5 and 1.0 at % (abbreviated 58/42 PZT with x at% Me). The ionic 

charge compensating defects1 (lead vacancies   

! 

" " V Pb  for   

! 

NbTi
•  and oxygen vacancies   

! 

VO
•• for   

! 

F " e Ti) 

are assumed to form spontaneously during thermal treatments (calcination and sintering). This is 

possible in PZT because of high volatility of PbO.1 It should be noted that thus formed dipoles 

(  

! 

NbTi
• " # # V Pb  and   

! 

F " e Ti #VO
•• ) are not neutral and that it is not clear which charged species 

compensate for charge unballance.42 This point illustrates well complexity of PZT. Presence of 

  

! 

F " e Ti #VO
•• dipoles in hard material is well established, while defect structure of donor doped PZT 

is much less understood. 

Stoichiometric quantities of powders (adjusted for predetermined weight loss during 

heating) were calcined in lead oxide saturated alumina crucibles covered by alumina plates. 

Powders were milled and sieved before and after calcinations. The sintering was performed on 

pellets uniaxially pressed at 40 MPa and packed into covered alumina crucibles whose volume 

was a little larger than the volume of pellets. The inner space of the crucibles was filled up with 

the powder of the same composition as the pressed pellet in order to prevent intensive lead oxide 

evaporation during the thermal treatment. Ageing of samples was assured by their slow cooling 

within the furnace down to room temperature, followed by several days of ageing at room 

temperature. Gold electrodes were deposited on major faces of disk-shaped samples by 

sputtering.  

 

3. Dielectric spectroscopy 

Among several methods commonly employed to study dielectric properties in time or 

frequency domain43 we use in this study measurements of ac charge generated by applying on 

sample a periodic voltage signal with fixed frequency,     

! 

V =V0 sin("t ) . The measurement is 

repeated at different frequencies in the range from 210! to 410  Hz and temperatures ranging 

from 50 ˚C to 450˚C for soft and to 250˚C for hard ceramics. The Curie temperature of these 

compositions is around 360˚C.  For the sake of completeness and to facilitate the reading we 

repeat here basic relations of dielectric spectroscopy.44,45 

The total measured current density     

! 

J = I / A , where   

! 

A  is the sample surface area and   

! 

I  the 

total measured current, consists of two contributions. The first is movement of free charges 

    

! 

"0E , where   

! 

"0is the dc conductivity, and   

! 

E =V d is the electric field across the sample with 

thickness   

! 

d .  The second contribution is the dielectric displacement current   

! 

"D "t , associated 
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with the polarization response     

! 

D = "0E + P . Thus,     

! 

J ="0E + #D #t . The former, purely 

resistive component, is in phase with voltage while the latter, capacitive component, is out of 

phase with voltage by 90˚44,46. Following the established practice, the total current can be 

written in complex form as:44,45 

( ) ( ) [ ]{ } )()/()()(~
0000 !!"#!"!"!"!!"!" EiiEiJ +$$%$==  (1) 

where 

! 

E(") = E0 exp(i"t), 0! is the permitivity of vacuum, ( )!"~  is the effective (measured) 

relative dielectric permittivity and !!! ""#"= i is the complex relative dielectric permittivity. 

For simplicity we shall interchange terms permittivity and relative permittivity.  The effective 

permittivity is introduced since the measuring instruments cannot discriminate between the true 

dielectric response, which does not contain 0! , and the effective (measured) response that does. 

Note also that besides the “true” polarization mechanisms, ! includes contributions from any ac 

motion of charges, such as hopping conductivity.44,45 Equation (1) can be further modified by 

subtracting, if known, the “instantaneous” dielectric response, !" which is implicitly contained 

in ( )!"~ .45   

The ac conductivity is defined by: 

)()()(~)( 0000 !"!"#!"!"!"!"!# $++$$== ii  (2) 

One sees that the real part of the measured current (in phase with voltage) contains both the dc 

conductivity and the dielectric loss (for example, from domain wall motion) while the 

imaginary component (in quadrature with voltage) contains only the dielectric response 

(including all charge displacement mechanism that contribute to polarization, such as charge-

carriers hopping). Separation between the conductivity and the dielectric response is therefore 

not straightforward. In complex materials, such as ferroelectric ceramics, the direct conductivity 

may contribute to both 

! 

" # and 

! 

" " #  through Maxwell-Wagner effects,46 while charge hopping can 

manifest itself as dipolar  dielectric response.44 We shall return to this point in more detail in 

Section 4. 

To determine the effective permittivity a periodic low voltage signal generating the electric 

field with amplitude 0E was applied to electroded samples and the resulting charge response Q  

was measured using a charge amplifier (Kistler 5011B). 0E was on the order of 0.03 kV/cm. 

The output signal of the charge amplifier was analyzed with a lock-in amplifier (Stanford 

Research SR830), which also served as the voltage source.  ( )!"~  was calculated from Eq. (1) 

and tQI !!= /)("  as )/()()(~ 00 AEQ !!"" = . With [ ])(exp)(0 !"" #= tiQQ , where ! is the frequency 

dependent phase angle between the charge and field, it follows that 
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)/()(cos)()('~ 000 AEQ !"!!## = and )/()(sin)()(''~ 000 AEQ !"!!## = . During the measurements samples 

were located in a small-furnace. The temperature of the sample was measured by a 

thermocouple placed in its vicinity.  

In general, the dielectric response of ferroelectrics is nonlinear and, therefore, contains 

higher harmonics. All experimental results presented in this article are measured only at the first 

harmonic, which is rather a standard practice when nonlinear effects are assumed to be small.43 

Nonlinear effects in these materials are reported elsewhere. 37,38 

 

4. Results and discussion 

As an illustration of typical dielectric response observed in this work, the frequency 

dispersion of )(~ !"  for a hard (1%Fe) and a soft (1% Nb) ceramic is shown in Figs.1a and 1b. 

The same data are presented as ac conductivity [see Eq. (2)] later in this section.  Qualitatively, 

our results are similar to those reported for compositionally inhomogeneous47 and 

compositionally graded PZT ceramics.48 In those studies the ac conductivity (measured from 10 

Hz to 2 MHz in Ref.48)  and complex permittivity (measured from 1 mHz to 10 kHz, Ref. 47) are 

interpreted in terms of “universal” power-law (complex permittivity follows approximately 

  

! 

" n ).44 In the case of samples investigated here, the “universal” law does not, in general, 

describe the data well quantitatively. The dispersion observed in our work is qualitatively 

different from the Debye-like dispersion reported by Verdier et al.49 in electric-field fatigued 

PZT ceramics. 

 
Figure 1 (color online). The real (triangles) and imaginary (circles) parts of the relative effective dielectric 
permittivity versus driving field frequency measured at various temperatures for (a) hard (1 at% Fe-doped) and 
(b) soft (1 at% Nb-doped) PZT 58/42 ceramics.  
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When dielectric properties are measured over a limited frequency range (here, four to five 

orders of magnitude) there are inherent difficulties in identification of different contributions to 

the permittivity from either )(~ !"  or   

! 

"(#)plots.  This problem was discussed in detail in Ref. 

44 and main arguments are outlined below.  

Rapid increase of complex )(~ !"  with decreasing frequency (as seen in Fig. 1a) can be 

explained by several different mechanisms, including the following. The first possibility is 

when dc conductivity and dielectric relaxation are unrelated. In that case [see eq. (1)] the 

conductivity contributes only to )(~ !" ## , which diverges as !  approaches zero while )(~ !" #  is 

constant or may be subject to an independent dielectric relaxation mechanisms but reaches a 

finite value at the dc limit. A peak in loss is unrelated to the conductivity. The second case, the 

Maxwell-Wagner mechanism,44,46 is related to the presence in the sample of inhomogeneities 

with different conductivities. The inhomogeneities can be related to secondary phases, grain 

boundaries or to the near-electrode layer. Even if the conductivities of each phase do not 

contribute directly to the polarization (i.e., unlike charge hopping), both )(~ !" # and )(~ !" ##  of the 

sample are functions of the conductivities of constituent phases. As in the first case, 

.)(~ const=! "#  and )(~ !" ## diverges as !  approaches zero. The peak in the loss is determined by 

the conductivities and permittivities of the constituent phases.46 Any independent dielectric 

dispersion of each phase is superimposed on the Maxwell-Wagner dispersion. The third case is 

hopping conduction, which is quite common in disordered materials.44,45 The same mechanism 

but with different activation energies contributes to the ac and dc conduction.45 A clear region 

with frequency independent dc conductivity should be seen as   

! 

" # 0. )(!" ##  exhibits a peak in 

the transition region and is nearly constant at high frequencies. The peak in )(!" ##  is usually 

masked when data are presented as )(~ !" ## , and its deconvolution is nontrivial.  Above the 

frequency of the loss peak the ac conductivity increases with the frequency.  The short-range 

charge migration contributes to both )(~ !" #  and )(~ !" ## , and this can be approximately 

described by the empirical “universal” power law.44,45 Jonscher proposed that the “universal” 

law is the case by itself and that it can describe dielectric relaxation in many dielectrics. In the 

fourth case, reported for some materials, complex permittivity steeply rise with decreasing 

frequency, but no loss peak is observed down to the lowest measured frequencies.44 

Because of practical limitations, in most experiments only a part of the spectrum at 

frequencies above the loss peak (if one exists) is observed, where both  !!" (# )  and 
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)(~ !" ## increase with decreasing frequency.  Since this behavior could indicate any of the four 

cases discussed above it is not possible to assign straightforwardly one of them without 

additional data at lower frequencies, although this is often made in the literature.50 We do not 

think, however, that assignment of any of these cases to the observed dielectric dispersion is 

important for the following discussion. Even if the data agreed better with either Jonscher’s type 

universality or charge hopping models (such as random free energy barrier model), these 

models, by their very nature, cannot give much information on microscopic processes involved; 

exactly because of their universal nature, these models predict the same behavior in different 

materials regardless of the underlying microscopic physics.45 Thus, we proceed reasoning in the 

following way. 

In the case such as ours where at low frequencies complex permittivity diverges and 

)(~)(~ !"!" #>>##  (Fig. 1a), it is usually possible to make a quite general statement, without 

specifying exact physical process,44 that the long-range migration of charges contributes to both 

)(~ !" #  and )(~ !" ## . Furthermore, the partial agreement of the data with the charge hopping 

behavior45 at high frequencies suggests that an additional process may contribute to the 

dielectric dispersion. We argue that the following mechanisms are involved: the first is ionic 

conductivity in hard and electronic conductivity in soft PZT, both dominant at low frequencies 

and elevated temperatures.  The electronic conductivity in soft materials becomes evident at 

temperatures higher than those shown in Fig. 1b and is displayed in subsequent figures. The 

second mechanism is related to domain walls displacement, and is dominant at higher 

frequencies and lower temperatures. As demonstrated in Fig. 1, the dielectric response of the 

hard and soft ceramics is qualitatively different. While it is not possible, on these data alone, to 

identify definitely the contributing process, we propose the following coherent interpretation of 

the data, based on the discussion above and the results described in literature.   

Hard ceramics exhibit a transition from a weakly dispersive, nearly constant dielectric 

response at higher frequencies51 to highly dispersive response at lower frequencies, Fig. 1a. The 

transition between the two regimes is temperature dependent. In soft materials, the permittivity 

dispersion is weaker than in hard materials at lower frequencies, while at higher frequencies the 

real part of the permittivity decreases nearly linearly on the linear-logarithmic scale. In both soft 

and hard materials the high frequency response, which extends to high MHz range51 not shown 

here, can be assigned to domain walls contributions. Indeed, the logarithmic decrease of the 

dielectric permittivity and piezoelectric coefficients has been reported earlier for soft PZT52-54 

and has been assigned in Refs.52 and 53 to domain walls displacement in a random energy 



 10 

landscape.  In hard materials domain walls are known to be less mobile than in soft, but they 

still respond to excitation field possibly by bending55 in a reversible, nondispersive way up to 

high MHz range.51,56-58  

Identification of the low frequency dispersion in hard and soft ceramics is more challenging. 

Referring to the Jonscher’s classification of dielectric responses in solids44 and the discussion 

above, the low frequency response in hard ceramics is most likely related to the conductivity 

( !! ">>"" ~~ ) and can possibly be attributed to the charge hopping.45 The most likely charge 

carriers in hard samples are oxygen vacancies, which are known to be mobile in perovskite 

materials.20,23 We exclude here as a possibility the charge transfer between 

! 

Fe+2  and 

! 

Fe+3 

because electron paramagnetic resonance (EPR) studies report as a prevalent defect in hard PZT 

positively charged   

! 

(VO
•• "F # e Ti )

•  pair, i.e. 

! 

Fe is probably trivalent.42,59,60 

 The response of the soft ceramics appears to be free from a significant hopping charge 

contribution almost up to the Curie temperature. This result is in agreement with the early data 

of Gerson1,61 who reported that dielectric loss of soft PZT is dominated by domain walls 

contributions and is nearly free from resistive component at not-too-high temperatures. The 

presence of hopping conduction in the hard and its absence in the soft ceramics in the same 

frequency and temperature range, suggest the key role of the mobile charge species in the aging 

process, which is observed only in hard PZT.1,62 A significant conductivity in soft samples is 

observed only at temperatures approaching and above the Curie temperature and may be 

attributed, as shown below, to electronic conduction.  

Finally, we comment on the possibility that the large increase of  !!(" ) in hard samples with 

decreasing frequency is due to displacement of domain walls. Comparison of the results of this 

work with the literature data63 indicates that creep or sliding of domain walls may contribute to 

the effective low-frequency dielectric permittivity in a similar fashion as hopping transport of 

charge defects, making their separation difficult. In PZT, domain walls are considered to be 

more mobile in soft than in hard materials, thus one would expect stronger domain wall 

contribution at low frequencies in soft than in hard samples. The absence of strong low-

frequency dispersion in soft and its presence in hard materials lead us to suggest that the low 

frequency dispersion in hard materials is dominated by ionic defect hopping rather than domain-

walls displacement. Nevertheless, this issue is nontrivial and requires further studies. 

Well pronounced transitions from the dielectric response of the ferroelectric domain 

walls  to the nearly conductive response of hopping charges are observed in hard ceramics at 

frequencies where the slope of !~  changes strongly (Fig. 1a). The frequency of this transition 
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increases with increasing temperature, as is expected for a thermally activated process. We use 

this transitional frequency plotted versus temperature in the Arrhenius scales to obtain the 

activation energy Ea for the hopping charge contribution to the dielectric response. Note that the 

charge hoping is active already at much higher frequencies45 and that the activation energy 

estimated here refers to the frequencies at which charge hopping contribution to the effective 

permittivity begins to dominate over domain wall contributions. The main difficulty of such 

analysis lies in determining consistently the transitional frequencies for )(~ !" ## , as they are 

located at the limits of the characterized region. The expansion of the frequency measurement 

range is hampered by the instrumental limits. Alternatively, one can analyze the frequency 

dispersion of the absolute effective dielectric permittivity )(~ !"  (Fig. 2a) which exhibits similar 

behavior as )(~ !" ## , with transitional frequencies located somewhere in between the ones for 

)(!" #  and )(~ !" ## . In addition, we also analyze the dispersion of )(!M "" , the imaginary part of 

the dielectric modulus )(~/1)( !"! =M , (Fig. 2b), which exhibits a maximum at transitional 

frequencies.  The dielectric modulus is often used in dielectric spectroscopy of conductive 

materials.45,64-67 Characterization of dielectric spectra using the dielectric modulus is subjected 

to considerable controversy.45,50,64,65 In this work we use it only as a complementary tool for 

determination of the activation energy in the transitional region, because the frequency of the 

maximum in )(!M "" may be easier to determine than the frequency where )(~ !" ##  changes slope.   

The transitional frequencies determined using permittivity and modulus representations 

exhibit typical Arrhenius behavior, as shown in insets in Fig. 2. The close values of the 

activation energies aE  obtained from )(~ !"  and )(!M ""  show that our approximation is 

acceptable.  
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Figure 2 (color online). The frequency dispersion of the absolute value of the complex effective relative 
permittivity (a) and the dielectric modulus (b) at various temperatures for 1 at% Fe-doped hard PZT (58/42) 
ceramics. The insets show the temperature dependences of the transition frequencies in the Arrhenius scale and 
corresponding activation energies. The transition frequencies used for calculation of activation energy in (a) are 
marked by dots at cross section of the dashed lines.  

 

The analysis of transitional frequencies for )(~ !" and )(!M "" is more difficult for the 

undoped and soft PZT ceramics. In the case of undoped PZT, the )(~ !"  demonstrates a more 

complex frequency dependence (Fig. 3a) than both Fe- and Nb-doped PZT. It seems that the 

dispersion involves a multiple transitional processes in which the transition from the nearly 

constant dielectric response dominated by domain walls displacement at high frequencies 

(phase angle close to 0°) to the nearly conductive response at lower frequencies (phase angle 

approaching 90°) is passing through a third dispersion process. Our experimental data in the 

characterized frequency and temperature ranges are insufficient to interpret the origin of this 

third process. 
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Figure 3 (color online). The frequency dispersion of the absolute value of the complex relative permittivity for 
(a) undoped and (b) 1.0 at% Nb-doped soft PZT (58/42) ceramics. Insets show the temperature dependence of 
transition frequencies in the Arrhenius scales. The transition frequencies taken for activation energies estimation 
are marked with full dots at the intersection of dotted lines. In (b) only data taken at selected temperatures were 
shown for clarity, while the measurements were carried out also at temperatures not shown in the figure.  

 

In contrast to undoped material, the soft PZT ceramics demonstrate relatively abrupt 

transition of !~ to the frequency dispersive regime (Fig. 3b) but this happens only at 

temperatures near and above the Curie temperature, where interpretation of the data becomes 

delicate.  Though the transition between the low and high frequency relaxation demonstrates a 

thermally activated process, a further analysis of this data representation did not lead us to any 

convincing conclusions. The Arrhenius plots of the transitional frequencies are not linear (e.g., 

see the inset in Fig. 3b). Moreover, estimated activation energies do not follow a regular trend 

with respect to dopant concentration (not shown). Importantly, the low frequency dielectric loss 

in the temperature region from 50°C to at least 200°C is much higher in hard (Fig. 2a) than in 

soft samples (Fig. 3b). This is in agreement with the general observation that losses in soft 

materials are dominated by domain walls contributions rather then by conductivity.1,61  

The qualitatively different dielectric behavior of hard and soft ceramics is expected due to 

differences in their defect chemistry.  It is also in agreement with the starting hypothesis that the 

charge transport and ageing are closely related. Hard materials are characterized by strong 

ageing and, as demonstrated here, by strong charge hopping, probably of ionic type. The hoping 

conductivity in hard materials is significant at temperatures well below Curie temperature TC 

where charges can interact with polarization within domains leading to ageing.  The soft 

materials do not exhibit significant ageing. The steep increase in  !!(" ) evidenced in soft PZT at 
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low frequencies and at temperatures close to and above TC probably has, as will be discussed 

later, a different origin than the one in hard materials at temperatures well below TC. Ionic 

hopping conduction is absent (or negligible) in soft PZT below Curie temperature. This result 

was anticipated as there are no mobile ionic defects in soft materials; it is reasonable to assume 

that Pb vacancies associated with donor dopants are less mobile than oxygen vacancies 

associated with acceptor dopants. The weak aging in soft PZT is thus in agreement with the 

absence of significant contribution to the conductivity of mobile ionic charge carriers. Because 

the conductivity in soft materials, whatever is its origin, is significant only at temperatures close 

or above Curie point, it can have little influence on stabilization of domain structure.  

To give further support to these conjectures we next compare activation energies for the 

conduction and ageing in hard samples. We first analyze the activation of the dc conduction in 

the soft and hard materials by plotting the real part of the ac conductivity [eq. (2)], 

)()(~)( 0 !"!#!"!!# $$+=$$=$ as a function of frequency and temperature, Fig. 4. At lower 

frequencies   

! 

" # ($)  should approach the frequency independent dc conductivity, 0! . A tendency 

to such behavior is observed in both soft and hard samples, in particular at high temperatures, as 

shown in Fig. 4.  We emphasize that at lower temperatures, )(!" # continues to slowly change 

even at the lowest frequencies examined. There are two reasons for such behavior. One is that 

true 0!  [nearly flat )(!" # ] is not reached but would be observed if measurements were made at 

even lower frequencies. This means that 0! determined by extrapolation from these graphs (see 

Figure 4) is somewhat overestimated. The other possibility was discussed in detail in Ref. 44, 

where it was proposed that a slowly varying )(!" #  indicates a polarization mechanism related 

to longer-range charge migration. In either case, the slow evolution of the ac conductivity 

suggests charge migration over an extended range; extrapolation of 0! from the nonflat part of 

)(!" #  is then just a rough estimate of the contribution of this long-range process to the apparent 

0! . For simplicity, in the rest of the text we shall not differentiate between these two 

possibilities and will refer to both either as dc conductivity or long-range charge migration.  
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Figure 4 (color online). The frequency dispersion of the !"! ##~0 , which approaches the dc conductivity   

! 

"0 at 
low frequencies: (a) for hard (1 at.% Fe-doped) and (b) for soft (1 at. % Nb-doped) PZT (58/42) ceramics. The 
insets show the temperature dependences of the extrapolated dc conductivity   

! 

"0 in the Arrhenius scales and 
corresponding activation energies. 

 

The activation energies for the dc conduction (or long range charge migration) have 

been determined for all investigated hard and soft PZT ceramics. Examples are shown in insets 

of Fig. 4. The summary of the activation energies for the ac (short range) and dc (longer-range) 

charge migration in hard (ac and dc conductivity) and soft PZT (dc conductivity only) is 

presented in Fig. 5. The activation energies for the dc conduction in soft ceramics are found to 

be about two times higher than in hard PZT. The value of 1.76 eV in soft PZT is identical to that 

reported for bulk conductivity of soft PZT above TC by Verdier et al.49 and is equal to the half 

of the energy gap expected in PZT. Therefore, the dc conductivity in soft PZT is may be 

dominated by the intrinsic electronic conduction rather than conductivity of lead vacancies. For 

both hard and soft materials activation energies for the dc conduction slightly decrease with 

increasing dopant concentration. In contrast, the activation energy for the ac conduction in hard 

PZT slightly increases with increasing dopant concentration. We do not have at present an 

explanation for the concentration dependence of the conductivity.  

In hard materials, the difference between the activation energies for the ac and dc 

processes [ )()( acEdcE aa > ] can be explained by the hopping nature of the conduction, the 

nature of charged defects responsible for the conductivity and the distance over which charge 

carriers move. In all hoping processes the activation energy for the dc conductivity is larger than 

for ac because for long range migration charges need to overcome the largest potential 

barriers.45 The obvious candidate for hopping charge migration in hard materials are oxygen 

vacancies associated with   

! 

F " e Ti #VO
••  defect pairs; as mentioned earlier in this section, hopping 
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via Fe+2 and Fe+3 cations is not supported by EPR experiments. Thus, the local jumps of oxygen 

vacancies   

! 

VO
••around   

! 

F " e Ti (short-range hopping) occur under an ac field unless the bonds in the 

defect associates are broken and the long-range (“dc”) conduction is activated as a continuous 

charge drift over long distances. Assuming the mobility of oxygen vacancies as the major factor 

influencing the conduction at lower temperatures, the difference in activation energies for the ac 

and dc conduction then arises from the necessity of breaking the bond of the pair for longer-

range migration, in addition to overcoming other barriers encountered during the long-range 

migration.45  

The analysis of ac and dc conductivity and associated activation energies in soft samples 

is more difficult because the measurable data for   

! 

"0  and transition region where ac conductivity 

begins to dominate effective permittivity appear close to the Curie temperature. Nevertheless, 

based on the literature49 and our own data (dielectric dispersion, absence of aging) one can state 

that the charge transport mechanism in soft materials is qualitatively different from the one in 

hard samples, possibly consisting of a dominant electronic conduction rather than ionic 

conductivity of lead vacancies. 

  To make a link between the aging and conductivity we now compare activation energies 

of conductivity for hard PZT obtained in this study with the activation energies for loop 

depinching of the same base compositions of PZT ceramics reported by Carl and Härdtl.10 As 

shown in Fig. 5d, the activation energy (0.55 -0.7 eV) for deaging (or more precisely, for loop 

depinching part of the deaging process) by field cycling with switching ac field10 is 

energetically comparable with the activation energy for charge hopping conduction (0.6-0.8 

eV). Note that this energy probably includes energy for the movement of the vacancy within 

oxygen octahedra and hopping to neighboring octahedra. The activation energies assigned to 

oxygen vacancy hopping in this work are considerably lower than 1.2 eV calculated by Arlt and 

Neumann for diffusion of oxygen vacancies in PZT.26 On the other hand they are higher than 

energies predicted by ab-initio calculations needed for displacement of an oxygen vacancy 

within oxygen octahedron in compositions on the tetragonal side of the PZT phase diagram.68 
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Figure 5 (color online). Summary of dielectric relaxation parameters in the hard and soft PZT 58/42 ceramics: (a) 
temperature dependence of the estimated dc-conductivity for different dopant concentrations; (b) transition 
frequencies determined from )(~ !"  curves; (c) activation energies of the estimated dc-conductivity versus 
dopant concentration; (d) activation energy of the ac hopping conduction evaluated by different methods for 
various Fe concentration in hard PZT. Deaging data in  (d) are taken from Ref. 10. 

 

  Our results on the ac and dc conductions in hard PZT are in agreement with the general 

statement about the hopping conduction in many solids: the shorter the distance within which 

the charges move, the smaller the activation energy for such mobility.45 Among the three aging-

deaging scenarios the shortest distance required for the electrostatic rearrangement of charged 

defects is assumed by the bulk effect i.e ordering - disordering of the defect dipoles with respect 

to the spontaneous polarization between domain walls. Thus, the comparison of the activation 

energies shown in Fig. 5d indicates that the deaging in hard PZT occurs at conditions sufficient 

for the activation of dipoles reorientation but insufficient for the activation of a long-distance 

charge drift process. This result leads us to the following conclusion: the aging-deageing 

process, which in hard PZT manifests itself in hysteresis pinching-depinching, is associated 

with the local movements of defect dipoles via short-range hopping of oxygen vacancies rather 
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than with the long range charge drift mechanism. However, as shown in Ref. 37 depinched 

loops may be further open by large field cycling at higher temperatures. This is evidence that a 

process with higher activation energy such as a mechanism involving long-range charge 

redistribution may contribute to deaging under large fields.  

  

5. Summary and further implications 

The electric conductivity and hardening (which is the same as ageing in hard PZT) appear to 

be intimately related.  Short range migration of charges (in this case oxygen vacancies) is 

needed to align defects dipoles with polarization within domains and thus immobilize domain 

walls. Unlike electric fatigue,31,69 though, the ageing does not have to take place under electric 

field. The driving force for the defect dipoles reorientation is minimization of their elastic and 

electrostatic energies. The conductivity and aging are, however, related through the same 

mechanisms of charge migration: the short range hopping of oxygen vacancies with activation 

energies sufficient to account for many features of the aging-deaging process (e.g., loop 

pinching/depinching), and probably long range charge drift, which appears necessary to 

complete the deaging process under electric field.  

While the nature of defects that immobilize domain walls in hard ceramics now seems to be 

well established (oxygen vacancy-cation acceptor pair), their emplacement is still being 

debated. It has been suggested through ab-initio calculations that aging and domain wall 

pinning have origin in oxygen vacancies that are situated within the domain wall region 28,33 and 

not between domain walls. If this is indeed the case, it might imply the following. A PZT 

sample is always prepared at high temperatures (600°C for thin films, 1200°C for ceramics). It 

is reasonable to assume that   

! 

F " e Ti #VO
••  dipoles already exist when the sample is cooled through 

the Curie temperature where domain walls are formed. The hardening starts at this point. 

Considering the short range charge migration needed for ageing and hardening, it would be 

interesting to explore whether domain walls form around existing  

! 

F " e Ti #VO
••  dipoles or isolated 

vacancies migrate to the wall region. The latter scenario leaves open the question of the driving 

force needed for disrupting the   

! 

F " e Ti #VO
••  bond, since   

! 

F " e Ti are unlikely to move. From this 

perspective, position of dipoles between the domain walls rather than within domain walls 

appears to be more plausible. 

In hard materials, the ageing and hardening have been correlated to the sufficiently high 

ionic conductivity below   

! 

TC. It is thus not surprising that the absence of aging in soft materials 

can be correlated to the relatively low conductivity below   

! 

TC. As shown here, the charge 
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mobility is limited in soft PZT below   

! 

TC and stabilization of the domain walls structure by the 

migration of charged defects is not expected. Experimental results presented for soft PZT give 

no evidence that defect dipoles such as   

! 

(NbTi
• " # # V Pb # )  (if they are formed at all) align with 

polarization or that   

! 

" " V Pb  moves by hopping. While this is in agreement with the absence of 

hardening in soft materials, it does not explain the softening (higher properties with respect to 

undoped material). Our experiments show that undoped PZT behaves as a weakly hard material 

and that even PZT doped with 0.2% Nb exhibits slight pinching of the polarization-electric field 

hysteresis loop.70 This agrees with the early suggestion that addition of Nb to PZT compensates 

for naturally present acceptor impurities.1 Whether donor dopants possess beyond simple charge 

compensation an additional softening effect through stress relief 1,40,61 (leading to very rapid 

ageing rather than its absence) or through another elusive process remains at present 

unanswered. Importantly, one should not expect that fully or over-compensated donor doped 

PZT exhibits properties that would be observed in defect-free PZT because the domain wall 

structure of two materials would be different.  
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