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Hybrid molecular dynamics/Monte Carlo simulations are used to study melts of unentangled, ther-
moreversibly associating supramolecular polymers. In this first of a series of papers, we describe
and validate a model that is effective in separating the effects of thermodynamics and chemical
kinetics on the dynamics and mechanics of these systems, and is extensible to arbitrarily nonequi-
librium situations and nonlinear mechanical properties. We examine the model’s quiescent (and
heterogeneous) dynamics, nonequilibrium chemical dynamics, and mechanical properties. Many of
our results may be understood in terms of the crossover from diffusion-limited to kinetically-limited
sticky bond recombination, which both influences and is influenced by polymer physics, i. e. the
connectivity of the parent chains.

PACS numbers: 83.80.Kn,83.10.Rs,82.35.-x,81.05.Lg

I. INTRODUCTION

Flexible synthetic polymers have long been of funda-
mental scientific interest because many of their properties
arise from a few universal features like the topological
connectivity, random-walk like structure, and excluded
volume of the chain molecules. Less universal are the var-
ious attractive, “associative” intermolecular interactions
[1, 2] ranging from weak dispersion forces to strong cova-
lent chemical bonds (in chemically crosslinked systems).
Examples include hydrogen bonding, electrostatic attrac-
tions, and effective attractions driven by incompatibility
with a solvent. These interactions lead to formation of
supramolecular structures ranging from micelles to net-
work gels.

Associating polymers (APs) differ from simple ho-
mopolymers in that chains contain a (typically fairly low)
fraction of “sticky” monomers, which are different from
the majority-species monomers. The sticky monomers
form “sticky bonds” with each other via associative in-
teractions weaker than permanent covalent bonds. These
lead to formation of supramolecular aggregrates. Unlike
the closely related “living” or “equilibrium” polymers,
the degree of polymerization of AP “parent” chains is
fixed (in time) by permanent covalent backbone bonds.

The lifetime of the sticky bonds is finite. Depending
on the nature of the associative interactions and am-
bient conditions (e. g. temperature, concentration), the
supramolecular topology may be practically permanent,
in which case the system forms a “chemical gel” (i. e. a
crosslinked rubber), or so short-lived that the system is
indistinguishable from a simple polymer solution, melt
or glass. Between these limits, when the topology of the
associated supramolecular aggregates changes on a time
scale comparable to the experiment, these systems form
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complex fluids with fascinating dynamical and mechani-
cal properties [3].

At fixed ambient conditions, the time scales for topo-
logical changes in associating polymer systems are in
principle set by three independent factors: the (a) ther-
modynamics (i. e. energetic strength relative to kBT ),
(b) the “chemical kinetics” of the sticky bonds, and (c)
the underlying non-associative polymer physics. Ther-
modynamics set “static” quantities such as the size of
the supramolecular aggregates and hence the position of
the system relative to the percolative gelation transition.
Kinetics set relaxation times through their effect on the
rates of formation and breaking of sticky bonds. Polymer
physics alters the dynamics through such effects as the
random-walk-like structure and uncrossability of chains,
which give rise to the systems’ underlying Rouse or rep-
tation dynamics [4]. The interplay of (a)-(c) allows for
the design of materials with exquisitely tunable rheologi-
cal response. For this reason, APs have been the focus of
intense experimental and theoretical study over the past
two decades; see Refs. [2, 3, 5, 6, 7] for reviews.

Changes in ambient conditions lead to “thermore-
versible” property changes unique to AP systems, e. g.
extremely sharply decreasing viscosity upon decreasing
concentration or increasing temperature. These changes
can be tuned (engineered), so APs have great potential
as “smart” materials [2, 3, 6, 8, 9] in which the change of
lifetime or concentration of the sticky bonds with ambi-
ent conditions leads to useful products. Applications in-
clude temperature-sensitive adhesives, coatings for heat-
sensitive materials, and generally enhanced melt process-
ability relative to conventional polymers [8].

Static thermodynamic properties of AP systems, in
particular the percolative gelation transition and local
structural changes arising from associative interactions,
have been extensively studied. Analytic theories pro-
vide a good understanding of homogenous systems, and
emerging numerical techniques such as self consistent
field theoretic simulations [10] and reaction-ensemble
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DPD [11] show promise for investigating inhomogeneous
systems.

However, the dynamical, mechanical, and nonequilib-
rium properties of associating polymer gels and networks
remain poorly understood. Time dependent properties
obviously depend on kinetics, and in addition to being
of fundamental scientific interest, a better understanding
of them may prove important in developing new applica-
tions of associating polymer systems such as self healing
materials [9]. The situation becomes particularly com-
plex when the lifetime of the sticky bonds is not long
or short compared to the “polymeric” relaxation times;
this regime has been studied rather extensively for linear
equilibrium polymers (see e. g. Refs. [12, 13, 14, 15, 16]),
but much less so for networks.

Analytic and quasi-analytic approaches to AP dynam-
ics and mechanics, e. g. [17] Refs. [7, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30], have made many useful,
experimentally verifiable predictions, including nonlinear
behaviors such as shear thickening and strain hardening
[30, 31]. In the general case, however, the complex inter-
play of sticky bond thermodynamics and kinetics with
the underlying polymer physics in these systems is al-
most certainly beyond the reach of analytic theory. For
the sake of tractability, theories have generally neglected
one or more features of AP systems that are likely essen-
tial to capturing their behavior under certain ambient
conditions. For example, as temperature drops towards
the glass transition, attractive, non-associative interac-
tions, such as van der Waals forces between non-sticky
monomers, become increasingly important [32]. More-
over, virtually all analytic treatments have thus far been
restricted [33] to homogeneous AP systems; the majority
focus on the “telechelic” case of APs with only 2 sticky
monomers per parent chain (one on each end). We be-
lieve that inhomogeneous AP systems are the potentially
the most interesting and useful, e. g. because inhomo-
geneities serve to localize sticky monomer concentration
and network connectivity, which in turn can broaden the
relaxation spectrum [34, 35].

The above set of potentially essential features of APs is
not treated microscopically by existing theories, but can
be readily captured by particle-based simulations. This
is the first of a series of simulation studies, the goal of
which is to elucidate the separate effects of sticky bond
thermodynamics, kinetics, and other underlying polymer
physics on the dynamical, mechanical, and nonequilib-
rium properties of associating polymers.

Previous particle based simulations of AP networks fo-
cusing on dynamical properties, e. g. [17] Refs. [36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47] have produced a wealth
of interesting ideas and results. However, for various rea-
sons outlined in Section II B, the methods employed in
these previous studies are not suitable for the full range of
problems we wish to consider. A more versatile model for
APs requires the combination of: i) realistic dynamics,
ii) applicability to far-from-equilibrium conditions, iii)
controllable sticky binding topology, iv) variable chem-

ical kinetics and v) the ability to treat inhomogeneous
systems.

In this paper we develop and validate a model, based
on those employed in Refs. [14, 46, 48], that shows all
these characteristics. Much of the physics of amorphous
polymer melts and gels is independent of chemical de-
tail [4, 49], so properties i) and ii) are captured by us-
ing a bead-spring model [48] for the underlying (non-
associative) polymer physics. We capture properties (iii)-
(v) by employing a hybrid molecular dynamics / Monte
Carlo (MD/MC) approach with controlled (specifically,
binary) bonding and variable chemical kinetics [14]. The
combination of properties (i-v) allows the model to be
used to obtain many results unattainable with previous
methods. A key advance is that our algorithm is par-
allelizable. In validating and investigating our model,
we separate the effects of thermodynamics, kinetics, and
polymer physics on AP network dynamics and mechanics.
We show that sticky bonding is mappable to a “mean-
field” two-state Arrhenius rate model, but that the ki-
netic rate constants for SB association and dissociation
are affected by the fact that the SMs are embedded in
polymers.

One of the key aspects of associating polymer net-
works, which has rarely been examined (for networks)
in the theoretical or simulation literature, is that sticky
bond relaxation can be either kinetically limited (i. e.
limited by the intrinsic rate of bonding and/or debond-
ing) or diffusion limited (i. e. when the kinetics are so
fast that sticky bond scission and recombination events
become correlated because newly broken SM pairs tend
to recombine before exploring the network cage). Most
experimental systems seem to be kinetically limited, and
this is the case treated by almost all published analytic
theories for reversibly associating networks, including
transient network models [22, 25]. Theories for kinet-
ically limited AP networks [20, 21, 24, 26, 27] assume
that the sticky bond lifetime τsb is so long compared
to all “polymeric” relaxation times that it controls all
important time scales for network relaxation, and there-
fore that kinetics only affect key network relaxation times
through their effect on τsb (or, alternately, as suggested
by recent experiments [50, 51], the inverse dissociation
rate constant k−1

b , defined below). We show that the va-
lidity of this assumpton is questionable, and that there
is a wide parameter space, plausibly accessible in exper-
iments, where it is invalid. Note that published theories
[13, 52, 53, 54, 55, 56] for diffusion-limited reactions in
polymeric systems, such as those of O’Shaughnessy et.

al., either are not immdeiately applicable or have not yet
been applied to reversible networks.

Our simulations explore the crossover between the ki-
netically limited and the diffusion limited cases. We con-
firm a key prediction of Rubinstein and Semenov [24] on
the role of bond recombination on AP dynamics, specifi-
cally that recombination effectively renormalizes the SB
lifetime in systems where the sticky bonds are sufficiently
strong. However, we show that recombination couples in-
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terestingly to the diffusive-kinetic crossover in a way not
previously predicted.

We extensively examine the dynamics in quiescent,
equilibrium systems. One of the more interesting re-
sults is that slowing chemical kinetics increases dynam-
ical heterogeneity [40] in a manner similar to increasing
the thermodynamic strength of the sticky bonds. We
also examine nonequilibrium ‘chemical dynamics’ (i. e.
in systems where the initial sticky bond population is
not equilibrated), and nonlinear mechanical properties.
The studies of nonequilibrium systems and mechanical
properties presented here are limited in number because
this paper is intended primarily to illustrate the broad
utility of the model.

The organization of the rest of this paper is as follows.
In Section II we further motivate, describe and exten-
sively validate our model. We also discuss how it differs
from those used in previous simulations of APs. In Sec-
tion III we present various results for the equilibrium and
nonequilibrium physics of thermoreversible AP networks,
and compare to theoretical predictions. Finally, Section
IV presents a discussion and conclusions. Two Appen-
dices include technical details of the analyses.

II. MODELS AND METHODS

Of particular interest for the current study, and mo-
tivating our modelling approach, are recent experiments
performed by the group of Stephen L. Craig [3, 50, 51,
57, 58, 59]. These have attempted to independently vary
thermodynamics and chemical kinetics by making sys-
tematic changes in sticky monomer chemistry (based on
metal-ligand interactions). Systems with similar static
properties show dramatic differences in time-dependent
properties that are directly associated with the different
kinetics. This effect is quite challenging to capture ex-
perimentally because thermodynamics and kinetics are
highly correlated for most AP systems (i. e. stronger
binding ↔ slower kinetics [3]), but relatively easy to im-
pose in simulations.

The advantages of including variable kinetics in the
model are rather obvious given the above discussion.
The advantage of imposing binary bonding (i. e. a SM
is at all times bonded to either 0 or 1 other SM) is
also relevance to current experiments. Sticky monomers
with binary bonding are considered particularly valu-
able for making thermoplastic elastomers with enhanced
melt processability and controllable network architecture
[60, 61]. Real examples include multiple hydrogen bond-
ing monomers such as ureidopyrimidinone (UPy), which
have highly directional associative interactions, and are
of a strength such that the sticky bonds they form con-
stitute a “reversible alternative for the covalent bond”
[6, 8, 60, 61, 62]. In the model used here [46], sticky
bonds differ from covalent bonds only by their reversibil-
ity and strength.

A. Hybrid MD/MC Simulation Protocol

Our model is built on the framework of the Kremer-
Grest bead-spring model [48], which has been extensively
validated and is known to capture the key physics of
linear homopolymer melts [48, 63] as well as perma-
nently crosslinked networks [64]. Each associating poly-
mer chain is linear and contains N beads (monomers).
Systems consist of Nch chains, so the total number of
monomers is NchN . Periodic boundary conditions are
imposed in all three directions, with periods Li along di-
rections i = x, y, and z. Values of Nch range from 700 to
5600; the lowest values are chosen to satisfy Li > 2Ree

(where Ree is the mean chain end-end distance), prevent-
ing self interactions. Remaining leading order finite size
effects in networks scale as (NchN)−1/3 [65] and should
be ∼ 2% for the systems considered here.
All monomers have mass m and interact via the trun-

cated and shifted Lennard-Jones (LJ) potential ULJ(r) =
4u0[(a/r)

12 − (a/r)6 − (a/rc)
12 + (a/rc)

6], where rc is
the cutoff radius and ULJ(r) = 0 for r > rc. Cova-
lent bonds between adjacent monomers on a chain are
modeled using the finitely extensible nonlinear elastic po-
tential UFENE(r) = −(1/2)(kR2

0
)ln(1 − (r/R0)

2), with
the canonical [48] parameter choices R0 = 1.5a and
k = 30u0/a

2. In this study, following the majority of
bead-spring studies on permanently crosslinked systems
(e. g. Refs. [64, 66]), we employ flexible chains with no
angular potential. We express all quantities in units of
the LJ bead diameter a, intermonomer energy u0, and
the LJ time τLJ =

√

ma2/u0.
All systems have monomer density ρ = 0.85/a3. We

employ two temperatures in this study: kBT = 1.0u0

and kBT = 0.6u0. These ambient conditions both corre-
spond to dense polymer melts far above the glass tran-
sition temperature Tg; Tg ≃ 0.35u0/kB for rc = 1.5a
and decreases with decreasing rc [67, 68]. This far above
Tg, melt physics is known to be dominated by the repul-
sive part of the intermonomer interactions [4]; for con-
venience, and following convention [48], we use purely
repulsive LJ interactions with rc = 21/6a. However, in-
cluding attractive interactions by increasing rc is trivial,
is important to realistically capture T dependent prop-
erties, and will be done in upcoming studies.
All simulations are performed using an enhanced ver-

sion of the LAMMPS [79] MD code. Newton’s equations
of motion are integrated with MD using the velocity Ver-
let method [69] and typical timestep δt = .01τLJ [70]. A
Langevin thermostat [71] is used to maintain the tem-
perature. The damping time τLang = 10 − 100τLJ is
larger than the value typically used (τLang ≃ τLJ) in
bead spring studies; this reduces undesirable thermostat-
driven effects such as alteration of stress relaxation by
suppression of hydrodynamic momentum transfer [72].
In this study we employ two “chain lengths”. Most stud-
ies are performed at N = 50, which is at or below best es-
timates of the entanglement length 50 <∼ Ne

<∼ 85 [73, 74],
so the melts can be fully equilibrated by allowing chains
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to diffuse several Ree [75]. N = 50 is also a convenient
choice of chain length because it has been considered in
many previous studies. To elucidate the effects of under-
lying polymeric structure on AP physics, we also consider
monomeric melts (N = 1), that reversibly sticky-bond
into dimers.
After the melts are equilibrated, we choose a fraction

cst of the monomers to be “sticky”. For the N = 1
systems these are chosen randomly. For N = 50 systems,
SMs are placed uniformly along chains: at both chain
ends and also at internal monomers iN/(Ncst−1), where
i = 1, 2, ..., Ncst − 2. In this study we use cst = 0.08
(which is comparable to typical experimental values, e.
g. [35, 76], so for N = 50 the SMs are the 1st, 17th,
34th, and 50th monomers in each chain. However, any
SM placement can be used, and studies of the effects
of altering SM placement at fixed cst are underway; the
effects of chemical disorder are known to be significant
for stress relaxation [29, 35].
Sticky monomers are identical to regular monomers,

except that they form reversible “sticky” bonds. Fig-
ure 1 illustrates the potential energy between sticky
monomers as a function of their separation r. SMs (like
all monomers) always interact via Lennard Jones interac-
tions, whether bonded or not. Bonded SMs additionally
interact via the potential Usb(r, h):

Usb(r, h) = UFENE(r)− UFENE(r0)− h, (1)

which is based on the standard covalent FENE poten-
tial. Here r0 represents the equilibrium FENE bond
length; r0 ≃ .96a, i. e. the minimum of the poten-
tial ULJ(r) + UFENE(r). The only difference between
the sticky and covalent bond potentials is thus an r-
independent, tunable offset. The same bonding potential
was used in Huang et. al.’s studies of equilibrium poly-
mers [14, 77] and a very similar potential was used in
Baljon et. al.’s studies of telechelic associating networks
[46, 78]. However, our method has several important dif-
ferences from those of Refs. [14, 46, 77] (see Section II B),
so we explain it in detail below.
The potential Usb(r) has several other important fea-

tures. h represents the sticky binding energy; for h = 0 a
sticky bond can be formed between two monomers sep-
arated by r0 with no change in energy. The associated
force Fsb(r) = −∂Usb/∂r, however, is independent of h.
Adjusting h is thus a nearly pure way of adjusting the
thermodynamics of the sticky bonds without directly al-
tering their “chemical kinetics”, i. e. the rates of forma-
tion and dissociation of sticky bonds.
Formation and breaking of sticky bonds is performed

using Metropolis Monte Carlo [69]. The change in en-
ergy required to form a sticky bond between an unbonded
pair of SMs is just ∆E(r, h) = Usb(r, h), and the energy
change to break a sticky bond is ∆E(r, h) = −Usb(r, h).
These are the only MC “moves” used, and the accep-
tance probability of the moves is set by ∆E(r, h)/kBT .
The MC moves are strictly “topological”. All spatial mo-
tion of bonded SMs is governed by the sticky bond force

FIG. 1: Sticky monomer interaction potential. Same as in
Refs. [14, 46]. Differences in SB formation/breaking rules are
noted in the text.

Fsb(r), along with the other forces from Lennard Jones
and covalent FENE interactions, which are all integrated
using MD. One potential difficulty is that only bonded
SMs “feel” the force Fsb(r), so formation/breaking of
SMs creates temporal force discontinuities. However, as
will be shown below, this does not seem to cause any
spurious behavior.
The system sizes and time scales studied here require

simulation on parallel computers; 8 to 64 processors are
used in a typical simulation. While MD parallelizes very
well [79], it has long been noted that MC [80] is very
difficult to parallelize. We therefore perform hybrid par-
allel MD / serial MC simulations. MC moves are per-
formed once every τ0 in Lennard Jones time units; τ0
is the MC “timestep”. The MD simulation is paused
while the parallel-distributed lists of sticky bonds and
SM coordinates are gathered onto one processor. For ef-
ficiency, Verlet-style pair neighbor lists of SMs are used
and of open SM pairs, only those within r < R0 are
considered for SB formation. After the SB list is up-
dated, it is distributed back to all processors and the
MD simulation resumes. Great care was taken to opti-
mize the MC algorithm to minimize “dead” time on the
other processors, but reasonable parallel performance re-
quires τ0 ≫ δt. In this paper, except where otherwise
noted, we use τ0 = τLJ ; see also Section IID.
As mentioned above, current experimental trends fa-

vor binary-bonding sticky monomers, We impose binary
bonding through a simple restriction on the Monte Carlo
routine; sticky bond formation is attempted only for pairs
of unbonded SMs. The 1-1 bonding restriction imposed
here was also assumed in Ref. [24], which eases compari-
son of our results to theoretical predictions.
Two further technical details of the MC algorithm are

noteworthy: (1) We do not allow any SM pair to both
break and form a SB (i. e., to break and recombine) dur-
ing the same MC step. This is a technical violation of
detailed balance, but satisfies the weaker “balance” con-
dition sufficient [81] for accurate MC simulations. SB
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recombination is a critical aspect of supramolecular poly-
mer physics [24] and is further discussed in Section III.
(2) we do not allow “bond switching” moves within a
single MC step. That is, for SMs V,W,X, Y , we do not
allow moves of the form

V −W +X → V −X +W
V −W +X − Y → V − Y +X −W

(2)

or any other more complicated moves. In addition to be-
ing difficult to implement in simulations, such processes
are unlikely to occur instantaneously in real systems, in
part because of steric constraints. Different but analo-
gous rules, suitably modified to the use of SMs with two
binding sites each, were imposed in Refs. [14, 77].
In our model, varying the relative rates of sticky bond

formation and dissociation is accomplished by varying h.
However, the absolute values of the rates depend on a
yet unspecified kinetic time scale τkin. This time can be
controlled through the Monte Carlo routine. At each MC
timestep (i. e., every τ0), a fraction fMC of unbonded SM
pairs (of those within range r < R0) and an equal frac-
tion fMC of bonded SM pairs are randomly selected to
be considered respectively for sticky bond formation and
breaking. We have verified this scheme maintains ‘bal-
ance’ [81] for pairs and triplets of SMs for .01 ≤ fMC ≤ 1.
Thus the average time over which each unbonded or

bonded SM pair is considered once for (respectively) SB
formation or breaking is τMC = f−1

MCτ0, and the param-
eter τMC effectively controls the “chemical kinetics” of
the SBs. For a discussion of why we use fMC < 1 rather
than varying τ0, see Section IID. Small τMC correspond
to fast chemical kinetics [82], while large τMC correspond
to slow chemical kinetics.
In Section III E we perform mechanical tests on vari-

ous systems. Two types of tests are perfomed; constant
volume deformation and tensile creep. In the constant
volume deformation tests, Lz is increased at a true strain
rate ǫ̇ = L̇z/Lz, and Lx and Ly are adjusted to maintain
constant volume. In the creep tests, a constant (small)
stress difference σcreep (relative to the equilibrium hydro-
static pressure in the quiescent state, which is positive for
repulsive LJ interactions) is applied along the z direction
using a Nose Hoover barostat [69]. This smaller |σz| pro-
duces tensile creep. Both types of tests use τ0 = .2τLJ to
minimize systematic errors.

B. Comparison to Previous Simulation Protocols

It is worthwhile to compare the simulation method
and ambient conditions described above in the context
of previous AP simulation studies. The use of a hybrid
MD/MC method is a powerful advantage. Pure Monte
Carlo (MC) simulations have been performed with lattice
[37, 38, 40, 83, 84] and off-lattice [36, 44] models. These
are very effective at studying static properties like per-
colative gelation and (in the case of solutions) phase sep-
aration, but have limited ability to capture the complex,

collective dynamics which occur in bulk polymers, and
thus lack properties (i) and (ii). For example, MC can
not, even in principle [39], capture hydrodynamic effects,
which are expected to play an important role whenever
momentum transfer is important (e. g. in relaxation of
highly stressed systems).

Pure molecular dynamics (MD) studies [41, 42, 43,
45, 47, 85] have been used to study static and dy-
namic properties. While better able to capture dynamics
and nonequilibrium phenomena than MC, MD studies
can not naturally implement controllable sticky bonding
topology. Also, MD studies cannot easily impose any
control of chemical kinetics without resorting to costly,
chemically realistic models. For example, Padding and
Boek [86] studied systems intermediate between ours and
those studied by Huang et. al.; a fraction cst < 1 of
their monomers were allowed to form linear equilibrium
poiymers, but the FENE-C sticky bonding potential [87]
used did not allow for variable kinetics. Thus, in practice,
typical MD studies lack properties (iii) and (iv).

The previous works most closely related to the present
method are Refs. [14, 46, 77], who also used hybrid
MC/MD with the same Usb(r) (Eq. 1). Huang et. al.

[14, 77] also used variable kinetics, but studied equil-
brium linear polymers with cst = 1 rather than network-
forming APs with cst ≪ 1. Details of the Huang et. al.

method are discussed extensively in Ref. [14]. The key
differences of our method from Ref. [46] are the imposi-
tion of binary bonding and the use of variable τMC (they
used only one τMC = 0.2τLJ). Another difference was
that Refs. [14, 46, 77] all used a much stronger thermo-
stat, giving overdamped (Brownian) dynamics.

Many previous studies have used nonspecific (e. g.
strengthened attractive Lennard-Jones or Coulombic) in-
teractions which allow SMs to form arbitarily many si-
multaneous SBs [37, 40, 41, 42, 43, 45, 47, 83, 85]. This
results in formation of interesting structures such as mi-
celles and micelle-bridge networks, which occur in real
AP systems such as associating ionomers (see e. g. Ref.
[88]). In contrast, the (experimental) APs we wish to
model tend to form networks more like classical rubbers.

Most previous studies [36, 38, 40, 44, 46, 85] varied
temperature T at fixed SM bonding strength. This does
not isolate the effects of T on associative bonding from
its other effects such as the dynamical slowdown which
occurs in normal (non-associative) polymers. To get a
full picture of AP physics, one should vary both h and T
independently [14]. We follow this approach.

Other differences from previous simulation studies
are more associated with the systems employed than
the methods applied. Many studies have considered
only telechelic chains [41, 42, 43, 44, 45, 46, 47, 85].
Telechelics are appealing in their simplicity, but their
network-forming abilities are naturally limited; for
binary bonding, at least 3 SMs/chain are required to
form good networks. Weakly entangled chains (N ∼ Ne)
may be ideal [8] for technological goals such as enhanced
melt processability at high T and network strength at
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low T . The majority of previous studies have employed
extremely short N ≪ Ne chains [38, 41, 42, 43, 46, 85],
but we consider systems with N ∼ Ne. Finally, the
majority of previous studies have focused on small ρ
corresponding to solutions [14, 37, 40, 42, 46, 77, 83, 85].
AP solutions exhibit a wide range of intriguing phe-
nomena, in particular competition between gelation
and phase separation [36, 38], which, however, we do
not wish to consider here. In addition, the presence of
solvent can dramatically weaken the effective strength
of sticky bonds in real systems [8, 62, 76]; this effect is
beyond the scope of our model. We therefore focus on
systems with ρ corresponding to a dense pure melt with
no solvent.

Mappings of the bead-spring model to real, dense
polymer melts [48] produce different τLJ in the range
10−10.5±1.5s. Present day computers can achieve runs
(for the system sizes used here) of up to ∼ 107τLJ ∼
10−3.5±1.5s, but runs this long can not be performed
over a broad parameter space. In contrast, sticky
bond lifetimes in experimental systems are typically at
least 10−4s, and often many orders of magnitude longer
[50, 60, 62]. Thus any attempt to capture specific
SM chemistries and at the same time use systems large
enough to study bulk dynamics and mechanical proper-
ties would exceed the capabilities of present day super-
computers [89]. Coarse-grained modelling with the goal
of studying the dynamics of AP systems by analogy is the
only currently feasible approach for bulk systems, so we
make no attempt to mimic specific chemistries. The only
published simulations of which we are aware that model
AP networks with specific chemistries [84, 90] are pure
Monte Carlo studies that used a very coarse-grained (lat-
tice) bond-fluctuation model [91] and focused on static
properties.

C. Static Properties: Validation of Hybrid
MD/MC Method

As discussed above, systems contain a total of Nst =
NchNcst sticky monomers. Due to the binary bonding
rules, the maximum number of sticky bonds that can ex-
ist in the system at any given time is Nst/2. If the prob-
ability that an SM is bound into an SB is pactive, then
the total number of SBs in the system is Nstpactive/2. If
A represents an unbound SM and A2 represents a bound
SM pair, these factors define the concentrations

[A] ≡ ρcst(1− pactive),

[A2] ≡ ρcstpactive/2,
(3)

where square brackets denote concentrations. If the equi-
librium value of pactive is p∗, then the equilibrium con-
stant for SB association is defined (by the law of mass

action for the reaction A+A↔ A2) as

Keq ≡
[A2]

[A]2
≡ p∗

2ρcst(1 − p∗)2
(4)

for binary bonding.
Figure 2 shows simulation data in which p∗ was evalu-

ated from equilibrated simulations at fixed h and Keq ob-
tained from Eq. 4. Circles show values of Keq for N = 1
and N = 50 systems. As expected, Keq ∼ exp(h/kBT ).
The data shown are for τMC = 1.0τLJ , but we have ver-
ified that p∗ is independent of τMC (to within statistical
errors) for all h tested, over the range τLJ ≤ τMC ≤
100τLJ . Because there is an entropy cost ∼ kBT to form
a SB, few SBs form for h < 2u0. As h/u0 ranges from
2 to 17.5, the equilibrium constant Keq varies over more
than six orders of magnitude, from 0.96 to 3.9 ·106. This
is a wider range of h and Keq than considered in previ-
ous simulation studies. A standard [92] finite size scal-
ing analysis of the percolation gel transition is given in
Appendix A. For kBT = 1.0u0, percolation occurs at
h = hperc = 4.25u0, so we consider values of h up to ∼ 4
times above the gelation transition.
Note that the τMC -independence of p∗ allows systems

to be equilibrated efficiently using a low τMC = τLJ .
Higher values of h (for polymeric systems) are impossible
to equilibrate on present-day computers with our current
method; equilibration is discussed further in Section III.
However, the highest values of Keq considered here are
comparable to those observed in some experiments on
multiple-H-bonding SMs [3, 62].

FIG. 2: Sticky association in equilibrium; simulation data
and test of Equation 8. All results are for NchN = 280000,
cst = 0.08 systems with kBT = 1.0u0 and τMC = 1.0τLJ .
Closed circles are simulation values of Keq from Eq. 4 for
N = 50 polymers and open circles are for N = 1 dimer-
forming systems. The straight lines are exponential fits, to
Eq. 8, for KTS

eq .

Data from multiple system sizes are also useful in fur-
ther validating the simulation model. Ben-Naim and
Krapivsky have pointed out that systems which re-
versibly polymerize undergo a nonthermodynamic gela-
tion transition [93] when the fragmentation (in our case,
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SB breaking) process is too weak. The average num-
ber of clusters (aggegrates) at any given time is Nagg ≡
Nch/Nn, where Nn is the number-averaged cluster size
(Appendix A). Nagg ≡ Nch in the absence of sticky
bonding and Nagg → 1 in the limit of large h, because
all the chains combine into a single network (as in an
ideal rubber). Our systems, in the terms of Ref. [93], are
“thermodynamic” if and only if: (1) Nagg is linearly pro-
portional to Nch below percolation (i. e. for h < hperc)
and (2) the probability distibution of cluster sizes P (M)
(Appendix A) is independent of τMC . An arbitrary sim-
ulation method will not necessarily display a ‘thermo-
dynamic’ gel transition; failure to do this would be a
serious flaw according to our goals. We therefore have
verified that our model satisfies conditions (1) and (2)
for τLJ ≤ τMC ≤ 100τLJ , and therefore properly cap-
tures reversible gelation. Satisfaction of these conditions
appears equivalent to the above-verified condition that
p∗ is independent of τMC [82].
Figure 3 shows data for P (M) at h = 4u0 and kBT =

1.0u0 (i. e. just below percolation). The collapse of the
data shows [93] that cluster formation/dissociation is an
equilibrium processes and supports our arguments that
the algorithm satisfies detailed balance for the range of
τMC considered here. Also, P (M) shows some interesting
properties which demonstrate that our modelled systems
form good (rubber-like) networks. The line shows a fit
to a P ∝ (M)−5/4 power law, which is consistent with
the fractal dimension Dfrac = 4 of aggregrates and the
expected power law ln(P ) ∼ −(1 + 1/Dfrac)ln(M) for
networks [94]. In contrast, dense telechelic systems have
an exponential P (M) ∼ exp(−M/ < M >) distribution.
The absence of any large exponential contribution in our
P (M) at large M indicates that long linear clusters are
not common. Therefore, though our parent chains only
contain 4 SMs each, we are confident that that is enough
to accurately capture AP network physics.

D. SB Dynamics and Two-State Model

Figure 4 shows simulation results for the average
sticky bond lifetime, τsb, in quiescent systems at chem-
ical equilibrium. Simple thermal activation of SB dis-
sociation would suggest exponential behavior, τ−1

sb ∝
exp(−h/kBT ). In fact the results are markedly nonex-
ponential. Interestingly, SB lifetimes in polymeric sys-
tems are (apparently) always lower than those in dimer-
forming systems. This is consistent with differences in
chain connectivity; SBs embedded in polymers experi-
ence additional ‘pulling’ forces due to transmission of the
random thermal forces (which produce diffusive motion)
through covalent bonds along their parent chains. Addi-
tional reductions in τsb could potentially arise from in-
creased steric hindrance to bonding for embedded SMs.
While this “polymeric” effect on τsb should dependent
sensitively on N , cst and T , to our knowledge it is not
included in any theories for AP networks.

FIG. 3: Cluster size distribution. P (M) is the probability
that a chain will be part of a disconnected cluster of M chains
(i. e. the weight fraction of M -clusters). All results are
for N = 50, uniform cst = 0.08 systems with kBT = u0

and h = 4u0. Data for different kinetic rates are shown:
τMC/τLJ = 1 (blue stars), 10 (green ×), and 100 (red +).
The upward slope at large MW is due to the statistics of
small numbers. Results are averaged over 100 statistically
independent samples.

FIG. 4: Sticky bond lifetimes. All results are for 280000-bead,
cst = 0.08 systems with τMC = 1.0τLJ and kBT = u0. Closed
circles are simulation data for N = 50 polymers, open circles
are data for N = 1 dimer-forming systems, and the straight
line is an exponential ‘fit’, shown only as a guide to the eye.

The simulation data in Figures 2 and 4 can be bet-
ter understood by mapping the Monte Carlo procedure
and Usb(r, h) onto a two state Arrhenius model for sticky
bonding. The model is depicted in Figure 5. Bonded
SM pairs are assumed to have an energy −h, unbonded
SMs have zero energy, and we introduce an h-dependent
barrier δ(h).

The Monte Carlo rules described in Section IIA allow
us to assume that sticky bond formation obeys second or-
der kinetics and dissociation obeys first order chemical ki-
netics, as they should as long as ρcst ≪ 1/a3 [24, 95]. The
SB formation/dissociation process can be represented as
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FIG. 5: Arrhenius 2 state model. Refs. [14, 77] did not intro-
duce an h-dependent δ.

the chemical reaction

A+A
kf
−→←−
kb

A2
(5)

where kf and kb are the rate constants for SB forma-
tion and dissociation. Then the equation for chemical
equilibrium is

kf [A]
2 = kb[A2]. (6)

In the Arrhenius two state model the rate constants are
given by:

kf = α exp(−δ(h)/kBT ),

kb = β exp(−(h+ δ(h))/kBT ),
(7)

where α and β are constants with dimensions of
volume×frequency and frequency, respectively. Note
that the above is a “mean field” model [12] in that it
ignores correlations between sticky monomers (i. e. con-
centration fluctuations). Thus kf and kb (and especially
α and β) will in general depend [44] on N , ρ, cst, and
(through second order effects such as the variation of ρ
at fixed pressure) T .
In thermal equilbrium, Eq. 6 gives the equilibrium con-

stant

KTS
eq ≡

kf
kb

=
α

β
exp(h/kBT ). (8)

Eq. 8 fits simulation results for Keq very well, as shown
in Fig. 2. In AP networks at even higher values of h, Eq.
8 should fail due to ‘trapped’ open SMs [44] that cannot
find partners, but this effect is negligible for the systems
considered here.
We now compare two state model predictions to sim-

ulation data and map the latter to the former. In
the two state model, the mean SB lifetime τsb is just
τsb = k−1

b . Similarly, the probability that an unbonded
pair in the ‘2A’ state (Fig. 5) will jump over the barrier
is just exp(−δ(h)/kBT ). This is also the success rate

FIG. 6: Validation of method. All results are for 280000-bead,
cst = 0.08 systems with τMC = 1.0τLJ and kBT = u0. Closed
circles are simulation data for N = 50 polymers, open circles
are data for N = 1 dimer-forming systems, and straight lines
are exponential fits. Data shown are: (a) δ(h)/kBT , and (b)
τ−1

sb exp(δ(h)/kBT ).

SMC ≡ kf/α for Monte Carlo SB formation attempts,
so δ(h) can be directly measured from the simulations:
δ(h)/kBT = −ln(SMC).

In Figure 6, panel (a) shows simulation re-
sults for δ(h) and panel (b) shows simulation re-
sults for τ−1

sb exp(δ(h)/kBT ). The latter shows that
the perfect exponential decay expected from Eq. 7,
τ−1

sb exp (δ(h)/kBT ) = kb = β exp (−h/kBT ), is actually
observed. Note that this Arrhenius behavior was in no

way imposed ; it emerges naturally, showing the utility of
the two state model in understanding the behavior of our
simulations.

The parameters α and β can be extracted from the
data in Figs. 2 and 6. For τMC = τLJ , α = 6.3a3/τLJ

and β = 24/τLJ for dimers, while α = 4.0a3/τLJ and
β = 41/τLJ for N = 50 chains. The smaller α measured
for polymer-embedded SMs is consistent with the above-
hypothesized increased steric constraints. The large rate
constant β = 41/τLJ indicates a potential problem with
the simulations. β is an effective “attempt frequency”
for breaking sticky bonds, which implies that the MC
timestep τ0 should be small compared to β−1. Larger
τ0 will in principle produce systematic errors. The data
shown above are for τ0 = 1.0τLJ , which is large compared
to β−1. Simply reducing τ0 is problematic because it
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sharply reduces the parallel efficiency of the simulations.
However, we have used values of τ0 as small as .05τLJ ,

and find that all errors produced by using τ0 = 1.0τLJ

are small in quiescent systems at equilibrium; for exam-
ple, the systematic error in τsb at h = 10u0 is about 1%.
While the errors in dynamical properties are somewhat
larger at small h (h ≪ 10u0), in this paper we focus
on dynamics for h ≥ 10u0 and use τ0 = 1.0τLJ . In all
cases, all differences produced by smaller τ0 are small
compared to the differences between systems contrasted
in Section III, and comparable to our statistical errors,
i. e. ∼ 1%. For nonequilibrium systems, however, sys-
tematic errors are larger. Thus all nonequilibrium and
mechanical-property tests in this paper are performed
using τ0 ≤ 0.2τLJ .
In summary, to within our noise, increasing τMC leaves

the static properties of our model AP networks (Figure
2) unchanged, and changes the sticky bonding dynam-
ics (Figure 6a-b) only through the prefactor τsb ∝ τ−1

MC .
The role of τMC in the dynamics therefore appears in
the rate constants α and β, which are also proportional
to τ−1

MC . Increasing τMC slows down the chemical kinetics
of the SBs (both formation and dissociation) relative to
the underlying polymeric time scales, while leaving the
thermodynamics unchanged. This is why we claim our
model can separate thermodynamics and kinetics. The
variation of h and τMC employed here may be thought of
as corresponding to “scanning” across chemically differ-
ent sticky monomers. Given the time scale problem men-
tioned above, this scanning is only qualitative. However,
we show below that it is very useful in understanding AP
systems.

III. RESULTS

Previous work has shown [40, 46] that the most dra-
matic changes in dynamics, our primary interest, take
place not at hperc but rather at considerably higher h.
The rest of this paper considers systems with h≫ hperc

and p∗ >∼ 0.95. This is the “physical gel” regime [83]
where nearly all chains are (at any moment) part of a
single aggregate. A “snapshot” of a physical gel looks
much like a crosslinked rubber, yet chains are delocal-
ized and the system can flow at long times. One of the
most interesting properties of physical gels is their tran-
sition to chemical gels as h increases or T decreases. In
this “physical-chemical gel transition” (PCGT), chains
become localized [40, 46] in a manner analogous to
the “caging” effect produced upon cooling fragile glass-
forming systems [96, 97].
For the N , T , and cst considered here, the PCGT oc-

curs [98] at bonding strength hPCGT > 17.5u0. The
broad range (5u0

<∼ h <∼ 17u0) between the percolation
(Appendix A) and localization transitions is consistent
with the findings of Kumar and Douglas [40] as well as
Baljon et. al. [46], who both, however, used constant SB
strength and varied T . The broad range is not depen-

dent on having only a few sticky monomers per chain, al-
though increasing Ncst at fixed ρ will broaden the range
by lowering hperc. Here we focus on values of h which
are well below hPCGT , and thus “in the middle” of the
physical gel regime.
Another of the key features of physical AP gels is sticky

bond recombination. The concentration ρcst(1 − p∗) of
free SMs is small. Moreover, the motion of free SMs is
constrained by their (transiently but usually) bonded in-
trachain neighbors. Thus SM pairs tend to recombine
after SB-dissociation events. This leads to to a second
characteristic timescale for individual sticky bonds; in
addition to the “bare” lifetime τsb, there is [24] a larger,
“effective” SB lifetime τ∗, which can be thought of as
the average time for initially bonded SMs to “separate”
(i. e. no longer recombine) as opposed to merely debond.
It is of interest because rheological experiments typically
measure τ∗; τsb is more difficult to access [3, 12, 35].
Values for τsb and τ∗ (defined more specifically in Ap-
pendix B and discussed further in Section III B) for a
wide variety of systems are given in Table I. We have
already shown how τsb is affected by polymer physics
- indirectly through covalent backbone bonds. Now we
study the ways in which SB recombination influences and
is influenced by the interplay of SB thermodynamics, SB
kinetics, and polymer physics. We perform our study in
terms of measurements of diffusion, τ∗, dynamical het-
erogeneity, nonequilibrium chemical dynamics, and non-
linear mechanical properties. All results presented below
are for systems that were first equilibrated for many τ∗.
As will be shown, these are best understood by deter-
mining whether SB recombination is diffusion-limited or
kinetically limited.

A. Diffusion

The effect of varying different thermodynamic and ki-
netic parameters on monomer diffusion (mean squared
displacement < (δ~r)2(t) >) is shown in Figure 7. Panel
(a) shows the variation as h is increased at τMC = 1.0τLJ

and kBT = 1.0u0. At short times (t ≪ τsb), results for
different values of h collapse, showing (as expected) that
sticky bonding has little effect on diffusion on these time
scales. At larger times (t >∼ τsb) results show a pro-
gressive localization and ‘caging’ effect, similar to that
described in Refs. [40, 46], as sticky bond strength in-
creases. At h = 10u0, little localization occurs because
[24] τsb is less than the Rouse time of the chains in the
absence of sticky bonding (τR ≃ 2.6 · 103τLJ). As τsb
increases with increasing h, the curves develop a “shoul-
der” which illustrate the temporary caging associated
with physical gels. This temporary cage becomes per-
manent as τsb →∞ (as in a classical crosslinked rubber).
Data in panel (a) support our earlier statement that this
occurs for some h >∼ 17u0.
Panels (b-c) show a pair of interesting effects. First,

for h = 11.25u0 and kBT = 1.0u0, increasing τMC has
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FIG. 7: Diffusion as function of h, T , and τMC . All systems
have Nch = 1400. Panel (a): kBT = u0, increasing h. Panel
(b): h/kBT = 11.25; kBT = u0 and kBT = 0.6u0, increasing
τMC . Panel (c) is a blowup of (b) showing the crossover.
Lines from top to bottom for each T in panels (b-c) are for
τMC/τLJ = 1, 10, 100, and (for kBT = 1.0u0)∞. The legends
for panels (b-c) give T in units of u0/kB and τMC in units of
τLJ .

the same qualitative effect as increasing h at fixed τMC .
Data for < (δ~r)2(t) > collapse for t less than the small-
est τsb (i. e. τsb for the lowest τMC). For longer times,
the data develops a shoulder which increases in width as

τMC increases. Data for an equilibrated system with MC
deactivated (i. e. τMC =∞) shows “chemical gel” (ideal
rubber) behavior; chains are permanently localized.

Second, data from systems with the same “SB thermo-
dynamics” (i. e. the ratio h/kBT = 11.25) but different
ambient conditions (h = 6.75u0 and kBT = 0.6u0) shows
interesting contrasts which illustrate the interplay of SB
dissociation and underlying polymer physics. For t <∼ τsb,
data for < (δ~r)2(t) > still collapse, but data from the
lower-T systems collapse on a lower value. This is not
at all surprising, as polymeric diffusion is well known to
slow with decreasing T . However, though h/kBT is the
same, values of τsb are smaller for the lower-T systems,
perhaps because h is smaller and SB breaking is favor-
able at smaller r (see Fig. 1) [99]. Thus the diffusion data
actually cross over at intermediate time scales (panel c)
and the lower T systems show greater mobility at fixed
h/kBT , a most unusual state of affairs. While the case
presented here is somewhat artificial because in a real
polymer melt ρ would decrease with T and lead to further
diffusive slowdown, we believe the point that varying T
at fixed SB thermodynamics should change relaxation at
different timescales differently should be generally valid.
For example, the frequency (ω) dependence of the dy-
namical moduli G(ω;T ) [100] should change with T in
nontrivial ways. In other words, time-temperature su-
perposition should be violated.

It is useful to relate the mean squared displacement
to the cage size acage and “escape parameter” f(t) using
the definition

< (δ~r)2(t) >≡ a2cagef(t). (9)

In the τsb → ∞ limit, a3cage ∼ (ρcst)
−1 is the volume

explored by sticky monomers [101]. The “chemical gel”
time tchem is the time at which f(t) approaches unity
in this limit. Data for the τMC = ∞ system in Figure
7(b) (with h = 11.25u0, N = 50, and cst = .08) shows
that a2cage ≃ 23a2 and tchem ∼ 104.5τLJ . For finite τsb,
one can define tcage as a “caging” time describing the
(de)localization of SMs [40, 46]; f(t) then has the general
form f(0) = 0, f(t) ∼ 1 for t ∼ tcage, and f(t) > 1 for
t > tcage.

The monomeric diffusion constant D, as measured
by limt→∞ < (δ~r)2(t) >∼ 6Dt, should vary inversely
with some “long” characteristic time τlong of the sys-
tem, roughly defined as the time for chains to diffuse by
their end-end distance. Candidates for τlong include τsb
and τ∗. Ref. [24] predicts τlong ∝ τsb for weakly bind-
ing physical gels and τlong ∝ τ∗ in the strong-binding
(near-chemical) limit. Figure 8 shows results for Dτsb,
Dτstar , and 8 · 104τLJD from Table I for h = 11.25u0,
kBT = 1.0u0 systems, over a wide range of τMC . D de-
creases with increasing τMC slower than both (τ∗)−1 and
τ−1

sb , but it tracks the former more closely than the latter.
Thus results for this value of h are apparently intermedi-
ate between the “weak” and “strong” physical gel limits
described in Ref. [24].
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FIG. 8: Scaling of diffusion with various candidate “long”
relaxation times. Data shows Dτlong for τlong = τsb (circles),
τlong = τ∗ (triangles), and τlong = 8 · 104τLJ (squares). The
last value is chosen so the “bare” diffusion constant D can
be shown on the same plot. All results are for systems with
Nch = 1400, h = 11.25u0 and kBT = 1.0u0. DτMC is not
shown because τsb ∝ τMC .

B. Crossover between Diffusion-Limited and
Kinetially Limited SB recombination

Table I shows τ∗ and τ∗/τsb for all investigated sys-
tems. As expected, increasing h at fixed τMC increases
τ∗/τsb, because for fixed kinetics recombination is more
likely for thermodynamically stronger SBs. There are
several possible regimes of possible relations between τ∗

and τsb that can be related to diffusion (specifically,
< (δ~r)2(t) >) on intermediate timescales. Systems with
τsb ≫ min(tcage, tchem) will exhibit kinetically limited
sticky bond recombination (KL); in this regime τ∗/τsb is
predicted to be constant [24]. However, if τsb ≪ τcage,
recombination will be dominated by “correlated” recom-
binations of SM pairs that have recently dissociated and
have not had time to fully diffuse away from one an-
other. This is diffusion limited sticky bond recombina-
tion (DL). To our knowledge, the DL regime and espe-
cially the crossover between DL and KL have not been
previously studied for AP networks.

Figure 9 shows the variation of τ∗/τsb with chemical
kinetics for h = 11.25u0 systems at kBT = 1.0u0. Over
a range of two orders of magnitude in τMC , the data are
well fit by the equation

τ∗

τsb
= C +

K

(τMC)x
, (10)

where C is the probability of recombination in the KL
limit and K is the contribution from diffusion-limited re-
combination. The exact form of Eq. 10 is not of great con-
sequence; what matters is the broad crossover between
regimes and the large change of τ∗/τsb as a function of
kinetics. Nevertheless, since τsb = k−1

b , Eq. 10 can be

FIG. 9: Crossover from diffusion limited to kinetically limited
sticky bond recombination for h = 11.25. All systems have
70000 beads, with cst = .08. The upper data set is for N = 50
polymers and the lower is for N = 1 dimer-forming systems.
The fastest-kinetic systems (τMC = 0.5τLJ ) use τ0 = 0.5τLJ ,
and all others use τ0 = τLJ . The solid line shows a fit to Eq.
10 with C = 1.15, K = 4.98τx

LJ and x = 0.74. The dashed
line shows a fit with C set to 1, K = 2.97τx

LJ and x = .94.

interestingly rewritten

τ∗ =
C +Kτ−x

MC

kb
. (11)

The significance of Eq. 11 is its prediction of a nonlinear
dependence of kbτ

∗ on the rate constant kb for dissocia-
tion; τ−x

MC ∝ kxb (see Section IID).
C and K are of course not universal constants, but

will depend on h, ρ, cst, T , and N . In practice, one
would expect Kτxsb ≪ C when τsb ≫ min(tcage, tchem).
More physically, the condition Kτxsb ≪ C defines the
KL regime, where sticky bond reactions become “mean-
field” in the sense of Cates [12]. The data in Figure 9
show that one can (at least in our model systems) move
from the KL to the DL regimes simply by speeding up
the chemical kinetics, if one is in the regime where τsb is
comparable to the underlying polymer relaxation times
such as tchem.
For our systems, values of C are close to values of

τ∗/τsb in our “kinetically slow” (τMC = 100τLJ) systems,
cf. Table I. C increases with h (qualitatively) as pre-
dicted by Rubinstein and Semenov [24]. However, while
our kinetically slow systems all have C < 2, the “strong
physical gel” theory in Ref. [24] assumes C ≫ 1, so we
defer a detailed comparison to that theory to later work.
Here we merely make the positive observation that the
basic prediction [24] of effective SB lifetime renormaliza-
tion (τsb → τ∗) works well at these relatively small C and
(somewhat surprisingly) over the entire studied KL→DL
crossover regime. The renormalization τsb → τ∗ accu-
rately captures effective SB dissociation over a very broad
parameter space [102].
On the other hand, an observation apparent from Fig.

9 is that SB recombination is in general only partly ‘poly-



12

meric’ in nature. In the limit of fast kinetics, values
for τ∗/τ in N = 1 systems are nearly as high as for
N = 50 systems. However, the lack of a network pre-
vents any caging effects, and so τ∗/τsb decreases much
faster with increasing τMC , approaching unity (regard-
less of the value of h) at τMC = 100τLJ . This illus-
trates that the crossover from DL to KL is analogous to
a crossover between ‘dimeric’ and ‘polymeric’ recombina-
tion; in other words, chain connectivity (i. e. covalent
bonding) becomes increasingly important as kinetics are
slowed. While the ‘dimeric’ contribution to SB recom-
bination cannot be simply “subtracted out” due to the
different δ(h), these ‘dimeric-vs-polymeric’ effects on SB
recombination have been neglected by previous theories
[103].

C. Recombination and Dynamical Heterogeneity

FIG. 10: SB recombination and dynamical heterogeneity. All
systems have Nch = 1400, h = 11.25u0 and kBT = 1.0u0.
Lines from top to bottom are for τMC/τLJ = 1, 10, and 100.
Panel (a): Precomb(t). The black dotted line is exp(−t/τ∗)−
exp(−t/τsb) for τMC = 10τLJ . Panel (b): Λ(t).

Figure 10a shows simulation results for the SB recom-
bination probability Precomb(t) (defined in Appendix B)

for h = 11.25u0 systems with different chemical kinetics.
Although there is a small peak in Precomb (not displayed
and low compared to the peaks shown in Fig. 10a) at
very small times t ∼ τMC , the t−5/4 behavior predicted
[13] for the extreme diffusion-limited case is not found.
This indicates none of our systems have “too-fast” kinet-
ics [14]. For t≫ τ0, our results have the interesting form
Precomb(t) ≃ exp(−t/τ∗)− exp(−t/τsb); a comparison to
actual data for τMC = 10τLJ is shown.
This form of Precomb(t) has a maximum at the “delo-

calization” time

τdeloc = τsb
y log y

y − 1
, (12)

where y = τ∗/τsb. Bonded SM pairs trend towards mov-
ing away from each other after τdeloc. Furthermore,

τdeloc
τ∗

=
log y

y − 1
, (13)

which becomes small for y ≫ 1. This suggests τdeloc
(in addition to τ∗) might be a key relaxation time in
systems with large y. However, this is speculative and
needs further verification.
A useful measure of relaxation in complex fluids is the

“non-Gaussian” parameter

Λ(t) =
3 < δr4(t) >

5 < δr2(t) >2
− 1, (14)

which is zero for normal diffusion and positive for sys-
tems where some particles move anomalously fast [42],
particularly for “hopping” type motion. Λ has been
shown to be relevant to the structural relaxation of super-
cooled liquids and dynamical heterogenity [96]. The time
tdeloc at which Λ is maximized and the maximum value
Λmax = Λ(tdeloc) both increase with decreasing T in var-
ious systems, including associating polymers [40, 42, 46],
as localization increases. tdeloc may be regarded as a
crossover time after which the system begins to show liq-
uidlike behavior.
Figure 10b shows the effect of kinetics on Λ(t). The

effect of slowing kinetics at fixed h/kBT is similar to the
effect of increasing h/kBT observed in previous studies
[40, 46]. It is interesting that increasing τMC increases
dynamical heterogeneity. The probable reason is that
increasing τMC , even though it leaves p∗ unaffected, de-
creases the likelihood of multiple closed SBs on the same
chain breaking within a short time period. This is consis-
tent with the idea [21] that coherent breaking of nearby
SBs along a chain eases large-scale motion. The increas-
ing dynamical heterogeneity with increasing tcage is con-
sistent with other results showing Λmax increases as lo-
calization “transitions” are approached, e. g. stretched-
exponential relaxation of finite clusters [41].
The data in Figs. 9-10 also clearly show that tdeloc ≃

τdeloc in systems where recombination is likely (i. e. when
τ∗/τsb is large compared to 1), and thus that delocaliza-
tion is closely related to individual sticky bonds find-
ing new partners in a “hopping” type motion. However,
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these delocalization times are large compared to tcage.
This is not surprising, as full delocalization should occur
only when chains have lost all memory of their initial SB
topology; this “memory” time is inherently polymeric in
that it must increase with increasing Ncst, similarly to
a Rouse or reptation time [4]. Interestingly, the peaks
of Λ are broader than those of Precomb. This also likely
arises either from cluster effects [24, 41] or other underly-
ing many-SM phenomena that ultimately arise from the
‘polymer physics’, i. e. the covalent connectivity of the
parent chains.

D. Nonequilibrium Chemical Dynamics

An important feature of our model is its ability to ac-
curately capture the dynamics of systems in which the
sticky bonds are not in thermal equilibrium. The evolu-
tion of SB concentration is, following Equation 5, given
by

˙[A2] = kf [A]
2 − kb[A2], (15)

which after plugging into Eq. 3 and simplifying becomes

ṗactive = 2kfρcst(1− pactive)
2 − kbpactive. (16)

Equation 16 has an analytic solution. For the special
initial condition pactive(t) = 0 at t = 0, the solution is

pactive(t) = d−
(

d2 − 1
)

tanh
(

2z
√
d2 − 1t

)

+ d
√
d2 − 1

d tanh
(

2z
√
d2 − 1t

)

+
√
d2 − 1

,

(17)
where z = ρcstkf and d = 1 + kb/4z.
Figure 11 compares this analytic prediction to simula-

tion results for pactive(t) upon activation of sticky bond-
ing for two systems with the same value of h/kBT but
different values of h and kBT . Values of z and d in Eq. 17
are taken from fit values of α, β and the measured value
of δ(h) as reported in Section II; note that these vary
somewhat with T , giving different p∗ at the same h/kBT .
Data agree excellently with predictions at short and long
times. The merely qualitative agreement at intermedi-
ate times is no cause for concern, but is an interesting
‘feature’, because Eq. 16 ignores all physics arising from
the important fact that the sticky monomers are embed-
ded, at a concentration cst, in chains of length N , in a
dense polymer melt. The slower convergence of simu-
lation results for pactive(t) relative to the prediction of
Eq. 17 is consistent with such polymeric effects; better
agreement is observed for dimer systems. As expected,
the polymeric slowdown is greater at lower T .
The results above demonstrate the ability of our

method to capture the effect of polymer physics on
nonequilibrium “chemical dynamics”. Thus, as in Ref.
[14], it can be used to perform “T -jump” simulations.
These may be useful in analyzing phenomena observed
in recent real T -jump experiments; nonequilbrium sticky

FIG. 11: Nonequilibrium capability of method: h-jump. Solid
(dashed) lines are the predictions of Eq. 17 and upper (lower)
circles show simulation data for h = 10u0, kBT = 1.0u0 (h =
6u0, kBT = 0.6u0) for an Nch = 5600 system after turning
on sticky bonds. Simulations used τ0 = .05τLJ .

bond behavior is also expected to play a role in self heal-
ing AP systems [9]. Note, for example, that the timescale
over which pactive changes in Figure 11 is smaller than
the equilibrium τsb (1.5 ·103τLJ for h = 10u0). Similarly,
the timescale of self healing at a fractured surface (where
pactive is out of equilibrium) was found to be smaller than
the time scale for near-equilibrium creep relaxation [9].

E. Nonlinear and Nonequilibrium Mechanical
Properties

Figure 12a shows results for creep tests of two sys-
tems with different thermodyamics and kinetics but the
same τsb (τsb ≃ 1.5 · 104τLJ). Both tests were per-
formed at kBT = 1.0u0. The applied stress difference
|σz − (σx + σy)/2| = .01u0/a

3 is small. At times t≪ τsb,
the extension ratio λz = Lz/L

0
z is the same for both

systems. For t ≫ τsb, λz is nearly linear in ln(t), im-
plying that the flow is nearly-linear creep. The system
with stronger bonds and greater SB recombination shows
greater resistance to flow, i. e. a smaller creep compliance.
It is interesting to relate the creep response to the qui-

escent dynamics. Figure 12b shows (quiescent) diffusion
in the same systems. The creep response and diffusion
are remarkably similar; the onset of more rapid creep in
the h = 10u0, τMC = 10τLJ system under stress corre-
sponds directly to the onset of (relative) delocalization
in the quiescent state. This is consistent with a recent
experiment showing connections between creep behavior
and linear rheology in reversible supramolecular networks
[9].
Next we consider constant volume tension simulations

at h = 11.25u0, kBT = u0, and various τMC . These
simulations can be considered to be an extension of Ref.
[104], which allowed breaking and formation of interchain
bonds only at a few (discrete) strains; here SBs break
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FIG. 12: Linear creep and quiescent diffusion for two systems
with the same τsb but different SB recombination. Results
are for systems with Nch = 5600, N = 50, and kBT = 1.0u0.
Panel (a) Stretch λz = Lz/L

0

z under a creep stress ∆σ =
.01u0/a

3. The upper curve is for h = 10u0, τMC = 10τLJ

and the lower curve is for h = 12.5u0 , τMC = 1.0τLJ . Panel
(b): mean squared displacement for the same systems in the
quiescent state.

and reform continuously. Here we present results for
ǫ̇ = 10−5.5/τLJ . Simulations at other ǫ̇ were considered;
larger values ǫ̇ >∼ t−1

cage make the non-SB-related viscous
stress contribution unacceptably large, while smaller val-
ues lead to more sticky bond breaking/formation during
deformation than is desirable at the values of h and τMC

considered.
Figure 13 shows the stress difference |σz−(σx+σy)/2|.

With MC deactivated during deformation (fMC = 0 or
equivalently τMC = ∞), the stress takes a form close to
that predicted by entropic elasticity [105]: σ = Geg(λ),
where g(λ) = λ2 − 1/λ and λ = Lz/L

0
z as above. Ge

is predicted to be NcstpinterkBT/2, where pinter < p∗

is the interchain portion of active SBs; the actual value
from the fit, Ge = .028u0/a

3, is close to the predicted
value .031u0/a

3, indicating viscous stresses are low at
this strain rate. The fit is performed for g ≤ 5; the
nonlinear behavior observed at higher g arises from finite
extensibility of chain segments between crosslinks (as in

standard nonlinear rubber elasticity [105, 106]).

FIG. 13: Constant volume tension simulations for systems
with different SB kinetics. The stress difference δσ = σz −

(σx + σy)/2 is plotted against g(λ) = λ2
− 1/λ. Systems

have Nch = 5600, N = 50, h = 11.25u0, kBT = 1.0u0, and
the strain rate is ǫ̇ ≡ λ̇/λ = 10−5.5/τLJ . These runs use
τ0 = .2τLJ for greater accuracy. Data from top to bottom
correspond to τMC = ∞ (no SB breaking/forming allowed
during deformation), τMC = 100τLJ and τMC = 101.5τLJ .
The solid lines are predictions of Eq. 18, with the value of Ge

taken from a fit to the τMC = ∞ data and values of τsb taken
from Table I.

The simplest result, assuming that ǫ̇−1 ≫ τfree,
τsb ≫ τfree (here τfree is the lifetime of unbonded SMs),
and that SB breaking and formation rates do not vary
with stress/strain, so that stress memory is lost like
exp(−t/τsb), is [18]

σz(λ) = Geexp(−ln(λ)/ǫ̇τsb)×
[

g(λ) +
1− λ2

1− 2ǫ̇τsb
+

1/λ− 1

1 + ǫ̇τsb

] (18)

where the first term in brackets is classical rubber elas-
ticity and the second two terms reflect new SBs created
during deformation. The ln(λ) comes from the constant
true strain rate ǫ̇ = ∂ln(λ)/∂t.

In Figure 13, stress-strain results from simulations are
compared to predictions from Eq. 18 using values for τsb
from Table I and the value of Ge from the τMC = ∞
system are shown. We confine the comparison to the
linear regime (g ≤ 5) to avoid confusion. Sticky bond re-
combination might be expected to slow relaxation. How-
ever, stress relaxation is actually faster than predicted
by Eq. 18. We have verified that pactive does not de-
crease during deformation. It appears that instead, τsb
is reduced by stress. A detailed examination of this ef-
fect and comparison of nonlinear mechanical properties
to theories, e. g. Ref. [28] and transient network models,
e. g. Refs. [18, 22, 25], is deferred to later work, but the
data presented above suggests traditional theories will
break down in the nonlinear regime.
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TABLE I: Variation of τsb, τ
∗ and D with N , T , h and τMC . Times are in units of τLJ . Statistical errors are roughly ±2% or

less. All systems have Nch = 1400 and data are averaged over multiple statistically independent states. * denotes τ0 = .5τLJ

results. −− indicates calculation is prohibitive or we have insufficient data. Results for D in N = 1 systems are not presented
because they are negligibly affected by sticky bonding.

System N kBT/u0 h/kBT τMC τsb τ∗ τ∗/τsb 105τLJD/a2

A 50 1.0 10 1 1.55 · 103 7.05 · 103 4.5 18.3
B 50 1.0 10 10 1.54 · 104 2.63 · 104 1.7 8.44
C 50 1.0 10 100 1.53 · 105 1.78 · 105 1.2 2.17
E* 50 1.0 11.25 0.5 2.40 · 103 2.28 · 104 9.5 9.31
DE* 1 1.0 11.25 0.5∗ 3.35 · 103 2.23 · 104 6.7 N/A
F 50 1.0 11.25 1 4.82 · 103 2.95 · 104 6.1 6.89
DF 1 1.0 11.25 1 6.69 · 103 2.67 · 104 4.0 N/A
G 50 1.0 11.25 2 9.78 · 103 4.05 · 104 4.1 6.07
DG* 1 1.0 11.25 2 1.34 · 104 3.46 · 104 2.6 N/A
H 50 1.0 11.25 5 2.40 · 104 6.42 · 104 2.7 4.81
DH* 1 1.0 11.25 5 3.36 · 104 5.50 · 104 1.6 N/A
I 50 1.0 11.25 10 4.73 · 104 9.70 · 104 2.1 3.11
DI* 1 1.0 11.25 10 6.42 · 104 8.52 · 104 1.3 N/A
J 50 1.0 11.25 101.5 1.55 · 105 2.32 · 105 1.5 1.95
DJ* 1 1.0 11.25 101.5 2.05 · 105 2.30 · 105 1.1 N/A
K 50 1.0 11.25 100 4.82 · 105 6.28 · 105 1.3 0.94
DK* 1 1.0 11.25 100 6.70 · 105 6.85 · 105 ∼ 1.02 N/A
L 50 0.6 11.25 1 1.88 · 103 8.02 · 103 4.3 −−

M 50 0.6 11.25 10 1.91 · 104 3.15 · 104 1.6 −−

N 50 0.6 11.25 100 1.93 · 105 2.22 · 105 1.2 −−

O 50 1.0 12.5 1 1.53 · 104 1.23 · 105 8.0 2.79
P 50 1.0 12.5 10 1.55 · 105 3.58 · 105 2.3 −−

Q 50 1.0 12.5 100 1.53 · 106 2.07 · 106 1.3 −−

R 50 1.0 13.75 1 4.90 · 104 5.42 · 105 11 −−

S 50 1.0 13.75 100 4.62 · 106 7.34 · 106 1.6 −−

T 50 1.0 15 1 1.56 · 105 2.49 · 106 16 −−

U 50 1.0 15 100 1.48 · 107 2.53 · 107 1.7 −−

V 50 1.0 16.25 1 5.0 · 105 1.1 · 107 22 −−

IV. DISCUSSION AND CONCLUSIONS

We have performed an initial set of simulations us-
ing a new coarse-grained model for associating polymers.
The MD/MC hybrid algorithm and variable chemical ki-
netics allow for greater realism and flexibility than in
previous simulations of AP networks. Further, the 1-1
sticky monomer binding topology imposed here reflects
current experimental trends. The model was extensively
validated and is able to accurately model equilibrium
dynamical properties, nonlinear mechanical properties,
and far-from-equilibrium systems. We studied the model
over a very broad parameter space. While have empha-
sized that we study APs by analogy because simulations
of chemically realistic AP networks are not yet compu-
tationally feasible [89], our results should nevertheless
aid in “rational” [51] design of AP systems, especially in
“transition” regimes like those discussed in this paper.

The key results presented here focused on separa-
tion, comparison and contrast of thermodynamic and
chemical-kinetic effects on SB recombination, the mo-
tion of individual chains, and bulk mechanical proper-
ties. As expected, instantaneous network structure was

independent of kinetics at fixed thermodynamic condi-
tions (i. e. sticky bond strength h/kBT ), and relaxation
times increases with increasing h/kBT . Similarly, at
fixed h and kBT , relaxation slows as the chemical kinet-
ics are slowed. This was illustrated by measurements of
monomer diffusion. In the physical gel regime, monomers
experience a temporary “caging” similar to that found in
glasses. This caging effect strengthens as SB strength is
increased [40, 46] but also as kinetics are slowed at fixed
SB strength. Analyses showed that chains become in-
creasingly localized in a manner similar to that associated
with the increase in dynamical heterogeneity in non-AP
melts approaching the glass transition. Of course, the
analogy should not be taken too far; in AP networks
the caging is produced only by sticky monomers while
in systems approaching Tg it is produced by hard core
repulsions of all monomers.

We find, as expected, that the chemical kinetics con-
trolling τsb are “mean-field” [12] and mappable to a two-
state Arrhenius model. However, as kinetic rates are in-
creased and SB recombination becomes non-kinetically-
limited, the relation between the SB lifetime τsb and
other relaxation times, such as the effective SB lifetime
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τ∗, becomes decidedly nontrivial. This was explicitly re-
lated to the crossover to diffusion limited SB recombina-
tion. A new quantitative relation between τ∗ and τsb was
found. Such relations should be of interest because rhe-
ological experiments can typically only access τ∗, which
is assumed to control stress relaxation (e. g., because
scission followed by quick recombination does not relax
stress) [3, 12, 35].

While the results for T -variation and mechanical prop-
erties presented here were limited and somewhat prelim-
inary, we showed examples which illustrate important ef-
fects. Analysis of diffusion on intermediate time scales il-
lustrated the point that sticky bond and underlying poly-
meric timescales will in general vary differently with T ,
affecting the ‘interplay’ in nontrivial ways. In two sys-
tems with the same τsb, systems with different propensi-
ties for SB recombination showed the same creep flow at
short times, but those with greater recombination showed
a smaller long-time (“DC”) creep compliance. These dif-
ferences were directly related to the faster delocaliza-
tion of chains in the quiescent state for systems with
less recombination. Constant-volume deformation stud-
ies showed that, as expected, τsb is reduced by stress.
Extensive studies of the variation with T (in systems in-
cluding attractive nonbond interactions for greater real-
ism) and more detailed analyses of nonlinear mechanical
properties are underway.

Nearly all published analytic theories for AP networks
assume a single controlling relaxation time, either τsb
or τ∗, controls the ultimate relaxation properties (i. e.
other relaxation times scale with the controlling time).
We showed though various measurements that there is
a broad parameter space (both in terms of SB strength
and kinetics) within the physical gel regime where the
“scaling” assumption fails. This parameter space cor-
responds to the conditions (1) τ∗/τsb is larger but not
“much larger” than unity, and/or (2) SB recombination
is not kinetically limited. Deviations from this “scal-
ing” behavior due to multiple controlling relaxation times
have been observed [51, 58], but had not yet been well
understood. These deviations had been previously as-
sumed to arise from chemical disorder, and this is no
doubt partially correct, but as discussed in this paper,
they also arise from the ‘interplay’ between SB thermo-
dynamics, kinetics, and polymer physics. If either (1) or
(2) hold, both traditional [22, 25] and more sophisticated
[21, 24, 26] theories should fail to predict the mechanical
properties of AP networks. This is not meant as a crit-
icism of the theories, merely an observation that there
is a broad parameter space where one or more of their
assumptions fail.

The DL and KL limits have been discussed by
O’Shaughnessy and Yu [13]; they respectively correspond
to dominance of the K-term and C-term in our Eq. (10).
Conditions under which systems may lie outside the KL
limit and/or evidence for systems which lie outside it
are also discussed, to some extent, in the context of AP
networks in Refs. [43, 44, 50]. Coupling between SB

and polymeric relaxation has also been treated approx-
imately by Cates [12] and Leibler et. al. [21], respec-
tively for linear EP systems and AP networks where
recombination is improbable. Among published ana-
lytic theories for AP networks, Refs. [21, 55] qualita-
tively treat non-kinetically-limited systems and Ref. [24]
treats SB recombination. Our results are consistent with
the argument of Ref. [55] that reaction rates (here de-
fined as non-recombinative SB exchange) reach the mean-
field/KL regime only when reaction is slow compared
to the longest “underlying” polymeric relaxation time
[in our case min(tcage, tchem)] [107]. Interestingly, Refs.
[52, 54] suggest that MF kinetics would apply to τ∗ as
well as τsb in dimensions d ≥ 4 because < |δ~r|2 >∼ ty

necesarily has y ≤ 4 (i. e. no diffusion-limited regime is
possible). This suggests that diffusion-limited SB recom-
bination, which increases τ∗/τsb, will increase in impor-
tance in AP systems with effectively reduced dimension-
ality (e. g. very thin films or “pores”). Combining the
approaches of Refs. [21, 24, 55] may be useful for devel-
oping optimal analytic theories of these systems, at least
for T well above Tg. However, we are not aware of any
quantitative discussion of the crossover between the DL
and KL regimes such as presented here [108].

The rheologically simple (i. e. all key relaxation times
scale with τsb [50, 51]) behavior observed in the majority
of experiments on AP networks indicates they exhibit KL
behavior. Note that these experiments have shown KL
behavior even though their values of p∗ are comparable
to values for systems which in our model exhibit DL be-
havior at low τMC . This likely arises from the slow kinet-
ics caused by the bulkiness and directional interactions
of real sticky monomers. Creating (real) strong-binding
SMs with even faster kinetics seems to be difficult. How-
ever, one can move out of the KL regime (at fixed kinetic
rates) simply by slowing the polymeric relaxation times,
e. g. by going to higher concentrations and/or entangled
chains. Experiments in this regime are underway [58],
and seem to show a breakdown of the simple scaling;
for example, they show an unusually high power law de-
pendence of viscosity on concentration, which appears to
arise because τsb is of order the time scale for reptation.
Ref. [51] also shows an apparent (if weak) breakdown in
scaling at the highest frequencies considered. In the con-
text of these observations, we note that the parameter
space where (1) and or (2) hold may be of greatest inter-
est for designing materials with novel mechanical proper-
ties. Our model seems well suited to aid in understanding
the complicated behavior of AP networks in this regime.

Here we have left the regime of physically entangled
APs, which is the regime treated by some key analytic
AP theories [21, 26, 27], untouched. Also, the “inter-
play” described in this paper should depend on the de-
tails of sticky monomer arrangement along chains, not
just N and cst. Studies of systems with a wide range of
N and cst, as well as inhomogeneous (chemically disor-
dered) systems, are underway.

In real AP networks the sticky and regular monomers
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have different sizes and chemistries. Thus an obvious ex-
tension of our model would be to increase the differences
between the sticky and normal monomers. For example,
changing secondary interactions may induce microphase
separation [43, 109]. Another extension would be use of a
more realistic sticky bonding potential such as those used
to model H-bonds (see e. g. Ref. [110] and refs. therein),
but here we have focused on chemistry-independent prop-
erties. A coarse-grained way to to capture this would be
to keep the binary bonding rules, but include more than
one sticky site per SM; this would increase the direction-
ality of bonding, which is a key to the performance of the
UPy systems [60]. Finally, nanocomposites of associating
polymers [111], where the presence of nanoparticles may
or may not [112, 113] affect single-chain structure but will
certainly affect AP network structure, should have even
richer physics than regular polymer nanocomposites.
Michael Rubinstein, Kathleen E. Feldman, Arlette R.
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APPENDIX A: PERCOLATION GEL
TRANSITION

Let N cl
i ≡ NchP (Nch, i) be the average number of dis-

connected clusters of i chains in a system of Nch chains
with periodic boundary conditions (at any given time).
P (Nch, i) is a cluster size probability distribution with
∑Nch

i=1
iP (Nch, i) ≡ 1. The number averaged cluster size

is then Nn = Nch

∑Nch

i=1
iP (Nch, i) and the weight av-

eraged cluster size is Nw = N−1

n Nch

∑Nch

i=1
i2P (Nch, i).

For an infinite system, the percolation gel transition oc-
curs (by definition) when p∗ exceeds pperc; Nw diverges
at p∗ = pperc [49]. However, computer simulations are
limited to finite Nch, and the value of Nw cannot ex-
ceedNch. Thus the Nch-dependent geometric percolation
p∗ = pspan (at which one aggegrate spans the system)
approaches pperc from below as Nch → ∞) [64]. Fortu-
nately, pperc and hperc (the value of h at which p∗ = pperc
in an infinite system) can be estimated for finite Nch us-
ing a standard finite size analysis [69].
We perform such an analysis, following Ref. [92]. Fig-

ure 14 shows this analysis for N = 50, cst = .08 sys-
tems at kBT = 1.0u0. The figure plots the rescaled

variables (Nw/Nch)
−γN

−γ/3ν
ch vs. ((pperc − p∗)/p∗)N

1/3ν
ch

[92]. pperc ≃ .40 is close to the predicted value
1/(Ncstp

∗finter − 1) [64], where finter is the fraction of
SBs which are interchain rather than intrachain. The ex-
ponents used to collapse the data in the figure are γ ≃ 1.7
and ν ≃ 1.2; considering a narrower range of h gives val-
ues consistent with predictions from the theory of critical
phenomena (γ ≃ 1.8, ν ≃ 0.9) [114]. These exponents
been extensively discussed in the literature [38, 64, 92]
and need not be discussed further here. In the figure, h
increases going from right to left, and percolation occurs
at hperc ≃ 4.25u0.

FIG. 14: Finite-size analysis of the percolation gel transition.
Data are at kBT = 1.0u0 for Nch = 700 (circles), Nch = 1400
(squares), Nch = 2800 (triangles), and Nch = 5600 (dia-
monds) are shown. pperc ≃ .40.

APPENDIX B: NUMERICAL ANALYSIS OF SB
RECOMBINATION

In this paper, the sticky bond self-correlation function
Pauto(△t) is the probability that a bond between two
given SMs exists both at times t and t +△t, while the
SB “transition function” Ptrans(△t) is the probability
that the bond exists continuously between times t and
t+△t. The SB “recombination function” Precomb(△t) ≡
Pauto(△t) − Ptrans(△t) is the probability that a pair of
SMs will be bonded at two times separated by △t but
that the bond between them has broken at least once dur-
ing that interval. We find Ptrans exhibits nearly single-
exponential decay, Ptrans = exp(−t/τsb) for all systems,
while for h >∼ 10u0, Pauto also shows exponential decay
for (at least) the first decade. Values of τ∗ presented
here are measured from fits to Ptrans = exp(−t/τ∗). All
quantities are averaged over all SM pairs and all t.
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