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We study the asymptotic expansion of the neutral-atom energy as the atomic number Z → ∞,
presenting a new method to extract the coefficients from oscillating numerical data. We find that
recovery of the correct expansion is an exact condition on the Kohn-Sham kinetic energy that is
important for the accuracy of approximate kinetic energy functionals for atoms, molecules and
solids, when evaluated on a Kohn-Sham density. For example, this determines the small gradient
limit of any generalized gradient approximation, and conflicts somewhat with the standard gradient
expansion. Tests are performed on atoms, molecules, and jellium clusters. We also give a modern,
highly accurate parametrization of the Thomas-Fermi density of neutral atoms.

PACS numbers:

I. INTRODUCTION

Ground-state Kohn-Sham (KS) density functional the-
ory (DFT) is a widely-used tool for electronic struc-
ture calculations of atoms, molecules, and solids [1],
in which only the density functional for the exchange-
correlation energy, EXC[n], must be approximated. But
a direct, orbital-free density functional theory could be
constructed if only the non-interacting kinetic energy, TS,
were known sufficiently accurately as an explicit func-
tional of the density [2]. Using it would lead automat-
ically to an electronic structure method that scales lin-
early with the number of electrons N (with the possible
exception of the evaluation of the Hartree energy). Thus
the KS kinetic energy functional is something of a holy
grail of density functional purists, and interest in it has
recently revived [3].

In this work, we exploit the “unreasonable accuracy”
of asymptotic expansions [4], in this case for large neutral
atoms, to show that there is a very simple exact condi-
tion that approximations to TS must satisfy, if they are
to attain high accuracy for total energies of matter. By
matter, we mean all atoms, molecules, and solids that
consist of electrons in the field of nuclei, attracted by a
Coulomb potential. The exact condition is the (known)
asymptotic expansion of TS/Z

7/3 for neutral atoms, in
powers of Z−1/3. By careful extrapolation from accu-
rate numerical calculations up to Z ∼ 90, we calculate
the coefficients of this expansion. We find that the usual
gradient expansion, derived from the slowly-varying gas,
but applied to essentially exact densities, yields only a
good approximation to these coefficients. Thus, all new
approximations should either build in these coefficients,
or be tested to see how well they approximate them.
We perform several tests, using atoms, molecules, jel-
lium surfaces, and jellium spheres, and analyze two ex-
isting approximations. In Ref. [5], a related method was

used to derive the gradient coefficient in modern gen-
eralized gradient approximations (GGA’s) for exchange.
Given this importance of N = Z →∞ as a condition on
functionals, we revisited and improved upon the exist-
ing parametrizations of the neutral-atom Thomas-Fermi
(TF) density. The second-half of the paper is devoted to
testing its accuracy.

II. THEORY AND ILLUSTRATION

For an N -electron system, the Hamiltonian is

Ĥ = T̂ + V̂ext + V̂ee , (1)

where T̂ is the kinetic energy operator, V̂ext the ex-
ternal potential, and V̂ee the electron-electron interac-
tion, respectively. The electron density n(r) yields N =
∫

d3r n(r), where N is the particle number.
To explain asymptotic exactness, we (re)-introduce the

ζ-scaled potential [6] (which is further discussed in Ref.
[7]), given by

vζext(r) = ζ4/3 vext(ζ
1/3r), N → ζN, (2)

where vext(r) is the external potential, and the Thomas-

Fermi expectation value is V ζ
ext[n] = ζ7/3Vext[n]. In this

ζ-scaling scheme, nuclear positions Rα and charges Zα

of molecules are scaled into ζ−1/3Rα and ζZα respec-
tively. In a uniform electric field, E → ζ5/3E . For neutral
atoms, scaling ζ is the same as scaling Z, and this gives
Schwinger’s asymptotic expansion for the total energy of
neutral atoms [4, 8],

E = −c0Z7/3 − c1 Z
2 − c2 Z

5/3 + · · · , (3)

where c0 = 0.768745, c1 = −1/2, c2 = 0.269900, and
Z is the atomic number. This large Z-expansion gives
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a remarkably good approximation to the Hartree-Fock
energy of the neutral atoms, with less than a 10% error
for H, and less than 0.5% error for Ne. By the virial
theorem for neutral atoms, T = −E, and T ≃ TS to this
order in the expansion (since the correlation energy is
roughly ∼ Z). Hence, the non-interacting kinetic energy
has the following asymptotic expansion.

TS = c0 Z
7/3 + c1 Z

2 + c2 Z
5/3 + · · · (4)

We say that an approximation to the kinetic energy
functional is asymptotically exact to the p-th degree if
it can reproduce the exact c0, c1, . . . , cp. The three dis-
played terms in Eq. (3) constitute the second-order
asymptotic expansion for the total energy of neutral
atoms, and we expect that this asymptotic expansion is
a better starting point for constructing a more accurate
approximation to the kinetic energy functional than the
traditional gradient expansion approximation (GEA).
The leading term in Eq. (4) is given exactly by a local

approximation to TS (TF theory), but the leading cor-

rection is due to higher-order quantum effects, and only
approximately given by the gradient expansion evaluated
on the exact density. However, these coefficients are vi-

tal to finding accurate kinetic energies. Since we know
that c0Z

7/3 becomes exact as N = Z → ∞, we define
∆TS = TS−c0Z7/3 and investigate ∆TS as a function of Z.
How accurate is the asymptotic expansion for ∆TS? In
Figure 1, we evaluate TS for atoms within the optimized
effective potential (OEP) [9] using the exact exchange
functional and plot the percentage error in ∆TS, for all
atoms and the asymptotic series with just two terms.
The series is incredibly accurate, with only a 13% error
for N=2 (He), and 14% for N=1. Thus, any approxima-
tion that reproduces the correct asymptotic series (up to
and including the c2 term) is likely to produce a highly
accurate TS.
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FIG. 1: Percentage error between c1 Z
2 + c2 Z

5/3 and ∆TS =
TS − c0Z

7/3.

To demonstrate the power and the significance of this
approach, we apply it directly to the first term (where the

answer is already known, but perhaps not yet fully appre-
ciated in the DFT community). Using any (all-electron)
electronic structure code, one calculates the total ener-
gies of atoms for a sequence running down a column.
By sticking with a specific column, one reduces the os-
cillatory contributions across rows, and the alkali-earth
column yields the most accurate results. By then fitting
the resulting curve of TS/Z

7/3 as a function of Z−1/3 to a
parabola, one finds c0 = 0.7705. Now assume one wishes
to make a local density approximation (LDA) to TS, but
knows nothing about the uniform electron gas. Dimen-
sional analysis yields [10]

T (0)[n] = AS I, I =

∫

d3r n5/3(r) , (5)

but does not determine the constant, AS. A similar fit-
ting of I, based on the self-consistent densities evaluated
using the OEP exact exchange functional, gives a leading
term of 0.2677 Z7/3, yielding AS = 2.868. Thus we have
deduced the local approximation to the non-interacting
kinetic energy.

A careful inspection of the above argument reveals
that the uniform electron gas is never mentioned. As
N grows, the wavelength of the majority of the parti-
cles becomes short relative to the scale on which the po-
tential is changing, loosely speaking, and semiclassical
behavior dominates. The local approximation is a uni-
versal semiclassical result, which is exact for a uniform
gas simply because that system has a constant poten-
tial. On the basis of that argument, we know the ex-
act value is AS=(3/10)(3π2)2/3 = 2.871, demonstrating
that (for this case) our result is accurate to about 0.1%.
This argument tells us that the reliability of the local
approximation is no indicator of how rapidly the density
varies. That this argument is correct for neutral atoms
was carefully proven by Lieb and Simon in 1973 [11] and
later generalized by Lieb to all matter [6].

The focus of the first part of this paper is on the re-
maining two known coefficients (c1 and c2) and how well
the GEA performs for them. We evaluate those gradi-
ent terms by fitting asymptotic series exactly and we
find that the gradient expansion does well, but is not
exact. From this information, we develop a modified gra-
dient expansion approximation that reproduces the exact
asymptotic coefficients c1 and c2, merely as an illustra-
tion of the power of asymptotic exactness. We test it on
a variety of systems, finding the expected behavior.

In Section V, we present a parametrization of the
TF density which is more accurate than previous
parametrizations. The TF density has a simple scaling
with Z and becomes relatively exact and slowly-varying
for a neutral atom as Z → ∞, breaking down only near
the nucleus and in the tail. We compare various quanti-
ties of our parametrization with exact values and earlier
parametrizations, and analyze the properties of the TF
density.
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III. LARGE Z METHODOLOGY

We begin with a careful methodology for extracting
the asymptotic behavior from highly accurate numerical
calculations. Fully numerical DFT calculations were per-
formed using the OPMKS code [12] to calculate the total
energies of neutral atoms using the OEP exact exchange
functional. The spin-density functional version of TS has
been used for all systems [13].
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FIG. 2: Difference between TS/Z
7/3 and c0 + c1 Z

−1/3 +

c2 Z
−2/3 as a function of Z−1/3 with exact asymptotic co-

efficients.

To attain maximum accuracy for c1 and c2, we need to
suppress the oscillations which come from the next term,
c3Z

4/3. Consider first the OEP results. We investigate
the differences between TOEP

S
/Z7/3 and c0 + c1 Z

−1/3 +
c2 Z

−2/3 with exact asymptotic coefficients in Figure 2.
We extract 6 data points (Z=24 (Cr), 25 (Mn), 30 (Zn),
31 (Ga), 61 (Pm), and 74 (W)) which have the smallest
differences, i.e., nearest to where the curve crosses the
horizontal axis. We then make a least-squares fit with a
parabolic form in Z−1/3, ignoring the oscillation term,

T

Z7/3
= 0.768745+ c1Z

−1/3 + c2Z
−2/3 . (6)

Effectively, we solve two linear equations for c1 and c2.
We explicitly include the exact c0 = 0.768745, since we
don’t have enough data points to extract c0 accurately,
especially in the region Z−1/3 < 0.2. It is important to
control the behavior of the fitting line at Z → ∞. This
fitting yields a good estimate of c1 = −0.5000 and c2 =
0.2702, with error less than 1%. This demonstrates the
accuracy of our method for c1 and c2 (by construction).
We repeat the same procedure to extract c1 and c2

coefficients of TF and second- and fourth-order GEA’s
which are given by

TGEA2 = TTF + T (2), (7)

and [2, 14, 15]:

TGEA4 = TTF + T (2) + T (4) . (8)

These gradient corrections to the local approximation are
given by

T (2) =
5

27

∫

d3r τTF(r)s2(r) , (9)

and

T (4) =
8

81

∫

d3r τTF(r)

[

q2(r) − 9

8
q(r)s2(r) +

s4(r)

3

]

,(10)

where τTF(r), s(r), and q(r) are defined as

τTF(r) =
3

10
k2

F
(r)n(r) , (11)

s(r) =
|∇n(r)|

2kF(r)n(r)
, (12)

q(r) =
∇2n(r)

4k2
F
(r)n(r)

, (13)

and kF(r) = (3π2n(r))1/3.
We have also applied this procedure to both T (2) and

T (4). Since the asymptotic expansions of these energies
begin at Z2, we extract only a c1 and a c2 for each using
the following equations:

TGEA2 − TTF

Z7/3
= ∆c1Z

−1/3 +∆c2Z
−2/3 ,

TGEA4 − TGEA2

Z7/3
= ∆c1Z

−1/3 +∆c2Z
−2/3 . (14)

These results are also included in Table I, and are of
course consistent with our results from Eq. (6).

IV. RESULTS AND INTERPRETATION

To understand the meaning of the above results, begin
with the values of c1. We have combined the results of
the T (2) and T (4) fits with that of the TTF fit to produce
the asymptotic coefficients of TGEA2 and TGEA4. We
check that these combinations produce the same coeffi-
cients in Table I which are found from the direct fitting of
TGEA2 and TGEA4 using Eq. (6). The exact value of c1
is −1/2. We see that the local approximation (TF) gives
a good estimate, −0.66. Then the second-order gradient
expansion yields −0.54, reducing the error by a factor
of 5. Finally, the fourth-order gradient expansion yields
−0.52, a further improvement, yielding only a 4% error
in its approximation to the Scott correction [16].
For c2, the gradient expansion is less useful. The ex-

act result is 0.27, while the TF approximation overes-
timates this as 0.39. The GEA2 result is only slightly
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c1 c2

Exact -0.5000 0.2699

TOEP -0.5000 0.2702

TTF -0.6608 0.3854

T (2) 0.1246 -0.0494

T (4) 0.0162 0.0071

TGEA2 -0.5362 0.3360

TGEA4 -0.5200 0.3431

TGGAa -0.5080 0.2918

TLmGGAa -0.5089 0.3174

aSee section IV

TABLE I: The coefficients in the asymptotic expansion of the
exact kinetic energy and various local and semilocal function-
als. The fit was made to Z=24 (Cr), 25 (Mn), 30 (Zn), 31
(Ga), 61 (Pm), and 74 (W). The functionals of the last two
rows are defined in section IV.

reduced (0.34), and the fourth-order correction has the
wrong sign.
To understand how important these results can be, we

consider how exchange and correlation functionals are
constructed. Often, such constructions begin from the
GEA, which is then generalized to include (in an approx-
imate way) all powers of a given gradient. For slowly
varying densities, it is considered desirable to recover the
GEA result. But we have seen here how this conflicts
with the asymptotic expansion, and in Ref [5], it was
shown how the asymptotic expansion is more significant
to energies of real materials, and how successful GGA’s
for atoms and molecules well-approximate the large-Z
asymptotic result, not the slowly-varying gas.
Atoms: To illustrate this point, we construct here a

trivial modified gradient expansion, MGEA2, designed
to have the correct asymptotic coefficients, in so far as is
possible. Thus

TMGEA2 = TTF + 1.290T (2) (15)

The enhancement coefficient has been chosen to make
cMGEA2
1 = −1/2 exactly. In Table II, we list the results
of several different approximations for the alkali-earth
atoms. Because the GEA2 error passes through 0 around
Z=8, its errors are artificially low.
We can repeat this exercise for the fourth order, re-

quiring both c1 and c2 be exact. Now we find:

TMGEA4[n] = TTF[n]+1.789T (2)[n]−3.841T (4)[n] (16)

i.e., strongly modified gradient coefficients. This is some-
what arbitrary, as there are several terms in T (4), and
there’s no real reason to keep their ratios the same as in
GEA (Eq. (10)). However, the results of Table II and
Figure 3 speak for themselves. The resulting functional
is better than either GEA for all the alkali-earths. Of
course, the exact TS is positive for any density, as are the
terms TTF, T (2) and T (4) of the GEA. Eq. (16) however

can be improperly negative for rapidly-varying densities,
and so is not suitable for general use.
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FIG. 3: Percentage errors for atoms (from Z = 1 to Z = 92)
using various approximations.

Molecules: The improvement in total kinetic energies
is not just confined to atoms. Also, for non-interacting
kinetic energies of molecules, using the data in Ref. [17],
Eq. (16) gives better average of the absolute errors in
hartree (0.6) than TTF (9.4), TGEA2 (0.9), and TGEA4

(0.8), shown in Table III. Of greater importance are en-
ergy differences. For atomization kinetic energies, also
using the data in Ref. [17], TTF gives the best averaged
absolute error (0.25), which is worsened by gradient cor-
rections. Since the GEA does not have the right quantum
corrections from the edges, turning points and Coulomb
cores [7], GEA does not improve on the atomization pro-
cess. However, the TF kinetic energy functional is always
the dominant term. So, TF gives very good results on
the atomization kinetic energies. But the error (0.29)
of Eq. (16) is smaller than that of TGEA2 (0.36) and
TGEA4 (0.44). In either case, Eq. (16) works better for
atoms and molecules than the fourth-order gradient ex-
pansion. Thus, requiring asymptotic exactness is a useful
and powerful constraint in functional design.

Jellium surfaces: We test this MGEA4 functional
for jellium surface kinetic energies. As shown in Table
IV, the T (4) term in TGEA4 improves the jellium surface
kinetic energy in comparison to the results of TGEA2,
but Eq. (16) worsens the jellium surface kinetic energies
due to the strongly modified coefficient of T (4). This is
a confirmation of our general approach. By building in
the correct aysmptotic behavior for atoms, including the
Scott correction coming from the 1s region, we worsen

energetics for systems without this feature.

Jellium spheres: We also investigate the kinetic en-
ergies of neutral jellium spheres (with KS densities using
LDA exchange-correlation and with rS = 3.9) from Ref.
[18]. The analysis of the results is based upon the liquid
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Atom Z TOEP TTF %err TGEA2 %err TMGEA2 %err TGEA4 %err TMGEA4 %err

Be 4 14.5724 13.1290 -10 14.6471 0.5 15.0880 3.5 14.9854 2.8 14.5453 -0.2

Mg 12 199.612 184.002 -8 198.735 -0.4 203.014 1.7 201.452 0.9 199.924 0.2

Ca 20 676.752 630.064 -7 672.740 -0.6 685.136 1.2 680.286 0.5 677.433 0.1

Sr 38 3131.53 2951.89 -6 3110.44 -0.7 3156.50 0.8 3136.76 0.2 3134.48 0.09

Ba 56 7883.53 7478.27 -5 7829.36 -0.7 7931.34 0.6 7886.19 0.03 7888.14 0.06

Ra 88 23094.3 22065.8 -4 22945.9 -0.6 23201.5 0.5 23083.9 -0.05 23110.5 0.07

TABLE II: KS kinetic energy (T ) in hartrees and various approximations for alkali-earth atoms.

Atom Exacta TTFa TGEA2a TGEA4a TMGEA4

H 0.500 -0.044 0.011 0.032 -0.026

B 24.548 -2.506 -0.058 0.476 -0.177

C 37.714 -3.731 -0.154 0.600 -0.228

N 54.428 -4.993 -0.097 0.904 -0.078

O 74.867 -6.990 -0.546 0.765 -0.497

F 99.485 -9.093 -0.933 0.659 -0.609

H2 1.151 -0.142 -0.014 0.033 -0.094

HF 100.169 -9.016 -0.920 0.639 -0.520

H2O 76.171 -7.074 -0.692 0.565 -0.484

CH4 40.317 -3.773 -0.140 0.619 -0.189

NH3 56.326 -5.292 -0.400 0.587 -0.331

BF3 323.678 -29.052 -2.641 2.454 -1.370

CN 92.573 -8.940 -0.687 0.978 -0.570

CO 112.877 -10.694 -0.911 1.036 -0.670

F2 199.023 -18.367 -2.201 0.925 -1.451

HCN 92.982 -8.925 -0.658 1.008 -0.534

N2 109.013 -10.487 -0.916 0.999 -0.719

NO 129.563 -12.342 -1.240 0.962 0.279

O2 149.834 -14.186 -1.527 0.965 -1.110

O3 224.697 -21.636 -2.699 1.028 -2.071

MAEb 9.364 0.872 0.812 0.600
aRef. [17]
bMean absolute error

TABLE III: Exact non-interacting kinetic energy (in hartrees)
for molecules, and errors in approximations. All values are
evaluated on the converged KS orbitals and densities obtained
with B88-PW91 functionals, and the MGEA4 kinetic energies
are evaluated using the TF and the GEA data from Ref. [17].

drop model of Refs. [19, 20]. We write

TS(rS, N) =
4

3
πR3τunif(rS) + 4πR2σS + 2πRγeff

S
(rS, N),

(17)
where R is the radius of the sphere of uniform positive
background. Since we know the bulk (uniform) kinetic
energy density, τunif , and the surface kinetic energy σS

for a given functional, we can extract γeff
S
(rS, N) from

this equation, and

lim
N→∞

γeff
S
(rS, N) = γS(rS) (18)

is the curvature energy of jellium. We calculate

rs Exact TTF TGEA2 TGEA4 TMGEA2a TMGEA4b TLmGGA

2 -5492.7 11 2.5 1.1 -0.9 0.73 1.3

4 -139.9 54 22 11 12 36 15

6 -3.4 660 330 180 238 675 280

aSee Eq. (15)
bSee Eq. (16)

TABLE IV: Exact jellium surface kinetic energies (erg/cm2)
and % error, which is (σapp

S
−σex

S )/σex
S , of each approximation.

γeff
S
(rS, N) using the TF, GEA, MGEA, and a Laplacian-

level meta-GGA (LmGGA) of Ref. [18], which is ex-
plained further in the following subsection. From Ta-
ble V, we observe that: (i) Gradient corrections in GEA

N Exact TGEA2 TGEA4 TMGEA2a TMGEA4b TLmGGA

2 -1.8 1.1 2.4 1.5 -2.8 1.9

8 -1.9 1.0 2.1 1.3 -2.3 -5.1

18 -0.5 1.2 2.0 1.6 -0.7 -6.4

58 -0.8 1.3 2.2 1.7 -1.1 -3.2

92 -1.7 1.2 2.0 1.5 -1.0 -1.9

254 -0.5 1.4 2.3 1.8 -0.9 -

aSee Eq. (15)
bSee Eq. (16)

TABLE V: 104×(γeff
S (rS, N)−γTF

S (rS, N)) in atomic units vs.
N = Z for neutral jellium spheres with rS = 3.93 with various
functionals. As N = Z → ∞, γeff

S tends to the curvature
kinetic energy of jellium, γS.

worsen γeff
S
. (ii) The LmGGA of Ref. [18] is even worse

than TGEA4. (iii) Eq. (15) (which has the right c0 and
c1) is not so good, but better than TGEA4. (iv) Eq. (16)
(which has the right c0, c1, and c2) gives good results.
Existing approximations: We suggest that the

large-Z asymptotic expansion is a necessary condition
that an accurate kinetic energy functional should satisfy,
but is not sufficient. We show this by testing two kinds of
semilocal approximations (GGA and meta-GGA) to the
kinetic energy functionals.
Recently, Tran and Wesolowski [21] constructed a

GGA-type kinetic energy functional using the conjoint-

ness conjecture. They found the enhancement factor
by minimizing mean absolute errors of kinetic energies
for closed-shell atoms. We evaluate the kinetic energies
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of atoms using this functional (TGGA) and extract the
asymptotic coefficients shown in Table I. This gives a
good c1 coefficient, with c2 close to the exact value, and
so is much more accurate than the GEA’s.
Perdew and Constantin [18] constructed a LmGGA for

the positive kinetic energy density τ that satisfies the lo-
cal bound τ ≥ τW , where τW is the von Weizsäcker ki-
netic energy density, and tends to τW as r → 0 in an
atom. It recovers the fourth-order gradient expansion in
the slowly-varying limit. We calculate the asymptotic
coefficients shown in Table I for this functional. These
values are better than those of TGEA4. The good c1 from
TGEA4 appears somewhat fortuitous, since there is noth-
ing about a slowly-varying density that is relevant to a
cusp in the density. The good Scott correction c1 from
the LmGGA comes from correct physics: LmGGA recov-
ers the von Weizsäcker kinetic energy density in the 1s
cusp, without the spurious but integrable divergences of
the integrand of TGEA4.
We finish by discussing other columns of the periodic

table. We have also performed all these calculations on
the noble gases. In fact, from studies of the asymptotic
series [22], it is known that the shell-structure occurs in
the next order, Z4/3, and that the noble gases are furthest
from the asymptotic curves. But Table VI shows our
functionals work almost as well for the noble gas series.

V. MODERN PARAMETRIZATION OF

THOMAS-FERMI DENSITY

Our asymptotic expansion study gives new reasons for
studying large Z atoms. Our approximate functionals
were tested on highly accurate densities, but ultimately,
self-consistency is an important and more-demanding
test. Any approximate functional yields an approxi-
mate density via the Euler equation. In this section,
we present a new, modern parametrization of the neutral
atom TF density, which is more accurate than earlier
versions [23, 24].
The TF density of a neutral atom can be written as

n(r) =
Z2

4πa3

(

Φ

x

)3/2

, (19)

where a = (1/2)(3π/4)2/3 and x = Z1/3r/a, and the
dimensionless TF differential equation is

d2Φ(x)

dx2
=

√

Φ3(x)

x
, Φ(x) > 0, (20)

which satisfies the following initial conditions:

Φ(0) = 1 , Φ′(0) = −B , B = 1.5880710226 . (21)

We construct a model for Φ which recovers the first eight
terms of the small-x expansion and the leading term of
the asymptotic expansion at large-x (Φ(x) → 144/x3,
as x → ∞). Following Tal and Levy [25], we use y =

√
x as the variable, because of the singularity of the TF

equation. Our parametrization is
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)

FIG. 4: The exact numerical Φ(y) and parametrized Φ(y) can
not be distinguished.
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4e-06
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od
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Φ
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FIG. 5: Errors in the model, relative to numerical integra-
tions.

Φmod(y) =

(

1 +

9
∑

p=2

αpy
p

)

/

(

1 + y9
5
∑

p=1

βpy
p +

α9y
15

144

)

(22)
where αi and βi are coefficients given in the Table VII.
The values of αi are fixed by the small y-expansion, while
those of βi are found by minimization of the weighted
sum of squared residuals, χ2, for 0 < y < 10. The χ2 was
minimized using the Levenberg-Marquardt method [26].
This method is for fitting when the model depends non-
linearly on the set of unknown parameters. 1000 points
were used, equally spaced between y = 0 and y = 10. We
plot the numerically exact Φ(y) and our model in Figure
4, and the differences between them in Figure 5. These
graphs illustrate the accuracy of our parametrization.
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Atom Z TOEP TTF %err TGEA2 %err TMGEA2 %err TGEA4 %err TMGEA4 %err

He 2 2.86168 2.56051 -11 2.87847 0.6 2.97083 3.8 2.96236 3.5 2.80717 -1.9

Ne 10 128.545 117.761 -8 127.829 -0.6 130.753 1.7 129.737 0.9 128.447 -0.08

Ar 18 526.812 489.955 -7 524.224 -0.5 534.178 1.4 530.341 0.7 527.772 0.2

Kr 36 2752.04 2591.20 -6 2733.07 -0.7 2774.27 0.8 2756.72 0.2 2754.17 0.08

Xe 54 7232.12 6857.94 -5 7183.78 -0.7 7278.42 0.6 7236.65 0.06 7237.85 0.08

Rn 86 21866.7 20885.7 -4 21725.4 -0.6 21969.3 0.5 21857.2 -0.04 21881.7 0.07

TABLE VI: KS kinetic energy (T ) in hartrees and various approximations for noble atoms.

α2 −B β1 −0.0144050081

α3 4/3 β2 0.0231427314

α5 −2B/5 β3 −0.00617782965

α6 1/3 β4 0.0103191718

α7 3B2/70 β5 −0.000154797772

α8 −2B/15

α9 2/27 +B3/252

TABLE VII: The values of βi are found by fitting Eq.(22)
to the exact solution, and those of αi are the parameters of
small-y expansion [25]. B is given by 1.5880710226.

In Table VIII we calculate several moments using
our model and existing models that were proposed by
Gross and Dreizler [23] and Latter [24]. The Latter
parametrization is

ΦL(x) = 1/(1 + 0.02747x1/2 + 1.243x− 0.1486x3/2

+0.2303x2 + 0.007298x5/2

+0.006944x3) , (23)

and the Gross-Dreizler model (which correctly removes
the
√
x term) is:

ΦGD(x) = 1/(1 + 1.4712x− 0.4973x3/2 +

0.3875x2 + 0.002102x3) . (24)

Lastly, we introduce an extremely simple model that we
have found useful for pedagogical purposes (even when
N differs from Z). We write

nped(r) =
N

2π3/2R3/2

1

r3/2
e−r/R , R =

αN2/3

Z − βN
, (25)

where α = (9/5
√
5)(
√
3π/4)1/3 and β = 1/2 − 1/π

have been found from integration of the TF kinetic and
Hartree energies, respectively, and R minimizes the TF
total energy. For N = Z, this yields:

Φped(x) = γ e−2a(1−β)x/3α , γ =
5
√
5

6
√
3

(

1

2
+

1

π

)

. (26)

This crude approximation does not satisfy the correct
initial conditions of Eq. (21):

Φped(0) = γ = 0.880361 (6= 1) ,

Φped′(0) = −125(2 + π)2

648(4π5)1/3
= −0.48 (6= −1.59) . (27)

To compare the quality of the various parametriza-
tions, we calculate the p-th moment of the j-th power
of Φ(x)/x:

M
(p)
j =

∫

dxxp

(

Φ(x)

x

)j

. (28)

Many quantities of interest can be expressed in terms of
these moments:
1) Particle number: To ensure

∫

d3r n(r) = N , we
require

M
(2)
3/2 = 1 (29)

2) TF kinetic energy: The TF kinetic energy is c0Z
7/3,

which implies

M
(2)
5/2 =

5

7
B . (30)

3) The Hartree energy is U = 1
2

∫ ∫

d3r d3r′ n(r)n(r′)
|r−r

′| =

1
7aM

(1)
3/2Z

7/3, which implies

M
(1)
3/2 = B . (31)

4) The external energy is defined as Vext =

−
∫

d3r Z n(r)/r = − 1
aM

(1)
3/2Z

7/3 for the exact TF den-

sity, which also implies Eq. (31).
5) The local density approximation (LDA) ex-

change energy is defined as ELDA
X

= AX

∫

drn4/3(r),

where AX = −(3/4)(3/π)1/3, so for TF, ELDA
X

=

AX(4πa
3)(−1/3)M

(2)
2 Z5/3, which implies

M
(2)
2 = 0.615434679 . (32)

This M
(2)
2 is evaluated on the exact TF density which

we calculate numerically. LDA exchange suffices [4, 5]
for asymptotic exactness to the order displayed in Eqs.
(3) and (4); for a numerical study, see Ref. [27]. Table
VIII shows that our modern parametrization is far more
accurate than existing models by all measures, and that
our simple pedagogical model is roughly correct for many
features.
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TABLE VIII: Various moments calculated with our model and with the models of Ref. [23, 24]. Here M
(p)
j is given by

∫

dxxp
(

Φ(x)
x

)j

moment our model % error Gross and Dreizler [23] % error Latter[24] % error Φped(x) % error exact

M
(2)

3/2
0.999857885 -0.01 1.008 0.8 0.999 -0.04 1 0 1

M
(2)

5/2
1.13426462 -0.006 1.1299 -0.4 1.137 0.2 1.11 -2 5B/7

M
(2)
2 0.615438208 0.001 0.6129 -0.4 0.616 0.02 0.72 16 0.615434679a

M
(1)

3/2
1.58799857 -0.005 1.5844 -0.2 1.589 0.07 1.62 2 B

aNumerical result from the TF differential equation.

Finally, we make some comparisons with densities of
real atoms to illustrate those features of real atoms that
are captured by TF. The radial density, s(r) (Eq. (12)),
and q(r) (Eq. (13)) are given by

4πr2n(r) = Z4/3f(x)/a , (33)

where f(x) =
√
xΦ3/2(x),

s(r) =
a1

Z1/3

|g(x)|
f(x)

, a1 = (9/2π)1/3/2 , (34)

and

q(r) =
a21

3Z2/3

{g2(x) + 2x2Φ(x)Φ′′(x)}
f2(x)

, (35)

where g(x) is defined as Φ(x) − xΦ′(x). The gradient
relative to the screening length is

t(r) =
|∇n(r)|

2kS(r)n(r)
, where kS(r) =

√

4kF(r)/π , (36)

and here

t(r) =
a2|g(x)|

(x3Φ5(x))1/4
, a2 =

35/6π1/3

28/3
√
a

= 0.6124 . (37)

We also show large- and small-x limit behaviors of var-
ious quantities using Φ(x) → 144/x3 as x → ∞ and
Φ(x)→ 1−Bx+ · · · as x→ 0.

Z2

4πa3
1

x3/2

x→0←− n(r)
x→∞−→ 432Z2

a3πx6
, (38)

Z4/3

a

√
x

x→0←− 4πr2n(r)
x→∞−→ 144Z4/3

ax5/2
, (39)

a1
Z1/3

1√
x

x→0←− s(r)
x→∞−→ a1x

3Z1/3
, (40)

a21
3Z2/3

1

x

x→0←− q(r)
x→∞−→ 5a21x

2

54Z2/3
, (41)

a2
x3/4

x→0←− t(r)
x→∞−→ 2a2√

3
. (42)

We plot the Z-scaled exact (self-consistent densities
with OEP exact exchange functional) and TF radial den-
sities of Ba (Z = 56) and Ra (Z = 88) in Figure 6. Al-
though the shell structure is missing, and the decay at

0 1 2 3

Z
1/3

r = ax

0

0.1

0.2

0.3

0.4

0.5

4π
r2 n(

r)
 / 

Z
4/

3

Exact Ba
Exact Ra
TF

FIG. 6: Plot of the scaled radial densities of Ba and Ra using
Eq.(33) and SCF densities with OEP exact exchange. TF
scaled densities of Ba and Ra are on top of each other.

0 0.5 1 1.5

Z
1/3

r = ax

0.5

1

1.5

2

2.5

3

3.5

Z
1/

3 s(
r)

Exact Ba
Exact Ra
TF

FIG. 7: Plot of the scaled reduced density gradient s(r) (rel-

ative to the local Fermi wavelength) vs. Z1/3r.

a large distance is wrong, the overall shape of the TF
density is relatively correct.

In Figures 7, 8, and 9, we plot the scaled s(r), q(r),
and t(r) using the exact and the TF densities of Ba and
Ra. In particular, t(r) measures how fast the density
changes on the scale of the TF screening length, and its
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magnitude does not vary with Z in TF theory. From
these figures, we see that s(r), q(r) and t(r) of the TF
density diverge near the nucleus, since the TF density
does not satisfy Kato’s cusp condition.

0 0.5 1 1.5 2

Z
1/3

r = ax

-2

0

2

4

6

8

Z
2/

3 q(
r)

Exact Ba
Exact Ra
TF

FIG. 8: Plot of the scaled reduced Laplacian q(r) (relative to

the local Fermi wavelength) vs. Z1/3r.

When N = Z →∞ for a realistic density, s(r) is small
except in the density tail (s ∼ Z−1/3 over most of the
density), and q(r) is small except in the tail and 1s core
regions (q ∼ Z−2/3 over most of the density). This is
why gradient expansions for the kinetic and exchange
energies, applied to realistic densities, work as well as
they do in this limit. The kinetic and exchange energies
have only one characteristic length scale, the local Fermi
wavelength, but the correlation energy also has a different
one, the local screening length. Since t(r) is not and does
not become small in this limit, gradient expansions do not
work well at all for the correlation energies of atoms [5].
The standard of “smallness” for s and q, and the more
severe standard of smallness for t, are explained in Refs.
[5] and [28].
Finally we evaluate T (0)+T (2) on the TF density. We

find the correct c0 in the Z → ∞ expansion from T (0),
but c1 vanishes, due to the absence of a proper nuclear
cusp, and c2 diverges because T (2) diverges at its lower
limit of integration.

VI. SUMMARY

We have shown the importance of the large-N limit
for density functional construction of the kinetic energy
(with the functional evaluated on a Kohn-Sham density),
and also provided a modern, highly accurate parameteri-
zation of the neutral-atomTF density. Our results should

prove useful in the never-ending search for improved den-
sity functionals.

0 1 2 3

Z
1/3

r = ax

0

1

2

3

4

t(
r)

Exact Ba
TF
Exact Ra

FIG. 9: Plot of the reduced density gradient t(r) (relative to

the local screening length) vs. Z1/3r. As r → ∞, the TF
t → 0.7071.

For atoms and molecules, the large-N limit seems more
important than the slowly-varying limit. On the ladder
[29] of density-functional approximations, there are three
rungs of semilocal approximations (followed by higher
rungs of fully nonlocal ones). The LDA uses only the
local density, the GGA uses also the density gradient,
and the meta-GGA uses in addition the orbital kinetic
energy density or the Laplacian of the density. For the
exchange-correlation energy, the GGA rung cannot [5, 28]
simultaneously describe the slowly-varying limit and the
N = Z → ∞ limit for an atom, and we have found here
that the same is true (but less severely by percent error
of a given energy component) for the kinetic energy. This
follows because, as N = Z → ∞, the reduced gradient
s(r) of Eq. (12) becomes small over the energetically im-
portant regions of the atom, as can be inferred from Fig.
7, so that a GGA reduces to its own second-order gra-
dient expansion even in regions where a meta-GGA does
not [5] (e.g., near a nucleus, where q(r) diverges but s(r)
does not, as shown in Figs. 7 and 8). For the kinetic as
for the exchange-correlation energy, meta-GGA’s [18] can
recover both the slowly-varying and large-Z limits; it re-
mains to be seen how well fully nonlocal approximations
[30, 31] can do this.

We thank Eberhard Engel for the use of his atomic
OPMKS code, and NSF (CHE-0355405 and DMR-
0501588) and the Korea Science and Engineering Foun-
dation Grant (No. C00063), for support.
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