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In this letter, the dominant role of surface stress and surface elasticity on the overall elastic behavior
of ultrathin cantilever plates is studied. A general framework based on two-dimensional plane-stress
analysis is presented. Because of either surface reconstruction or molecular adsorption, there exists
a surface stress and a surface elasticity imbalance between top and bottom surface of the cantilever.
The surface elasticity imbalance creates an extra bending-extensional coupling which has not been
taken into account previously. This leads to a modified extensional stiffness, bending stiffness and
bending-extensional coupling stiffness. Due to the surface stress imbalance, an extended Stoney’s
formula for self-bending of ultrathin cantilevers is derived. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3153158�

The mechanical behavior of nanostructures and specifi-
cally ultrathin cantilevers, is of considerable interest due to
their potential applications. Previous studies via both experi-
mental measurements1,2 and theoretical investigations
�through both atomistic calculations3,4 and modifications to
continuum theory5–7� indicate that the effective elastic prop-
erties of nanostructures are strongly size dependent. Due to
their small size and thus the large surface-to-volume ratio,
the surface stress effects have been suggested as the expla-
nation for the size effects.8 As a consequence, the majority of
research concerning the elastic response of nanostructures
have focused on surface stress9–11 and surface elasticity5,12,13

effects. Miller and Shenoy5 developed a simple model to
incorporate surface elasticity in an effective elastic modulus
for plates and rods. Some specific examples such as plane
strain, uniaxial tension, and pure bending were studied. More
recently, Guo and Zhao6,7 presented a theoretical model for
elastic bending of a nanobeam with the influence of surface
relaxation. The models were based on the assumption that
the surface elastic properties at top and bottom surfaces are
the same. Therefore, the influence of beam extension was
neglected. The above assumptions become limiting for struc-
tures with a few nanometer thickness. This is because cou-
pling stiffness arises from surface stress and surface elastic-
ity imbalance caused by either surface reconstruction14 or
molecular adsorption15 at top and bottom surfaces. Recently,
Zang et al.14 demonstrated that in an odd-layer film, there
exists a surface stress imbalance between its top and bottom
surface, leading to bending of the film. Molecular adsorption
at one side15 can also induce the imbalance. We add here,
that there also exists a surface elasticity imbalance between
its top and bottom surfaces, which is caused by
reconstruction14 or molecular adsorption15 effects. Conse-
quently, the often-used decoupling of bending and exten-
sional effects is no longer valid and a bending-extensional
coupling stiffness has to be accounted for.

In this letter, an extended description of surface effects
induced-size dependent elastic behavior of ultrathin cantile-
ver plates is proposed. It accounts for the bending-
extensional coupling stiffness which has, so far, been ig-
nored. The proposed model is the basis for an extension of
Stoney’s formula16 for bending of cantilevers with nanoscale
thickness. As an example, the elastic behavior of a Si canti-
lever influenced by chemisorption of H atoms15 as a function
of thickness for 1 and 2 monolayers �ML� H coverage is
analyzed.

Consider a plate structure with different surface elastic
properties at its top and bottom surface. Using classical plate
assumptions, the tangential strain components at any point in
the plate can be described as

����x�,z� = ����x�� + z����x��, �,�,� = 1,2, �1�

where ��� are the midplane strains or membrane deforma-
tions and ��� are the curvatures of the midplane. The trans-
verse coordinate is z and the midplane coincides with z=0.
In-plane coordinates are denoted as x�, �=1,2. The defor-
mation of the plate can be expressed in terms of the displace-
ments of the midplane surface via

��� =
1

2
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� . .
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where u� and w are in-plane and transverse displacement
components of the midplane �z=0�, respectively. For a com-
pact notation it is convenient to adopt the notation
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Using linear constitutive equations, the tangential stresses
follow asa�Electronic mail: h.sadeghianmarnani@tudelft.nl.
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For homogeneous and isotropic material
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The equivalent surface stresses are assumed to be isotropic
as well, and they can be modeled as17

�s = �+	�z − t/2� + �−	�z + t/2� , �6�

where �+ and �− are the surface stresses at the top and
bottom surfaces of the plate, respectively, 	 is the Dirac
function and t is the thickness of the cantilever. The surface
stresses are related to the surface deformations via

�
 = �0

 + S
�� 


t

2
�	 , �7�

where �0

 are intrinsic surface stresses and S
 surface elas-

ticities and can be determined from atomistic calculations.5,13

Using Eqs. �1�–�7�, tangential stress resultants and tangential
stress couples, which are energetically conjugate to � and �
�see Eq. �3��, follow as
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where
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Here, A, B, and D are extensional, bending-extensional cou-
pling and bending stiffness, respectively. It can be easily
seen that the surface stiffness leads to a modified extensional,
bending-extensional coupling and bending stiffness. They
can be written as

A� = A + S�,
Ea

� − Ea

Ea
=

S�

Eat
and B� =

t

2
S�, �13�

D� = D +
t2

4
S�,

Eb
� − Eb
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where Ea
� and Ea are modified and classical effective Young’s

Modulus in extensional mode. Eb
� and Eb are modified and

classical effective Young’s Modulus in bending mode. It can
be seen in Eqs. �13� and �14� that extensional and bending
stiffness are both first-order-size-dependent but the effect of
surface elasticity on bending stiffness is three times bigger

than for extension. B� introduce coupling between extension
and bending due to surface elasticity imbalance, e.g., a nano-
film subjected to in-plane loads will tend to bend in addition
to extending. For a configuration which is symmetric with
respect to the midplane, the coupling terms disappear.

As an example, the elastic behavior of Si cantilevers
induced by chemisorption of H atoms15 is analyzed. Zang
and Liu15 carried out the atomistic simulations for chemi-
sorption induced surface stress imbalance and bending of Si
cantilevers as a function of H coverage adsorbed on its top
surface, ranging from 0 to 2 ML. When H atoms adsorb on
the top surface, they induce change in surface stress and/or
surface elasticity while the bottom surface still has its intrin-
sic values �no adsorption at the bottom surface�. For 1 and 2
ML H coverages, respectively, S+=SSi–H=0.858 and
−0.343 eV Å−2 and S−=0.614 eV Å−2.15 �0

+ changes from
83.85 to 55.93 and −26.33 meV Å−2 for 0, 1, and 2 ML,
respectively, and �0

− is −83.85 meV Å−2.15 Figure 1 shows
the nondimensional difference between modified and classi-
cal effective Young’s Modulus in bending mode for 1 and 2
ML H coverage. The difference in extensional mode is
shown as inset in Fig. 1. However, for structures with just a
few number of layers, any continuum description of surface
effects may not be accurate and the atomistic simulation
should be used for modeling the elastic behavior. In order to
emphasize this inaccuracy, the results for thicknesses below
4 nm are shown with dotted lines. In Fig. 2, the bending-
extensional coupling stiffness as a function of thickness for 1
and 2 ML H coverage has been shown. By increasing the
thickness of the cantilever, a bigger coupling stiffness can be
seen.

In order to determine the deflection induced by the sur-
face stress in the absence of external loads, an extended
Stoney’s formula is obtained as
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Here, unlike the Stoney’s formula, the surface stress is not
constant during and after bending �the bending curvature in-

FIG. 1. Nondimensional difference between modified and classical effective
Young’s Modulus in bending mode as a function of thickness for 1 and 2
ML H coverage. The inset shows the difference in extensional mode.
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duces the bending strain which will change the surface
stress�. Moreover, the curvature and the midplane strain are
coupled. This implies that the often-used simplification
which is the decoupling of in-plane and out-of-plane defor-
mations is no longer applicable. Figure 3 shows the curva-
ture provided by the extended Stoney’s formula �m divided
by that provided by classical Stoney’s formula �S for 1 ML H
coverage as a function of cantilever thickness. The inset
shows the �m /�S for 2 ML H coverage.

In summary, we studied the surface stress and surface
elasticity effects on the overall elastic behavior of ultrathin

cantilevers. It was shown that extensional and bending stiff-
ness components are first-order size dependent. It was shown
when there is surface stress and surface elasticity imbalance,
there would be an additional bending-extensional coupling
stiffness. Based on this new description of extensional stiff-
ness, bending stiffness, and bending-extensional coupling
stiffness, curvature of nanocantilevers was studied which
leaded to an extension of Stoney’s formula. The main exten-
sion over the classical Stoney’s formula is not only the ef-
fects of surface stress and surface elasticity imbalance, but
also the effect of in-plane deformations on out-of-plane de-
formations. It should be added here that since the surface
region is only a few atomic layers thick atomistic simulations
are inevitably involved to include the surface effects in mod-
eling the nanostructures. On the other hand, the large differ-
ence in length scale is a fundamental issue that should be
included in any modeling of macroscopic behavior of nano-
structures.

The framework proposed in this letter can be seen as the
link between the atomistic nature of the surface effects and
the elastic behavior. On the other hand, one should bear in
mind that at what characteristic length scale the continuum
elasticity ceases to accurately describe the mechanical be-
havior. It is clear that below that length scale, the continuum
description of surface effects may not be accurate. The stud-
ied example involved Si nanocantilevers, but can be gener-
alized to other semiconductor nanofilms.

This work was done as part of Dutch national research
program on micro technology, MicroNed project code: IV-
C-2.
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FIG. 2. �Color online� Bending-extensional coupling stiffness as a function
of thickness for 1 and 2 ML H coverage. The surface elasticity imbalance
induces the bending-extensional coupling.

FIG. 3. �Color online� The �m /�S caused by 1 ML H coverage as a function
of thickness. The inset shows the ratio for 2 ML H coverage.
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