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Hydraulic permeabilities of fiber networks are of interest for many applications and have been
studied extensively. There is little work, however, on permeability calculations in three-dimensional
random networks. Computational power is now sufficient to calculate permeabilities directly by
constructing artificial fiber networks and simulating flow through them. Even with today’s
high-performance computers, however, such an approach would be infeasible for large simulations.
It is therefore necessary to develop a correlation based on fiber volume fraction, radius, and
orientation, preferably by incorporating previous studies on isotropic or structured networks. In this
work, the direct calculations were performed, using the finite element method, on networks with
varying degrees of orientation, and combinations of results for flows parallel and perpendicular to
a single fiber or an array thereof, using a volume-averaging theory, were compared to the detailed
analysis. The detailed model agreed well with existing analytical solutions for square arrays of fibers
up to fiber volume fractions of 46% for parallel flow and 33% for transverse flow. Permeability
calculations were then performed for isotropic and oriented fiber networks within the fiber volume
fraction range of 0.3%–15%. When drag coefficients for spatially periodic arrays were used, the
results of the volume-averaging method agreed well with the direct finite element calculations. On
the contrary, the use of drag coefficients for isolated fibers overpredicted the permeability for the
volume fraction range that was employed. We concluded that a weighted combination of drag
coefficients for spatially periodic arrays of fibers could be used as a good approximation for fiber
networks, which further implies that the effect of the fiber volume fraction and orientation on the
permeability of fiber networks are more important than the effect of local network structure. © 2008
American Institute of Physics. �DOI: 10.1063/1.3021477�

I. INTRODUCTION

The study of creeping flow in fibrous media is of con-
siderable interest in a wide variety of applications such as
paper production,1–3 filtration,4 fibrous beds for manufactur-
ing processes,5 and transport in biological systems.6–10 The
most common measure used to characterize such flows is the
hydraulic permeability k, which for an isotropic medium is
defined by Darcy’s law as11

�U = − k � P , �1�

where � is the fluid viscosity, U is the superficial fluid ve-
locity, and �P is the mean pressure gradient. For a fibrous
medium, the hydraulic permeability depends on the volume
fraction, the fiber diameter, and the orientation of the fibers
relative to the flow.

For fibers of uniform diameter, the drag force developed
on them is inversely proportional to the permeability and is
given by12

F

�U
=

�

�
�a2

k
� , �2�

where F is the force per unit length on the fiber, � is the fiber
volume fraction, and a is the fiber radius. In Eq. �2�, the
dimensionless force F /�U is called the drag coefficient and
the hydraulic permeability is nondimensionalized by a2.

The first models developed for studying creeping flow in
fibrous media were two dimensional and utilized a unit cell
of a single fiber or a periodic array of fibers. The Stokes
equations were solved for flow parallel or transverse to the
fiber axis and expressions for the hydraulic permeability
and/or the drag coefficients were derived.13–18 An excellent
review of these models can be found in a review paper by
Jackson and James.19

More recently, solutions for flow in two-dimensional
random arrays of cylinders were provided. Sangani and
Yao20 used the periodic singular solution of the Laplace
equation to calculate the stream function and vorticity fields,
while Sangani and Mo21 employed a multipole expansion
method to incorporate lubrication forces among particles and
were able to deal with a larger number of fibers than in Ref.
20. Finite element22 �FE�, lattice-Boltzmann,23,24 and domain
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decomposition25 methods have been also used, which further
increased the number of the fibers. In another study,26

Voronoi networks were employed and a methodology was
described for low and high fiber volume fractions, and in
Ref. 27 a two-scale method was developed for flow through
oriented fiber tows. In addition, two-dimensional models for
mixed fibrous materials with two distinct families of fibers
have been developed.28,29

In three dimensions, rigorous solution of creeping flow
past a fibrous system is more difficult. For spatially periodic
media, Tsay and Weinbaum30 solved the Stokes equations for
flow past a square array of fibers confined between two par-
allel walls. Higdon and Ford12 used a spectral boundary ele-
ment method to calculate the permeability in simple cubic,
body-centered cubic, and face-centered cubic structures, and
Palassini and Remuzzi31 employed a finite element method
to solve the Stokes equations for a tetrahedral periodic array
of cylinders to model the glomerular basement membrane. In
addition, there are two-scale models32,33 in which the effec-
tive permeability is determined by first incorporating a spa-
tially periodic microstructure and subsequently applying the
microscopic information to a three-dimensional representa-
tion of the fibrous medium. Two-scale models have been also
developed for calculating the relative permeability in fibrous
materials consisting of two fluid phases.34 A common char-
acteristic of all these models is that they assume a periodic
structure, and the calculations are performed in a relatively
simple domain �unit cell�. There are, however, relatively few
studies for permeability calculations in random fibrous
media.35 Clague and Phillips36 performed permeability cal-
culations using a slender body theory and the Ewald summa-
tion technique, while in other studies2,3,37,38 a lattice-
Boltzmann method was employed, and in Ref. 39 the
permeability of dilute fibrous media was derived based on a
multiple-scattering hydrodynamic theory. More recently,40

the three-dimensional structure of fibrous media was ob-
tained via digital volumetric imaging and flow simulations
were performed using a commercial computational fluid dy-
namics code. All of the studies listed above considered iso-
tropic random fiber media; to our knowledge, no character-
ization has been done on anisotropic random networks with
varying orientation.

In the present work, two methodologies for permeability
calculations in three-dimensional isotropic and oriented fiber
networks are presented. Even though we are primarily inter-
ested in polymeric hydrogels and hydrated biological tissues
whose fiber volume fractions do not exceed 10% of the total
volume,7,8,41 the methods described here are applicable to
any fibrous medium. Fiber networks are generated stochasti-
cally and served as a basis of comparison for the two meth-
ods. In the first approach, finite element models of the net-
works are generated, and the Stokes equations are solved
directly. The predictions of this direct-FE method are consid-
ered to be exact. Subsequently, a volume-averaging method
is employed, and the permeability is determined by adding
the contribution of each fiber to the total network drag. The
formulation of this model requires a correlation to provide
the drag coefficients for flows parallel and perpendicular to a
fiber. Such correlations exist for the case of a long isolated

fiber42 and for spatially periodic arrays of fibers,14,15 but not
for the general case of a random fiber network. Therefore,
these equations provide only an approximation. Initial simu-
lations to validate both approaches are performed for a
square array of cylindrical fibers, for which analytical solu-
tions exist. Then, the permeability of isotropic and oriented
fiber networks is calculated, and the results of the two ap-
proaches are compared to each other and to results of other
published theories. Finally, advantages and limitations of
both methodologies are discussed.

II. METHODS

A. Generation of the fiber network

A detailed description of the network generation is pre-
sented elsewhere.43,44 Nucleation sites were generated ran-
domly within a cubic space and allowed to grow segmentally
in opposite directions along a randomly chosen vector. The
segments grew progressively by a unit length until they col-
lided with the network boundary or with another segment. In
the former case, a boundary cross-link was generated, and in
the latter case, an interior cross-link was generated at the
point of collision. Collision between two segments was de-
fined when their distance was less than a prescribed fiber
diameter. A fiber was defined as the line between two cross-
links associated with the same segment. Aligned networks
were generated by selecting the directional vectors from an
anisotropic distribution. A random network generated by this
procedure is shown in Fig. 1�a�.

FIG. 1. �Color� The four steps for the generation of the FE mesh from the
fiber networks. �a� The initial network generated with the method described
in Sec. II A. �b� The parasolid model of the fibers. �c� The parasolid model
of the surrounding fluid. �d� The final FE mesh.
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B. Direct-FE method

The fiber networks �Fig. 1�a�� were converted into para-
solid models in SolidWorks �SolidWorks Corp. Concord,
MA� �Fig. 1�b�� and subtracted from the surrounding cubic
space so that the remaining model represented only the fluid
phase of the fibrous media �Fig. 1�c��. Finally, the fluid
model was imported into Simmetrix �Clifton Park, NY� for
the generation of the FE mesh �Fig. 1�d��. Under conditions
of low Reynolds number flow, the governing equations were
the Stokes equation

�P + ��2V = 0 �3�

and the continuity equation

� · V = 0, �4�

where P is the pressure and V is the velocity of the fluid.
For the boundary conditions, we applied a unit velocity

normal to the inlet �z=−1�, while at the outlet �z=1� the total
normal stress was set to zero, and we allowed flow only
normal to the surface. For the other four boundaries, the
normal velocity and the shear forces were set to zero �sym-
metry�. The no-slip boundary condition was applied at the
surface of each fiber. Analytically, the boundary conditions
were

Vx = 0, �xy = 0, �xz = 0 on x = � 1,

�yx = 0, Vy = 0, �yz = 0 on y = � 1,

Vx = 0, Vy = 0, Vz = 1 on z = − 1 �inlet� , �5�

Vx = 0, Vy = 0, �zz = 0 on z = + 1 �outlet� ,

Vz = 0, Vy = 0, Vz = 0 on fiber surface,

where � is the total stress tensor, �=−PI+���V+ ��V�T�.
Equations �3�–�5� describe the boundary value problem

of our system, which we solved with the Galerkin finite ele-
ment method. The code used a 15-node tetrahedral element
with mixed basis functions. Velocity was represented by
quadratic Lagrangian basis functions and pressure by linear
discontinuous basis functions. This element was described in
Ref. 45, where a similar element first developed in Ref. 46
was modified. Numerical integration was performed using a
fifth-order, 15-point volume Gauss quadrature.47 The equa-
tions were solved iteratively using GMRES with diagonal
preconditioning,48 based on a square root scaling introduced
in Ref. 49. The code was implemented in parallel on 24
processors using domain decomposition and message pass-
ing interface.50 The hydraulic permeability of the network
was calculated by rewriting Eq. �1� as

k =
�Q

A��P/�L�
, �6�

where Q is the flow rate, �P is the pressure difference be-
tween the inlet and the outlet, A is the cross-sectional area of
the inlet, and �L is the distance between inlet and outlet. The
flow rate Q was calculated from the surface integral of the
fluid velocity normal either at the inlet or the outlet,

Q =� n · VdS . �7�

A limitation of this approach is that as the fiber volume
fraction increases, the fibers come closer to each other and
finally overlap, which distorts the initial network structure.
Fiber overlapping was observed at volume fractions greater
than 0.15, and thus our computations for the random net-
works were restricted to low volume fractions ���0.15�, but
still within the volume fraction range of hydrogels and bio-
logical tissues.7,8 Another limitation of this approach is the
inability of the mesh generator to mesh a cylinder exactly.
Thus, the true volume fraction of the fibers in the FE model
�Fig. 1�d�� was up to 3.5% lower than the apparent volume
fraction calculated from the total fiber length in Fig. 1�a� and
the fiber diameter. For the results presented here, we used the
values of the true volume fractions.

C. Volume-averaging method

The fiber networks, as shown in Fig. 1�a�, were em-
ployed and the volume-averaged drag coefficient matrix of
the network, D, was calculated as

D =
1

Vnet
� d , �8�

where Vnet is the total volume of the network �fibers
+interstitial space� and d is the drag coefficient matrix of the
individual fiber. The network permeability k is proportional
to the inverse of the network drag,

k = D−1. �9�

The fiber drag coefficient matrix d can be calculated
based on existing solutions of Stokes flow parallel and per-
pendicular to a cylindrical fiber, along with the proper or-
thogonal transformation of the fiber’s coordinate system to
match the coordinate system of the flow,

d = RTCR , �10�

where R is the direction cosines matrix of the fiber and C is
the diagonal matrix of the principal drag coefficients.

As has been already mentioned, there are no explicit
equations to provide C for a disordered fibrous medium. One
option is to assume that there are no hydrodynamic interac-
tions among fibers and use slender body theory, when the
aspect ratio of the fibers is high enough. Cox42 solved this
problem and found the drag coefficients parallel �C11� and
perpendicular �C22 and C33� to the fiber axis to be

C11 =
2�l

ln�2e� − 0.806 85
,

�11�

C22 = C33 =
4�l

ln�2e� + 1 − 0.806 85
,

where e is the aspect ratio of the fiber and l is the fiber
length. Notice that in a stochastic network like ours, the fi-
bers do not have identical length and thus the drag coeffi-
cients of the fibers are not the same. Equation �11� is
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expected to be valid at very low volume fractions where
hydrodynamic interactions among fibers are negligible.

An alternative approach26 is to use equations that pro-
vide drag coefficients for spatially periodic arrays of fibers.
For a square array of cylinders, Drummond and Tahir14 de-
rived an expression of the drag force for parallel flow, and
Sangani and Acrivos15 for transverse flow,

C11 =
4�l

− ln��� − 1.476 + 2� − 0.5�2 − O��4�
,

�12�
C22 = C33

=
8�l

− ln��� − 1.476 + 2� − 1.774�2 + 4.078�3 + O��4�
.

Equation �12� accounts for the effect of the fiber volume
fraction and subsequently for hydrodynamic interactions be-
tween the fibers, but it is derived for periodic arrays and not
for a network. In our analysis, Eqs. �11� and �12� will be used
and assessed for their accuracy.

III. RESULTS

A. Periodic arrays of fibers

Preliminary calculations to test the accuracy of both ap-
proaches were performed for a square array of fibers, and the
model results were compared with analytical solutions of
Drummond and Tahir14 for parallel flow,

k

a2 =
− ln��� − 1.476 + 2� − 0.5�2 − O��4�

4�
, �13�

and Sangani and Acrivos15 for transverse flow,

k

a2 =
− ln��� − 1.476 + 2� − 1.774�2 + 4.078�3 + O��4�

8�
.

�14�

The results are presented in Figs. 2 and 3. Figure 2 de-
picts the permeability calculations for flow parallel to a
square array of fibers and Fig. 3 shows the calculations for
transverse flow. The direct-FE calculations are in excellent
agreement with Drummond and Tahir and with Sangani and
Acrivos for volume fractions up to 0.2, encompassing the
range of our interest ���0.15�. For volume fraction of 0.33,
the FE calculations are 20% higher than Drummond and Ta-
hir and 25% higher than Sangani and Acrivos. However, Eqs.
�13� and �14� are asymptotic results and not expected to be
accurate enough at high volume fractions ���0.3�.

From Figs. 2 and 3 we also see that when no hydrody-
namic interactions between the fibers were considered �Eq.
�11��, predictions were constantly off by a factor ranging
from 1.5 at low volume fractions ��=0.003� to 35 at high
volume fractions ��=0.64� as hydrodynamic interactions be-
came stronger.

B. Isotropic and oriented fiber networks

For the characterization of the degree of alignment of
fiber networks, the second-order fiber orientation tensor �,
as described elsewhere,43,44,51 was employed

� =
1

ltot
� li	 sin2 	i cos2 
 sin2 	i sin 
i cos 
i cos 	i sin 	i sin 
i

sin2 	i sin 
i cos 
i sin2 	i sin2 
i cos 	i sin 	i sin 
i

cos 	i sin 	i cos 
i cos 	i sin 	i sin 
i cos2 	i

 , �15�

FIG. 2. Permeability calculations for parallel flow in a square array of fibers. FIG. 3. Permeability calculations for transverse flow in a square array of
fibers.
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where li is the length of the ith fiber, ltot is the total fiber
length, and the sum is over all fibers. 	 is the angle formed
between the fiber axis and the z-axis and 
 is the angle
formed between the projection of the fiber on the x-y plane
and the x-axis. The trace of � is always 1. For the isotropic
case, �xx=�yy =�zz=1 /3, while for aligned networks, the
value of the diagonal components is a measure of fiber align-
ment in the coordinate directions. Off-diagonal components
indicate significant alignment in a direction other than a co-
ordinate direction.

Calculations were performed for three sets of fiber net-
works with different degrees of alignment. A set of nearly
isotropic networks, a set of moderately aligned networks,
and a set of strongly aligned networks were employed �Fig.
4�. For the two sets of aligned networks, calculations were
performed for flow parallel and transverse to the preferred
fiber direction so that the effect of fiber alignment on net-
work permeability can be examined. Each set consisted of
five networks with similar alignment. The fiber volume frac-
tion can be varied either by changing the fiber diameter or by
increasing the number of the fibers. The dimensionless per-
meability by either variation should be the same. To justify
our method we varied the number of the fibers �and subse-
quently the total fiber length� and adjusted the fiber diameter
so that the networks will have similar volume fractions.

Structural characteristics of the networks employed are
shown in Table I. The table presents the total fiber length, the
number of the fibers and cross-links that comprise the fiber
networks, and the diagonal components of the orientation
tensor. For isotropic networks, the number of fibers varied
from 22 to 51 and the total fiber length from 8.14 to 20.6.
The aligned networks consisted of relatively fewer fibers be-
cause due to the network generation procedure is less likely
for fibers that grow in similar directions to form cross-links.
The percentage of interior cross-links was kept almost the
same for all networks. The diagonal components of the ori-
entation tensor of the isotropic networks were similar. The
oriented networks had a preferred alignment in the z direc-
tion and the two other components had similar values. Off-
diagonal components of the orientation tensor were minimal.
Detailed results of the permeability calculations, including
the fiber radii that were used for each of the simulations, can
be found at the supplementary tables.52

Figure 5 shows streamlines for flow through the isotro-
pic network 4. As expected, the flow paths are tortuous as the
fluid passes through the fibers. Permeability calculations
based on the flow solutions are shown in Fig. 6. In the same
figure and for comparison, a formula derived in Ref. 19 for
flow in isotropic three-dimensional fibrous media based on
two-dimensional solutions is plotted,

k

a2 =
3

20�
�− ln��� − 0.931� , �16�

along with numerical results by Clague and Phillips36 for a
random fibrous medium and by Higdon and Ford12 for fcc
and cc lattices. The permeability values for the five networks
are similar, which further justifies our computational ap-
proach. Because of the discrepancy between true and appar-
ent volume fraction, it was not possible to predict from the
beginning of the network generation procedure the final vol-

FIG. 4. �Color� The isotropic 4 �left�, the moderately aligned 4 �center�, and
the highly aligned 4 �right� networks that were employed in the calculations.
Structural properties of these networks are shown in Table I.

TABLE I. The table presents structural characteristics of the isotropic, moderately aligned, and highly aligned
networks employed in this study.

Network
Number of

fibers
Total fiber

length
Number of

x-links
Interior x-links

�%� �xx �yy �zz

Isotropic 1 22 8.14 26 9 �35% � 0.30 0.32 0.38

Isotropic 2 30 8.30 33 13 �39% � 0.34 0.28 0.38

Isotropic 3 41 12.42 44 19 �43% � 0.31 0.29 0.40

Isotropic 4 51 15.30 53 20 �38% � 0.38 0.34 0.28

Isotropic 5 51 20.60 61 24 �39% � 0.39 0.27 0.34

Mod. aligned 1 26 9.15 29 11 �38% � 0.19 0.17 0.64

Mod. aligned 2 29 12.86 34 12 �35% � 0.17 0.18 0.65

Mod. aligned 3 30 9.83 34 13 �38% � 0.15 0.12 0.73

Mod. aligned 4 41 15.51 48 17 �35% � 0.14 0.17 0.69

Mod. aligned 5 42 16.30 45 17 �38% � 0.16 0.13 0.71

Highly aligned 1 22 8.39 23 10 �43% � 0.07 0.04 0.89

Highly aligned 2 26 8.74 28 11 �39% � 0.07 0.10 0.83

Highly aligned 3 30 10.58 31 13 �42% � 0.06 0.08 0.86

Highly aligned 4 32 15.15 39 15 �38% � 0.07 0.07 0.86

Highly aligned 5 37 15.10 43 15 �35% � 0.06 0.09 0.85
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ume fraction of the FE model. For that reason we did not
calculate average permeabilities but preferred to plot all val-
ues together. For the volume-averaging approach, however,
we plotted the average of the five network permeability. The
standard deviations were undistinguishable in the scale of the
plot and were omitted. At low volume fractions, the averag-
ing approach using drag coefficients for spatially periodic
fibers �Eq. �12�� overpredicts the permeability, and for �
=0.007 its prediction is 38% higher than the value of the
direct-FE calculations. At higher volume fractions ��
�0.05�, however, the two models agree very well. The use
of drag coefficients ignoring fiber hydrodynamic interactions
�Eq. �11�� overpredicts the permeability as it did for the spa-
tially periodic arrays. The values of either Eq. �16� or the
numerical results by Clague and Phillips36 and by Higdon

and Ford12 are similar to direct FE calculations, and any
deviations are presumed to be due either to the accuracy of
Eq. �16� or to the different network structures considered
here compared to Clague and Phillips36 and Higdon and
Ford.12

Figures 7�a� and 7�b� present the permeability calcula-
tions for flow parallel �Fig. 7�a�� and transverse �Fig. 7�b�� to
the preferred fiber direction of the moderately aligned net-
works. The averaging method using the approximate formula
for spatially periodic fibers �Eq. �12�� agrees very well with
the direct calculations for the whole range of volume frac-
tions. The predictions of the averaged permeability when hy-
drodynamic interactions between the fibers are ignored �Eq.
�11�� are always higher than the direct calculations, by a
factor of 2 at low volume fractions up to a factor of 8 for
transverse flow at �=0.14.

The permeability calculations for the strongly aligned
fiber networks are shown in Figs. 8�a� and 8�b�. Figure 8�a�
presents the results for flow parallel to the preferred fiber
direction and Fig. 8�b� the results for transverse flow. Again,

FIG. 5. �Color� The streamlines for flow through the isotropic fiber
network 4.

FIG. 6. Permeability calculations for isotropic fiber networks. The perme-
ability calculated using Eqs. �11� and �12� is the average over the five iso-
tropic networks.

FIG. 7. �a� Permeability calculations for flow parallel to the preferred fiber
direction of the moderately oriented networks. �b� Permeability calculations
for flow transverse to the preferred fiber direction of the moderately oriented
networks. The permeability calculated using Eqs. �11� and �12� is the aver-
age over the five moderately aligned networks.
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when the drag coefficients for spatially periodic fibers �Eq.
�12�� are used, the averaging predictions agree well with the
direct calculations. For parallel and transverse flows, the
maximum deviations are 55% and 35%, respectively �at �
=0.13�. When hydrodynamic interactions are ignored �Eq.
�11��, the permeability is overpredicted by factors of about 2
at low fiber volume fractions and about 7 at high volume
fractions.

In Fig. 9 we plot the permeability, calculated with the
direct-FE method for the five sets of simulations that were
performed. From the figure, it is shown that the permeability
for flow parallel to the preferred direction of strongly and
moderately aligned networks is higher than the permeabili-
ties of the other three sets. This result is expected since the
drag force for flow transverse to a fiber is almost twice as
much as the drag force for parallel flow.19 The permeability
calculations of the isotropic networks and for flow transverse
to the preferred direction of the aligned networks are com-
parable. Particularly, the less permeable network is the mod-
erately aligned network 2 �see Table I�.

IV. DISCUSSION

Two different methods for permeability calculations in
stochastically generated, three-dimensional fiber networks
were described. For the first case, the Stokes equations were
solved rigorously with the finite element method, and the
results were considered to be exact. For the second approach,
the network permeability was estimated by adding the con-
tribution of each fiber to the total drag of the network. Both
models agreed well with analytical solutions for spatially
periodic arrays of fibers. For both isotropic and oriented net-
works, the averaging method was consistent with the
direct-FE results when the drag coefficients for a spatially
periodic array of fibers were considered �Eqs. �8�–�10� and
�12��. The maximum deviation of the averaged permeability
compared to the exact value was 55% at a volume fraction of
13%. When the assumption of no hydrodynamic interactions
between the fibers was made �Eq. �11��, the averaging ap-
proach significantly overpredicted the permeability for all
calculations performed in this study.

The key result of this study is that one can account for
the hydrodynamic interactions by adding up independent
contributions from each fiber �by treating it as if it was part
of a phantom array�. The result provides a method to esti-
mate permeabilities of anisotropic random networks based
only on the distribution of fibers. In addition, since the drag
coefficients for spatially periodic arrays account for the vol-
ume fraction but not for detailed structure of the network, we
can also conclude that the effects of the volume fraction and
fiber orientation on the permeability are more significant
than the effect of detailed network geometry.

Correlations of spatially periodic arrays have been used
successfully for networks based on random two-dimensional
Voronoi diagrams.26 Furthermore, the volume-averaging
method we employed in this study is not the only averaging
method that have been used. In a recent work, Mattern and
Deen53 compared four different methods proposed in the lit-
erature, each based on different approximations of the hydro-

FIG. 8. �a� Permeability calculations for flow parallel to the preferred fiber
direction of the strongly oriented networks. The permeability calculated us-
ing Eqs. �11� and �12� is the average over the five highly aligned networks.
�b� Permeability calculations for flow transverse to the preferred fiber direc-
tion of the strongly oriented networks. The permeability calculated using
Eqs. �11� and �12� is the average over the five highly aligned networks.

FIG. 9. Dependence of the permeability on the network orientation. ���
Isotropic networks, ��� moderately aligned networks �parallel flow�, ���
moderately aligned networks �transverse flow�, ��� highly aligned networks
�parallel flow�, and �*� highly aligned networks �transverse flow�.
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dynamic interactions between the fibers. They found good
agreement of one of these methods with experimental data
and simulation results for charged fibers and for arrays of
uncharged fibers with different radii.

To the best of our knowledge, this is the first time that
the effect of fiber alignment on network permeability is ex-
amined. From Fig. 9 we see that highly aligned networks are
more permeable than moderately aligned networks for flow
parallel to their preferred direction. However, the permeabil-
ity of isotropic networks is comparable to the permeability of
networks aligned �moderately or highly� perpendicular to the
flow. With increasing isotropy, the average pore size de-
creases and this in turn decreases the permeability. As it is
shown in Table I, the three sets consist of the same number
of fibers and cross-links, and thus differ only in the orienta-
tion and the pore size. The increase in the orientation trans-
verse to the flow increases the resistance but at the same time
increases also the average pore size, which decreases the
resistance. From the results, it seems that the effects of the
increase in the orientation and the increase in the pore size
cancel out.

We stated in this paper that the results of the direct-FE
simulations were exact. It is known, however, that the finite
element method provides only an approximation of the ana-
lytical solution and, thus, its solution is not theoretically the
exact but the converged solution. We repeated the simula-
tions varying the number of the degrees of freedom from
2.5�106 to 4�106 and found that the calculated permeabil-
ity was mesh independent to within 0.85%. All simulations
presented in this study involved approximately 3�106 de-
grees of freedom, were solved on 24 2.6 GHz AMD Opteron
processors, converged after two GMRES iterations, and re-
quired a total clock time of �8 h. As we mentioned earlier,
the true volume fraction of the network �Fig. 1�d�� was lower
than the apparent volume fraction, as calculated from the
total fiber length in Fig. 1�a� and the fiber diameter, because
of the inability of the mesh generator to mesh a cylinder
exactly and fiber-fiber overlap. To calculate the averaged per-
meability, the values of the true volume fractions were used.
Figure 10 shows that the relationship between the apparent
and the true volume fractions is independent of the number
of the fibers and the fiber orientation. Incorporation of the
apparent values would result in significant changes in the
averaged permeability, particularly at low volume fractions,
so it is imperative that the true volume fraction be used.

We saw that adding the drag coefficients of the fibers
based on correlations for spatially periodic arrays provides a
reasonable estimate of the network permeability, which is of
particular importance given the computational demands of
the direct calculations. The permeability expression �Eqs.
�8�–�10� and �12�� can be useful for existing models of soft
tissue biomechanics,54–56 which require the permeability of
the underlying fiber network. Many of these models55,56 sim-
ply use phenomenological expressions which provide the
permeability as a function only of the volume fraction. We
have shown here �Fig. 9�, however, that not only the volume
fraction but also the network orientation affects the perme-
ability. Given the fact that the network orientation varies
considerably from tissue to tissue,57 the averaging methodol-

ogy we presented in this paper is potentially more accurate
than phenomenological equations. Furthermore, this method
can be applied to networks consisting of two or more fami-
lies of fibers with distinct fiber diameters, as is the case of
agarose gels8 and collagen-fibrin cogels,58 and, in general,
can be used as a quick and accurate way to predict the per-
meability of any fiber network as a function of both volume
fraction and orientation.

Finally, the presented methodology of network genera-
tion and permeability calculation can be combined with im-
aging techniques for the prediction of the permeability of
real tissues. In previous work, using scanning electron mi-
croscopy and polarized light microscopy59,60 the orientation
of the tissue was measured and then stochastic networks with
similar structure were generated in order to study the me-
chanical behavior of the tissue. Here, we can repeat the same
procedure and use any of the two methodologies presented in
the paper to predict the permeability of the tissue.
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