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Abstract. Canonical quantum gravity provides insights into the quantlynamics as well as
guantum geometry of space-time by its implications for taists. Loop quantum gravity in
particular requires specific corrections due to its quatiin procedure, which also results in a
discrete picture of space. The corresponding changes cethpathe classical behavior can most
easily be analyzed in isotropic models, but perturbationared them are more involved. For one
type of corrections, consistent equations have been fodmchvghed light on the underlying space-
time structure at the Planck scale: not just quantum dyreaimit also the concept of space-time
manifolds changes in quantum gravity. Effective line elameprovide indications for possible
relationships to other frameworks, such as non-commuatgtometry.
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SPACE-TIME STRUCTURE

Canonical formulations provide insights in underlying syatries, which for gravity
correspond to general covariance. Once quantized, cametetrms result which may
change the underlying symmetries or even provide new quadagrees of freedom. In
loop quantum gravity, corrections arise from quantum gdoy(¢he spatial structure)
as well as quantum dynamics. The main recent developmebts described here, ob-
tained from model systems or perturbations, are (i) comsisteformations of classical
gravity, and (ii) effective descriptions to derive inteiag quantum states and quantum
corrections in equations of motion.

Canonical gravity

For gravity, we have an infinite dimensional phase space tfsfigy, (the spatial
metric) and moment@® (related to extrinsic curvature). The other component$ef t
space-time metric, lap$¢ and shiftN@ in

ds? = guudxHdx” = —N2dt? + gap (@ + N3dt) (dx® + NPdt) ,
are not dynamical sincd andN2 do not occur in the action. They may be included in

an extended phase space, but their momegta: 6S/5N and pna = 5S/5Na would
be constrained to vanish identically. Accordingby, = —3S/dN and pya = —0S/dN?
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must vanish, too, which implies additional constraints

\/aetq (3) 161G

C= 161G \/detq

for the non-trivial phase space variables.

In addition to constraining the fields and their initial vedl the constraints gener-
ate gauge transformations which must leave physical obbtrs unchanged. The dif-
feomorphism constraird[N?) = [ d®*xN3C, generates spatial diffeomorphisms along a
vector fieldN3, while the Hamiltonian constrairi[N] = [ d®xNC completes this to
space-time transformations (for fields satisfying the t@msts).

The dynamics of general relativity in a canonical formulatis determined com-
pletely by the constraints, forming a total constrdifil, N3] = [ d®x(NC + N3C,) = 0
for all multiplier functionsN, N2. It generates equations of motidn= { f, T[N,N?]}
for any phase space functidriq, p), a dot referring to the time gauge as given by the
choice of lapséN and shiftN? to be inserted ifT [N, N?].

An important consistency requirement follows from thisugeif the constraints must
vanish at all times, the time derivative[M,M?] = {T[M,M?3], T[N,N?]} = 0 must
vanish for allN andN?2. The right part of this equation,

{TIM,M3 TIN,N?]} =0 if TIN,N¥ =0, (1)

(PabP® — 2(p2)?) =0 , Ca=2D,p2=0

implies that the constraints form a so-called first claselaig under Poisson brackets.
By general covariance, this is automatically satisfiedsitadly: the constraints of gen-
eral relativity are covariant under space-time diffeonisms. As an important consis-
tency condition,[(f1) must be realized also after quantumections have been included
in T[N, N2]. If it remains satisfied, an anomaly-free version of quangdiiects has been
achieved. Since this condition is very restrictive, theraaty-problem remains one of
the most important issues in (canonical) quantum gravity.

If we look at the constraint algebra for general phase spanégurations, not just
for fields satisfying the constraints, more information attbepace-time structure can be
obtained. Working out the specific constraint algebra faviy, we obtain

{H[N1J,H[N2]} = D | g®(N13pN, — dele)] 2)

for the bracket of two Hamiltonian constraints (while bratskinvolvingD[N?] directly
reflect the action of spatial diffeomorphisms Nnor N?). This clearly vanishes once
the diffeomorphism constraint is satisfied, but the stmectar general fields gives us a
wider perspective on the types of gauge transformatior@ved. If one looks at other
generally covariant systems, not just general relativitydlso modified versions such
as those including extra fields or higher curvature terms,fords the same constraint
algebra. The constraints certainly change, and so doeytiaardcs, but they still satisfy
the same algebra as shown above. The algebra is thus vecy td@sending not on the
dynamics of the theory but only on the space-time structuréact, one can interpret
it as generating transformations which correspond to dedtions of the hypersurfaces
underlying the foliation used to set up the canonical forsmal Accordingly, it is called
hypersurface deformation algebra, illustrated in Eig. 1.



FIGURE 1. lllustration of the hypersurface deformation algebra.

The advantage of using the constraints to generate spaedstinsformations, rather
than Lie derivatives along space-time vector fields, is thistprocedure directly deals
with objects available after quantization. Neither the iftdd nor coordinates will be
related to operators, or be represented otherwise in thtiresquantum theory. Their
form would have to come out much more indirectly in canonguentum gravity, but
the constraints and their algebra is one of the most basio@pattant aspects. Although
consistently implementing them is certainly not easy, tijgg us a more direct handle
on aspects of quantum space-time.

Quantum corrections

Canonical quantization following the Dirac procedure tuthe constraints into op-
erators and requires them to annihilate physical stateseidefined quantization is
often based on specific constructions which lead to termbencbnstraints not seen
classically. One, spatial discreteness, is a consequdrsme approaches to quantum
gravity and leads to deviations from the continuum expassiAfter quantization, the
constraints typically change, and so does their algebthidrway, one can analyze con-
sequences for the quantum space-time structure withadtdeference to manifolds or
coordinates, which would no longer be part of the quanturarthe

Specifically, there are three types of corrections in loopnqum gravity [[1) 2, 13],
which in general are equally important:

« Entire states evolve which spread and deform. Quantum #tions, correlations
and higher moments are independent variables back-rgamtiaxpectation values.
This is well-known from quantum mechanics and quantum fie&bty, where its
effects can be captured by the loop expansion.

« In loop quantum gravity, holonomies

he(A) = 2 exp( /e Agndt) @3)

as non-local, non-linear functions imply higher order eotions when they appear
in constraints in place of the connectidh [4].

« Again in loop quantum gravity, fluxes

Fs(E) = /S dPyEn, @)



guantizing the spatial metric have discrete spectra coingizero. Inverse metric
components receive corrections for discrete (lattice}lgtates with small elemen-
tary areas |5].

Canonical methods for the first class of effects are availffijl including the treatment
of constraints![7,.8] (but net yet fully extended to fieldsheTlatter two directly probe
guantum geometry, intimately tied to the discreteness.

QUANTUM FRIEDMANN EQUATION

Several of these effects can be illustrated easily in ipatrcosmological models. In this
case, they result in a corrected Friedmann equation whiclbesummarized as

&) 2o 2) b T )

whereP is pressure in addition to the energy dengityf9]; for earlier versions see
[1Q,111,/12, 13]. Quantum effects thus make the Friedmanatexupressure depen-
dent, which would not appear in the classical equation. laeg there are corrections
depending on the form of the quantum state (of gravity, nattena First,np parame-
terizes quantum correlations; it would vanish only for a ptetely uncorrelated state.
Secondly, quantum fluctuations, or a whole series of fluxingtarametersy obtained
from higher moments of the state, define

PQ =P +eoPciit+ (P —P) 5 &cra(p—P)/(p+P)"
k=0

This corrected, quantum density appears in a term togethrthe critical density
perit = 3/8nGL(a)?, which does not introduce a new degree of freedom but depends
on a characteristic length scdl¢a) used in setting up the reduced model. (The size
of this parameter and its possitdedependence are currently not fixed, but should in
principle be derived from a full theory once the underlyitgts is under control. Till
then, constraints on its value can be found by internal steiscy or phenomenology.)

In general, the dynamics is complicated since not @y the matter field would be
dynamical, but also the moments containeq imndpgq: The entire state evolves, not just
its expectation values giving rise goand the classical matter variables. We are forced
to deal with a higher-dimensional effective system, caomitg new quantum degrees
of freedom. However, there are cases in which the behavioplgies. If p = P, for
instance, which is realized for a free, massless scalast#tte parameters decouple: the
model becomes exactly solvable and free of quantum badkioeq14,/15]. Then, the
only correction to the Friedmann equation is to replaceith p(1— p/pcrit), implying
bouncing solutions_ [13]. This special model was in fact fgtdied in considerable
detail, mainly by numerically solving for the wave functi¢itE]. A similar equation
results whem = 0 around the point wherpg = prit, but this seems to require more
special properties of the state.



The main origin of corrections giving rise to bouncing smos is the use of
holonomies. By reformulating the higher order terms whiogytinitially imply for a,
they give rise to the quadratic energy term in the Friedmauaton (see e.g. [17]). To
understand all implications of the bounce for cosmologgluding metric perturbations
at least at the linear level would be essential. Unfortugase far no consistent inho-
mogeneous formulation with holonomy corrections is avdda Available equations
either apply only to special modes [18/ 19], or are based ageéxing [20/ 21]. In the
latter case, anomalies or crucial quantum effects are hidole would have important
consequences for the behavior. (Examples are mentioned.h#ithus remains unclear
how bounces as they can sometimes be obtained from efféairemann equations fit
into a cosmological scenario. Consistent equations favnmbgeneities in the presence
of corrections from loop quantum gravity are, however, ladée for inverse metric
corrections, to which we turn now. This brings us back to thecsure of space-time in
canonical quantum gravity.

INVERSE METRIC CORRECTIONS

Inverse metric corrections change the Hamiltonian comgtran its gravitational part
[22] as well as matter Hamiltonians [5], whenever invers@ponents of the densitized
triad appear. To avoid details and focus on generic imptoat we can implement them
by a generic functiomr depending on the gravitational phase space variables.ne so
cases, such as isotropic models [23, 24] or regular lattateswith gauge fixing [25] the
form can be computed explicitly, although it remains sutfi@quantization ambiguities;
see Fig[P.

Number of spatial atoms

Quantum geometry corrections of loop quantum gravity ddmemthe form and size
of discrete building blocks realized in the theory and ittess. Geometrical operators
have discrete spectra [26,/ 27/ 28], showing that the spggi@etry is made up from
small constituents. These constituents come in differezeiss determined by the spin
labels of a spin network state, and can form a macroscopimgey in many different
ways. Dynamically, one expects the constituents to chamgize as well as number,
giving rise to the evolution of a continuous geometry ondssgales.

Specifically, this is realized in loop quantum cosmology gy inathematical objects
of holonomies[(B) and fluxeEl(4), whose elementary size mdef coordinates we call
{p (linear for holonomies, quadratic for fluxes). In a regiontattl coordinate volume
Vo, the number of “atoms of geometry” is thefi = VO/ES. This parameter depends on

the size of the region chosen, but not on coordinates. Theitgern” /o = 653, on the
other hand, is independent of the region but coordinatercp®. The only coordinate
and region-independent measure for the denseness oflspiatias is the geometrical
densityp , = .+ /a®Vlp = (¢pa) 2 in a universe of scale factar Although/ is fixed for
basic operators in static quantum geometry, before them@onts are imposed, capturing
the full dynamics of changing lattices requirgsto depend on “time”|[29]. This is to



be understood in the internal time sense, e.g. with referém¢he scale facto¥y(a).
The same function determines the characteristic dcalkeen in the critical density for
Friedmann universesi(a) = alp(a).

These parameters enter basic holonomies vigié3d N) (with the lapse functioiN,
which is one if the dot refers to proper time) and fluxesia Z%az/ﬁé if the geometry
is nearly isotropic. Strong quantum corrections (holoresrdeviating strongly from
a/N, or large inverse metric correctiorms()) result in both cases if the arguments
¢oa/N of holonomies or the values of fluxes are of the order one. ktwioy corrections
thus appear when the curvatureaidN ~ k. := (¥ /Vp)Y/3. Inverse metric corrections
are large whera ~ a, := (¥ /V)¥3/p. (Notice that these equations are coordinate
inpendent even though each side of the inequalities degencizordinates. For instance,
for a~ a,, the geometrical vertex density” /a’Vp = (a./a)3/¢3 is near one per Planck
volume, a statement completely independent of coordiregtagell asvy or any region
chosen.) The classical range, when all corrections are Ssaharacterized bg/N <
k. anda > a,, as determined by the vertex density /\ of a quantum geometry state.

For cosmological evolution, the dependencetfon a is important, which occurs
whenever the discrete structure is being refined duringresipa: spatial atoms emerge
dynamically, ensuring that the discrete geometry is noargeld to macroscopic sizes
by cosmic expansion. A derivation of this refinement from & theory of quantum
gravity, including all inhomogeneities, is challenging.tAe current stage, this picture
gives rise to different models obtained by parameterinatidf one assumes a power
law .+ O a~—®, which can describe at least finite ranges of evolution, eregcally
expects-1/2 < x < 0 according to what is known about the dynamics of loop quantu
gravity. The limiting cases are interpreted as follows: ket 0, .4 is constant and
there is no refinement; discrete building blocks are jusargeld during expansion.
As one may expect, this leads to late-time problems especlaling the prolonged
expansion of inflation [30, 31]. Fotr= —1/2, on the other hand, we have a constant
size of building blocks, and their number increases progaatly to volume. There are
no further excitations of spatial “atoms” beyond theirialisize.

Such effects, though schematic, have surprisingly stramgequences. First, con-
sistency bounds from the interplay of holonomy and inversgrimcorrections. [32] or
from more restrictive anisotropic models [33] exist. Satlgnthis allows us to use phe-
nomenology to see how quantum gravity dynamically refiredigcrete space. Recent
examples have resulted, for instance, in an upper bouin@3V, < 3/¢2 for the den-
sity from big bang nucleosynthesis [34], or a characteristue-tilt for tensor modes
which is enhanced X > —1/2 while forx = —1/2 correction are only small and of size
8nGp/3 [35,136].

Linear perturbations

Once a fully consistent theory for linear perturbationsjuding inverse metric cor-
rections, is set up and evaluated, restrictions on quantoemegtry might become even
sharper. For linear metric perturbations around FriedmBmbertson—Walker back-
grounds (which require the Hamiltonian to be expanded torsgorder) the corrected
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FIGURE 2. Examples for inverse metric correction functions, subje@mbiguities parameterized by
O<r<2.

Hamiltonian can be expanded as|[37]
My = 12— / % (N(ax® +a@0 +ax?) +oNa W)

with #(© = —6.2a (the background Hamiltonian) and

. 2 .
A0 — —4(1—|—f)%aéféKC'—(1+g)£6‘6Ef+gaca'6Ef
A2 = adKloKEGES! —a(6K{8F)2— 27 5EC§KJ
A %2 3ik
—53 SESSEJ XS] + (55051) ~(1+h)5 (acaEC)(adaEk)

Here, 6E? and 8K/ are perturbations of the densitized triad and extrinsivaiure,
respectively. In addition to the primary correction functor, with its background value
a and the second order contribution?, there are extra functiof, g andh. They will
be fixed in terms ot later on.

Modifying the constraints in most cases leads to anomatiessical first class con-
straints then no longer form a first class algebra. Severgist@mcy issues result, such as
inconsistent equations or the coupling of gauge paramtiaisservables. For a gauge
system, quantization or any form of quantum correctionshefdonstraints must be a
consistent deformation, respecting the first class nafuttee@onstraints. For constraints
corrected by inverse triad corrections as above, a firss @igebra to second order in
perturbations is realized if the correction functionssgtRf + g= 0 and

ada of ada
—h—f+—£—0 , f—g— Zaa 708

o OEY (2)
1daokjy  Jda 5557 = 0.

~o4 a5c
6 da a3 +d(5Eia)(5‘d




(There are additional conditions for matter correctionctions in terms ofx? if matter
Is present.)

With these equations, all initial coefficients are fixed inme of a, whose general
form can be derived in models. Importantly, corrections roferse metric type are
possible in a consistent deformatiam:remains undetermined from the algebra, and
so need not take the classical vahlie- 1. It is allowed to be of the form seen in Fig. 2,
for instance. Inverse metric corrections can be implenteimtean anomaly-free form,
producing consistent equations for scalar linear pertiobhs [38],

0 (W-+ (14 1)®) = NG =$0:59°
from the diffeomorphism constraint,

A@PW) =35 (1+ ) (W + 4 D(1+ 1))
_ 47TG%(1+ fa) ($69°' — %(1+ f1) @+ Va4 (§)56°)

from the Hamiltonian constraint, and

” : a da - - 2 adf ada
w+%<2w<1—2—a£)+¢(1+f))+<2%+%ﬂ <1+§£—2—a£))¢(1+f)

= 47TG%: ($69°' — a2V 4($)59°")

as the equation of motion. They show promising effects npeagng classically, for
instance the non-conservation of power on large scalesth&namplication is the

existence of anisotropic stress, a consequence not seaugedixed treatments: with
the correctionsp = (14 h)W.

Quantum constraint algebra

With the required conditions fof, g andh and a(?, the algebra of corrected con-
straints is first class: it presents a consistent deformatiahe classical theory to linear
order in inhomogeneities. Anomaly-free constraints idolg quantum gravity correc-
tions thus exist. Even though the underlying discreteneasnverse metric corrections,
is responsible for the occurrence of these correctiongdsdhot destroy general covari-
ance.

However, the constraint algebra of hypersurface defoonatis quantum corrected
[37]:

[HOIN1],HONG]} = D [@2Na/29%(8N, — 5Ny)| -

(The same corrected algebra results in spherically synwmatydels without lineariza-
tion [39,140].) This may not be fully surprising since thessdical algebrd (2) contains
the inverse metric in its structure functions, and so inv¥eretric corrections may be



expected in the constraint algebra. What is non-triviahésd¢onclusion that this correc-
tion can be implelented anomaly-freely. The specific forrtaoted here indicates how
the structure of quantum space-time changes compared tdabsical one: even the
constraint algebra, and thus the underlying algebra ofespate diffeomorphisms, is

corrected. Quantum gravity corrections affect not onlydiieamics of the theory, but
also its underlying symmetries. An immediate consequemescanonical theory is that
guantum corrections to constraints change the form of ganvgeiant variables, as they
appear in the consistent perturbation equations preseefede. Here, differences to re-
duced phase space quantizations arise, where classicp gaariant quantities would

be quantized directly without implementing correctionghe gauge behavior.

While it is clear that the quantum space-time structure nochainge from inverse
metric corrections, it is difficult to say what the new maidfgtructure might be. We
only know the constraint algebra so far, which is difficulinttegrate. Moreover, we only
know the corrections for linear perturbative inhomogeasjtand an extension to higher
orders or non-perturbative inhomogeneity is much more g (But as suggested
by non-linear spherically symmetric models, it may well lesgible.) An intriguing
possibility, still to be explored, would be a relationshiprion-commutative geometry.
In both cases, canonical quantum gravity and non-commetgiometry, manifolds
are not taken as basic. But effective structures do ariseshwhay be the best way to
compare these different frameworks. If such a relationshipbe established, it might
give indications for deformed Lorentz symmetries in quangravity; see e.gl [41].

CONCLUSIONS

Different types of quantum corrections arise in loop quangravity: those from quan-
tum geometry (inverse metric/holonomy corrections) amséfrom quantum dynamics
(back-reaction). The former are specific to the theory and fgirovide useful opportu-
nities for tests.

In particular the anomaly problem, which becomes severdéncontext of inho-
mogeneities and in particular with discreteness corrastican be addressed at an ef-
fective level. It turns out that consistent deformationsedst, incorporating quantum
effects from the inverse metric (themselves coming froncrei® flux spectra) in clas-
sical equations. Via the consistent perturbation equsatian interface to cosmological
applications is obtained. Observational input is very eivable, and can shed light on
the underlying quantum states by constraining possiblatguacorrections.

On a fundamental level, this tells us that discrete strestwf space-time do not
have to break covariance. They may deform the classicabedgbut the same number
of symmetry generators remains present. A different raatim of covariance results,
perhaps as a deformed space-time diffeomorphism group.
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