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Quantum geometry and quantum dynamics
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Abstract. Canonical quantum gravity provides insights into the quantum dynamics as well as
quantum geometry of space-time by its implications for constraints. Loop quantum gravity in
particular requires specific corrections due to its quantization procedure, which also results in a
discrete picture of space. The corresponding changes compared to the classical behavior can most
easily be analyzed in isotropic models, but perturbations around them are more involved. For one
type of corrections, consistent equations have been found which shed light on the underlying space-
time structure at the Planck scale: not just quantum dynamics but also the concept of space-time
manifolds changes in quantum gravity. Effective line elements provide indications for possible
relationships to other frameworks, such as non-commutative geometry.
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SPACE-TIME STRUCTURE

Canonical formulations provide insights in underlying symmetries, which for gravity
correspond to general covariance. Once quantized, correction terms result which may
change the underlying symmetries or even provide new quantum degrees of freedom. In
loop quantum gravity, corrections arise from quantum geometry (the spatial structure)
as well as quantum dynamics. The main recent developments tobe described here, ob-
tained from model systems or perturbations, are (i) consistent deformations of classical
gravity, and (ii) effective descriptions to derive interacting quantum states and quantum
corrections in equations of motion.

Canonical gravity

For gravity, we have an infinite dimensional phase space of fields qab (the spatial
metric) and momentapab (related to extrinsic curvature). The other components of the
space-time metric, lapseN and shiftNa in

ds2 = gµνdxµdxν =−N2dt2+qab(dxa +Nadt)(dxb+Nbdt) ,

are not dynamical sincėN andṄa do not occur in the action. They may be included in
an extended phase space, but their momentapN = δS/δ Ṅ and pNa = δS/δ Ṅa would
be constrained to vanish identically. Accordingly, ˙pN =−δS/δN and ṗNa =−δS/δNa
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must vanish, too, which implies additional constraints

C =

√
detq

16πG
(3)R− 16πG√

detq
(pab pab − 1

2(pa
a)

2) = 0 , Ca = 2Dbpb
a = 0

for the non-trivial phase space variables.
In addition to constraining the fields and their initial values, the constraints gener-

ate gauge transformations which must leave physical observables unchanged. The dif-
feomorphism constraintD[Na] =

∫

d3xNaCa generates spatial diffeomorphisms along a
vector fieldNa, while the Hamiltonian constraintH[N] =

∫

d3xNC completes this to
space-time transformations (for fields satisfying the constraints).

The dynamics of general relativity in a canonical formulation is determined com-
pletely by the constraints, forming a total constraintT [N,Na] =

∫

d3x(NC+NaCa) = 0
for all multiplier functionsN, Na. It generates equations of motioṅf = { f ,T [N,Na]}
for any phase space functionf (q, p), a dot referring to the time gauge as given by the
choice of lapseN and shiftNa to be inserted inT [N,Na].

An important consistency requirement follows from this setup: if the constraints must
vanish at all times, the time derivativėT [M,Ma] = {T [M,Ma],T [N,Na]} = 0 must
vanish for allN andNa. The right part of this equation,

{T [M,Ma],T [N,Na]}= 0 if T [N,Na] = 0, (1)

implies that the constraints form a so-called first class algebra under Poisson brackets.
By general covariance, this is automatically satisfied classically: the constraints of gen-
eral relativity are covariant under space-time diffeomorphisms. As an important consis-
tency condition, (1) must be realized also after quantum corrections have been included
in T [N,Na]. If it remains satisfied, an anomaly-free version of quantumeffects has been
achieved. Since this condition is very restrictive, the anomaly-problem remains one of
the most important issues in (canonical) quantum gravity.

If we look at the constraint algebra for general phase space configurations, not just
for fields satisfying the constraints, more information about space-time structure can be
obtained. Working out the specific constraint algebra for gravity, we obtain

{H[N1],H[N2]}= D
[

qab(N1∂bN2−N2∂bN1)
]

(2)

for the bracket of two Hamiltonian constraints (while brackets involvingD[Na] directly
reflect the action of spatial diffeomorphisms onN or Na). This clearly vanishes once
the diffeomorphism constraint is satisfied, but the structure for general fields gives us a
wider perspective on the types of gauge transformations involved. If one looks at other
generally covariant systems, not just general relativity but also modified versions such
as those including extra fields or higher curvature terms, one finds the same constraint
algebra. The constraints certainly change, and so does the dynamics, but they still satisfy
the same algebra as shown above. The algebra is thus very basic, depending not on the
dynamics of the theory but only on the space-time structure.In fact, one can interpret
it as generating transformations which correspond to deformations of the hypersurfaces
underlying the foliation used to set up the canonical formalism. Accordingly, it is called
hypersurface deformation algebra, illustrated in Fig. 1.
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FIGURE 1. Illustration of the hypersurface deformation algebra.

The advantage of using the constraints to generate space-time transformations, rather
than Lie derivatives along space-time vector fields, is thatthis procedure directly deals
with objects available after quantization. Neither the manifold nor coordinates will be
related to operators, or be represented otherwise in the resulting quantum theory. Their
form would have to come out much more indirectly in canonicalquantum gravity, but
the constraints and their algebra is one of the most basic andimportant aspects. Although
consistently implementing them is certainly not easy, theygive us a more direct handle
on aspects of quantum space-time.

Quantum corrections

Canonical quantization following the Dirac procedure turns the constraints into op-
erators and requires them to annihilate physical states. A well-defined quantization is
often based on specific constructions which lead to terms in the constraints not seen
classically. One, spatial discreteness, is a consequence of some approaches to quantum
gravity and leads to deviations from the continuum expressions. After quantization, the
constraints typically change, and so does their algebra. Inthis way, one can analyze con-
sequences for the quantum space-time structure without direct reference to manifolds or
coordinates, which would no longer be part of the quantum theory.

Specifically, there are three types of corrections in loop quantum gravity [1, 2, 3],
which in general are equally important:

• Entire states evolve which spread and deform. Quantum fluctuations, correlations
and higher moments are independent variables back-reacting on expectation values.
This is well-known from quantum mechanics and quantum field theory, where its
effects can be captured by the loop expansion.

• In loop quantum gravity, holonomies

he(A) = P exp

(

∫

e
Ai

aτidt

)

(3)

as non-local, non-linear functions imply higher order corrections when they appear
in constraints in place of the connectionAi

a [4].
• Again in loop quantum gravity, fluxes

FS(E) =
∫

S
d2yEa

i na (4)



quantizing the spatial metric have discrete spectra containing zero. Inverse metric
components receive corrections for discrete (lattice-like) states with small elemen-
tary areas [5].

Canonical methods for the first class of effects are available [6], including the treatment
of constraints [7, 8] (but net yet fully extended to fields). The latter two directly probe
quantum geometry, intimately tied to the discreteness.

QUANTUM FRIEDMANN EQUATION

Several of these effects can be illustrated easily in isotropic cosmological models. In this
case, they result in a corrected Friedmann equation which can be summarized as

(

ȧ
a

)2

=
8πG

3

(

ρ
(

1− ρQ

ρcrit

)

+
1
2

√

1− ρQ

ρcrit
η(ρ −P)+

(ρ −P)2

(ρ +P)2η2
)

(5)

whereP is pressure in addition to the energy densityρ [9]; for earlier versions see
[10, 11, 12, 13]. Quantum effects thus make the Friedmann equation pressure depen-
dent, which would not appear in the classical equation. Moreover, there are corrections
depending on the form of the quantum state (of gravity, not matter). First,η parame-
terizes quantum correlations; it would vanish only for a completely uncorrelated state.
Secondly, quantum fluctuations, or a whole series of fluctuation parametersεk obtained
from higher moments of the state, define

ρQ := ρ + ε0ρcrit +(ρ −P)
∞

∑
k=0

εk+1(ρ −P)k/(ρ +P)k

This corrected, quantum density appears in a term together with the critical density
ρcrit = 3/8πGL(a)2, which does not introduce a new degree of freedom but depends
on a characteristic length scaleL(a) used in setting up the reduced model. (The size
of this parameter and its possiblea-dependence are currently not fixed, but should in
principle be derived from a full theory once the underlying state is under control. Till
then, constraints on its value can be found by internal consistency or phenomenology.)

In general, the dynamics is complicated since not onlya or the matter field would be
dynamical, but also the moments contained inη andρQ: The entire state evolves, not just
its expectation values giving rise toa and the classical matter variables. We are forced
to deal with a higher-dimensional effective system, containing new quantum degrees
of freedom. However, there are cases in which the behavior simplifies. If ρ = P, for
instance, which is realized for a free, massless scalar, thestate parameters decouple: the
model becomes exactly solvable and free of quantum back-reaction [14, 15]. Then, the
only correction to the Friedmann equation is to replaceρ with ρ(1−ρ/ρcrit), implying
bouncing solutions [13]. This special model was in fact firststudied in considerable
detail, mainly by numerically solving for the wave function[16]. A similar equation
results whenη = 0 around the point whereρQ = ρcrit, but this seems to require more
special properties of the state.



The main origin of corrections giving rise to bouncing solutions is the use of
holonomies. By reformulating the higher order terms which they initially imply for ȧ,
they give rise to the quadratic energy term in the Friedmann equation (see e.g. [17]). To
understand all implications of the bounce for cosmology, including metric perturbations
at least at the linear level would be essential. Unfortunately, so far no consistent inho-
mogeneous formulation with holonomy corrections is available. Available equations
either apply only to special modes [18, 19], or are based on gauge fixing [20, 21]. In the
latter case, anomalies or crucial quantum effects are hidden, but would have important
consequences for the behavior. (Examples are mentioned below.) It thus remains unclear
how bounces as they can sometimes be obtained from effectiveFriedmann equations fit
into a cosmological scenario. Consistent equations for inhomogeneities in the presence
of corrections from loop quantum gravity are, however, available for inverse metric
corrections, to which we turn now. This brings us back to the structure of space-time in
canonical quantum gravity.

INVERSE METRIC CORRECTIONS

Inverse metric corrections change the Hamiltonian constraint, in its gravitational part
[22] as well as matter Hamiltonians [5], whenever inverse components of the densitized
triad appear. To avoid details and focus on generic implications, we can implement them
by a generic functionα depending on the gravitational phase space variables. In some
cases, such as isotropic models [23, 24] or regular lattice states with gauge fixing [25] the
form can be computed explicitly, although it remains subject to quantization ambiguities;
see Fig. 2.

Number of spatial atoms

Quantum geometry corrections of loop quantum gravity depend on the form and size
of discrete building blocks realized in the theory and its states. Geometrical operators
have discrete spectra [26, 27, 28], showing that the spatialgeometry is made up from
small constituents. These constituents come in different sizes, determined by the spin
labels of a spin network state, and can form a macroscopic geometry in many different
ways. Dynamically, one expects the constituents to change in size as well as number,
giving rise to the evolution of a continuous geometry on large scales.

Specifically, this is realized in loop quantum cosmology by the mathematical objects
of holonomies (3) and fluxes (4), whose elementary size in terms of coordinates we call
ℓ0 (linear for holonomies, quadratic for fluxes). In a region oftotal coordinate volume
V0, the number of “atoms of geometry” is thenN =V0/ℓ

3
0. This parameter depends on

the size of the region chosen, but not on coordinates. The density N /V0 = ℓ−3
0 , on the

other hand, is independent of the region but coordinate dependent. The only coordinate
and region-independent measure for the denseness of spatial atoms is the geometrical
densityρN =N /a3V0 = (ℓ0a)−3 in a universe of scale factora. Althoughℓ0 is fixed for
basic operators in static quantum geometry, before the constraints are imposed, capturing
the full dynamics of changing lattices requiresℓ0 to depend on “time” [29]. This is to



be understood in the internal time sense, e.g. with reference to the scale factor:ℓ0(a).
The same function determines the characteristic scaleL seen in the critical density for
Friedmann universes:L(a) = aℓ0(a).

These parameters enter basic holonomies via exp(iℓ0ȧ/N) (with the lapse functionN,
which is one if the dot refers to proper time) and fluxes viaµ = ℓ2

0a2/ℓ2
P if the geometry

is nearly isotropic. Strong quantum corrections (holonomies deviating strongly from
ȧ/N, or large inverse metric correctionsα(µ)) result in both cases if the arguments
ℓ0ȧ/N of holonomies or the values of fluxes are of the order one. Holonomy corrections
thus appear when the curvature is ˙a/N ∼ k∗ := (N /V0)

1/3. Inverse metric corrections
are large whena ∼ a∗ := (N /V0)

1/3ℓP. (Notice that these equations are coordinate
inpendent even though each side of the inequalities dependson coordinates. For instance,
for a ∼ a∗, the geometrical vertex densityN /a3V0 = (a∗/a)3/ℓ3

P is near one per Planck
volume, a statement completely independent of coordinatesas well asV0 or any region
chosen.) The classical range, when all corrections are small, is characterized by ˙a/N ≪
k∗ anda ≫ a∗, as determined by the vertex densityN /V0 of a quantum geometry state.

For cosmological evolution, the dependence ofN on a is important, which occurs
whenever the discrete structure is being refined during expansion: spatial atoms emerge
dynamically, ensuring that the discrete geometry is not enlarged to macroscopic sizes
by cosmic expansion. A derivation of this refinement from a full theory of quantum
gravity, including all inhomogeneities, is challenging. At the current stage, this picture
gives rise to different models obtained by parameterizations. If one assumes a power
law N ∝ a−6x, which can describe at least finite ranges of evolution, one generically
expects−1/2< x < 0 according to what is known about the dynamics of loop quantum
gravity. The limiting cases are interpreted as follows: Forx = 0, N is constant and
there is no refinement; discrete building blocks are just enlarged during expansion.
As one may expect, this leads to late-time problems especially during the prolonged
expansion of inflation [30, 31]. Forx = −1/2, on the other hand, we have a constant
size of building blocks, and their number increases proportionally to volume. There are
no further excitations of spatial “atoms” beyond their initial size.

Such effects, though schematic, have surprisingly strong consequences. First, con-
sistency bounds from the interplay of holonomy and inverse metric corrections [32] or
from more restrictive anisotropic models [33] exist. Secondly, this allows us to use phe-
nomenology to see how quantum gravity dynamically refines its discrete space. Recent
examples have resulted, for instance, in an upper boundN /a3V0 < 3/ℓ3

P for the den-
sity from big bang nucleosynthesis [34], or a characteristic blue-tilt for tensor modes
which is enhanced ifx >−1/2 while forx =−1/2 correction are only small and of size
8πGρℓ2

P [35, 36].

Linear perturbations

Once a fully consistent theory for linear perturbations, including inverse metric cor-
rections, is set up and evaluated, restrictions on quantum geometry might become even
sharper. For linear metric perturbations around Friedmann–Robertson–Walker back-
grounds (which require the Hamiltonian to be expanded to second order) the corrected
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FIGURE 2. Examples for inverse metric correction functions, subjectto ambiguities parameterized by
0< r ≤ 2.

Hamiltonian can be expanded as [37]

HQ
grav :=

1
16πG

∫

d3x
(

N̄
(

ᾱH
(0)+α(2)

H
(0)+ ᾱH

Q(2)
)

+δNᾱH
Q(1)

)

with H (0) =−6H 2a (the background Hamiltonian) and

H
Q(1) = −4(1+ f )H aδ c

j δK j
c − (1+g)

H 2

a
δ j

c δEc
j +

2
a

∂c∂ jδEc
j

H
Q(2) = aδK j

c δKk
dδ c

k δ d
j −a(δK j

c δ c
j )

2− 2H

a
δEc

j δK j
c

−H 2

2a3 δEc
j δEd

k δ k
c δ j

d +
H 2

4a3 (δEc
j δ j

c )
2− (1+h)

δ jk

2a3(∂cδEc
j )(∂dδEd

k ) .

Here, δEa
i and δKi

a are perturbations of the densitized triad and extrinsic curvature,
respectively. In addition to the primary correction functionα, with its background value
ᾱ and the second order contributionα(2), there are extra functionf , g andh. They will
be fixed in terms ofα later on.

Modifying the constraints in most cases leads to anomalies:classical first class con-
straints then no longer form a first class algebra. Severe consistency issues result, such as
inconsistent equations or the coupling of gauge parametersto observables. For a gauge
system, quantization or any form of quantum corrections of the constraints must be a
consistent deformation, respecting the first class nature of the constraints. For constraints
corrected by inverse triad corrections as above, a first class algebra to second order in
perturbations is realized if the correction functions satisfy 2f +g = 0 and

−h− f +
a
ᾱ

∂ ᾱ
∂a

= 0 , f −g−2a
∂ f
∂a

− a
ᾱ

∂ ᾱ
∂a

= 0

1
6

∂ᾱ
∂a

δEc
j

a3 +
∂α(2)

∂ (δEa
i )
(δ a

j δ c
i −δ c

j δ a
i ) = 0.



(There are additional conditions for matter correction functions in terms of̄α2 if matter
is present.)

With these equations, all initial coefficients are fixed in terms of ᾱ, whose general
form can be derived in models. Importantly, corrections of inverse metric type are
possible in a consistent deformation:ᾱ remains undetermined from the algebra, and
so need not take the classical valueᾱ = 1. It is allowed to be of the form seen in Fig. 2,
for instance. Inverse metric corrections can be implemented in an anomaly-free form,
producing consistent equations for scalar linear perturbations [38],

∂c
(

Ψ̇+H (1+ f )Φ
)

= πG
ᾱ
ν̄

˙̄ϕ∂cδϕGI

from the diffeomorphism constraint,

∆(ᾱ2Ψ)−3H (1+ f )
(

Ψ̇+H Φ(1+ f )
)

= 4πG
ᾱ
ν̄
(1+ f3)

(

˙̄ϕδϕ̇GI − ˙̄ϕ2
(1+ f1)Φ+ ν̄a2V,ϕ(ϕ̄)δϕGI

)

from the Hamiltonian constraint, and

Ψ̈+H

(

2Ψ̇
(

1− a
2ᾱ

dᾱ
da

)

+ Φ̇(1+ f )

)

+

(

2Ḣ +H
2
(

1+
a
2

d f
da

− a
2ᾱ

dᾱ
da

))

Φ(1+ f )

= 4πG
ᾱ
ν̄
(

˙̄ϕδϕ̇GI −a2ν̄V,ϕ(ϕ̄)δϕGI)

as the equation of motion. They show promising effects not appearing classically, for
instance the non-conservation of power on large scales. Another implication is the
existence of anisotropic stress, a consequence not seen in gauge-fixed treatments: with
the corrections,Φ = (1+h)Ψ.

Quantum constraint algebra

With the required conditions forf , g andh andα(2), the algebra of corrected con-
straints is first class: it presents a consistent deformation of the classical theory to linear
order in inhomogeneities. Anomaly-free constraints including quantum gravity correc-
tions thus exist. Even though the underlying discreteness,via inverse metric corrections,
is responsible for the occurrence of these corrections, it does not destroy general covari-
ance.

However, the constraint algebra of hypersurface deformations is quantum corrected
[37]:

{HQ[N1],H
Q[N2]}= D

[

ᾱ2N̄a−1/2∂ a(δN2−δN1)
]

.

(The same corrected algebra results in spherically symmetric models without lineariza-
tion [39, 40].) This may not be fully surprising since the classical algebra (2) contains
the inverse metric in its structure functions, and so inverse metric corrections may be



expected in the constraint algebra. What is non-trivial is the conclusion that this correc-
tion can be implelented anomaly-freely. The specific form obtained here indicates how
the structure of quantum space-time changes compared to theclassical one: even the
constraint algebra, and thus the underlying algebra of space-time diffeomorphisms, is
corrected. Quantum gravity corrections affect not only thedynamics of the theory, but
also its underlying symmetries. An immediate consequence in a canonical theory is that
quantum corrections to constraints change the form of gaugeinvariant variables, as they
appear in the consistent perturbation equations presentedbefore. Here, differences to re-
duced phase space quantizations arise, where classical gauge invariant quantities would
be quantized directly without implementing corrections tothe gauge behavior.

While it is clear that the quantum space-time structure mustchange from inverse
metric corrections, it is difficult to say what the new manifold structure might be. We
only know the constraint algebra so far, which is difficult tointegrate. Moreover, we only
know the corrections for linear perturbative inhomogeneities, and an extension to higher
orders or non-perturbative inhomogeneity is much more involved. (But as suggested
by non-linear spherically symmetric models, it may well be possible.) An intriguing
possibility, still to be explored, would be a relationship to non-commutative geometry.
In both cases, canonical quantum gravity and non-commutative geometry, manifolds
are not taken as basic. But effective structures do arise, which may be the best way to
compare these different frameworks. If such a relationshipcan be established, it might
give indications for deformed Lorentz symmetries in quantum gravity; see e.g. [41].

CONCLUSIONS

Different types of quantum corrections arise in loop quantum gravity: those from quan-
tum geometry (inverse metric/holonomy corrections) and those from quantum dynamics
(back-reaction). The former are specific to the theory and thus provide useful opportu-
nities for tests.

In particular the anomaly problem, which becomes severe in the context of inho-
mogeneities and in particular with discreteness corrections, can be addressed at an ef-
fective level. It turns out that consistent deformations doexist, incorporating quantum
effects from the inverse metric (themselves coming from discrete flux spectra) in clas-
sical equations. Via the consistent perturbation equations, an interface to cosmological
applications is obtained. Observational input is very conceivable, and can shed light on
the underlying quantum states by constraining possible quantum corrections.

On a fundamental level, this tells us that discrete structures of space-time do not
have to break covariance. They may deform the classical algebra, but the same number
of symmetry generators remains present. A different realization of covariance results,
perhaps as a deformed space-time diffeomorphism group.
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