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We discuss the equilibrium condition for a liquid that partially wets a solid on the level of in-
termolecular forces. Using a mean field continuum description, we generalize the capillary pressure
from variation of the free energy and show at what length scale the equilibrium contact angle is
selected. After recovering Young’s law for homogeneous substrates, it is shown how hysteresis of the
contact angle can be incorporated in a self-consistent fashion. In all cases the liquid-vapor interface
takes a nontrivial shape, which is compared to models using a disjoining pressure.

I. INTRODUCTION

The equilibrium condition of a liquid that partially
wets an homogeneous solid substrate has been addressed
since Young [1], who found that there is a well-defined
contact angle θY . This angle minimizes the macroscopic
free energy E of the liquid and provides the boundary
condition for the free surface:

cos θY =
γsv − γsl

γ
, (1)

where γ, γsl and γsv represent the surface tensions of the
liquid-vapor, solid-liquid and solid-vapor interfaces re-
spectively. The surface tensions are defined as the excess
free energy per unit area, in the particular geometry of
a planar interface between two unbounded phases [2, 3].
When approaching the contact line where the three in-
terfaces meet, the geometry changes dramatically and
the force balance can no longer be expressed in terms of
surface tensions. Instead, the interface deforms at small
scales to establish a nontrivial equilibrium shape [4, 5].
Macrocopically, however, one recovers a wedge of angle
θY [6].

The small scale structure of the contact line is much
less understood, but very relevant for problems such as
line tension in nanofluidics [7, 8, 9, 10], or moving con-
tact lines that are out-of-equilibrium down to molecular
scales [11, 12, 13, 14, 15, 16]. To avoid fitting parame-
ters, these problems require an explicit treatment of the
force balance within the range of molecular interactions.
Another basic phenomenon not described by Young’s law
is contact angle hysteresis: chemical inhomogeneities or
roughness of the solid substrate can trap the contact line
in a potential well, allowing for a range of possible macro-
scopic contact angles [4, 17, 18]. A common interpreta-
tion is to assume that the contact angle is selected at a
scale smaller than the inhomogeneities, and to consider
Young’s law as a local boundary condition [19, 20, 21].
Strictly speaking, however, this interpretation is not self-
consistent because surface tensions are no longer well-
defined at molecular scales. Alternatively, one could ar-
gue that the global free energy E is dominated by con-
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FIG. 1: Experimental verification of Young’s law by [6]: the
measured contact angle θexp versus the prediction θY from
independent measurements of the surface tensions.

tributions from the bulk of the drop, and described by
an average over the inhomogeneities, γ̄sv − γ̄sl [22, 23].
While this approach has been very successful in recent
years for wetting on textured substrates [24], it predicts
a unique value for the contact angle and hence does not
capture the hysteresis.

These observations raise the question of how the con-
tact angle is selected, in particular at what length scale.
Rather than imposing the angle as an external boundary
condition at a large distance from the contact line [25],
one would like to derive it directly from the force balance
at molecular level.

There are various approaches to address this problem
within a continuum theory, but no general consensus has
yet been achieved. A popular strategy consists of adding
the microscopic effect of liquid film confinement (disjoin-
ing pressure) and the macroscopic effect of interface cur-
vature (Laplace pressure) [7, 14, 26]. A consequence of
this approximation is that Young’s angle is only recov-
ered if a precursor film is present on the substrate. Con-
ceptually, both the disjoining and Laplace pressures have
the same physical origin: the force on the interface arises
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because the geometry of the liquid deviates from a semi-
infinite flat domain. A priori, these pressures need not be
additive and a more rigorous approach consists of mini-
mizing the total free energy of the system with respect
to the interface shape h(x). From this, Getta and Di-
etrich [8] derived a nonlocal integral equation for h(x)
within Density Functional Theory in the presence of a
mesoscopic precursor film. They demonstrated that the
addition of Laplace and disjoining pressures is in fact a
local approximation and they addressed the quantitative
limitations of such a local approach.

The situation without precursor film, typical of more
hydrophobic substrates [27, 28], has been analyzed by
a number of papers [5, 29, 30, 31]. Surprisingly, these
arrived at contradicting conclusions. Merchant and
Keller [5] derived a nonlocal integral equation for the
interface profile that has essentially the same structure
as in [8]. From asymptotic analysis they showed that the
profile macroscopically approaches Young’s angle, while
the inner structure of the contact line displayed nontrivial
oscillations. On the other hand, Hocking [30] and more
recently Wu and Wong [31] have identified an exact so-
lution of a perfectly straight wedge down to molecular
scale. Although unnoticed by these authors, the corre-
sponding wedge angle is not Young’s angle as obtained by
Merchant and Keller, which raises an intriguing paradox.

In this paper we revisit the equilibrium condition for
the liquid-vapor interface at small length scales. We aim
(i) to explicitly identify the connection between micro-
scopic and macroscopic length scales, and thus the se-
lection of the contact angle, (ii) to apply this to contact
angle hysteresis, (iii) to clarify some of the mentioned
contradictions in the literature. In view of the latter,
the descriptions in the paper will in places be somewhat
extensive.

The analysis is restricted to mechanical equilibrium
and treats the interface as infinitely thin, hence ignoring
thermal fluctuations and the corresponding details of the
density profile. These simplifications allow writing down
a free energy functional E[h] that contains all length
scales but yet remains accessible for analysis. The capil-
lary pressure Π is generalized as the functional derivative
of the free energy with respect to the interface shape h.
Π turns out to be exactly equal to the potential energy
associated to the intermolecular forces. The equilibrium
condition is then simply a constant capillary pressure, i.e.
an iso-potential free surface: Π = λ.

A first result is that the shape of the interface is never a
perfectly straight wedge, due to regularization of the van
der Waals interactions at a distance `, typically several
Angstroms [32]. This regularization is crucial, as other-
wise the total energy diverges and surface tensions are
not defined. For homogeneous substrates it is found that
the solution asymptotically approaches Young’s contact
angle in the large scale limit, effectively reproducing the
result by Merchant and Keller [5]. The small scale struc-
ture, however, does not exhibit the oscillations seen in [5].
We then identify how the large scale angle is selected in

the neighbourhood of the contact line, at the scale ` of
the regularization, and provide a self-consistent descrip-
tion for contact angle hysteresis. Finally, we compare
the generalized capillary pressure to the usual disjoining
pressure.

II. MACROSCOPIC ANALYSIS

The benchmark for our analysis is the usual macro-
scopic theory that we wish to recover from the inter-
molecular forces. Here we present a formal derivation
(similar to [33]), which can later on be generalized to in-
clude microscopic interactions. We consider profiles that
are translationally invariant in one direction, so that the
problem reduces to finding h(x). The free energy of the
liquid film reads (per unit length y),

E[h] =
∫ b

a

dxΓwet +
∫ a

−∞
dxΓdry +

∫ ∞
b

dxΓdry

=
∫ b

a

dxΓ(h, h′) + const, (2)

with

Γ(h, h′) = γ
√

1 + h′2 + γsl − γsv. (3)

where from now on we write γlv = γ. The factor
√

1 + h′2

is required to compute the surface area (arclength) of the
liquid-vapor interface. To minimize this energy under the
constraint of a fixed liquid volume one needs to introduce
a Lagrange multiplier λ, and then consider the variation
of E = E − λ

∫
dxh,

δE = E [h+ δh]− E [h]

= Γ(b)δb− Γ(a)δa+
∂Γ
∂h′

δh|ba

+
∫ b

a

dx

(
∂Γ
∂h
− d

dx

∂Γ
∂h′
− λ
)
δh. (4)

Besides the usual partial integrations, we find contribu-
tions δa and δb that correspond to contact line variations.
These arise because there is no external force to constrain
the contact line positions, so one can not impose δh = 0
at the boundary.

At equilibrium this variation δE = 0 for arbitrary
δh(x). In the bulk of the liquid, the vanishing of the
integral yields the Euler-Lagrange equation:

Π ≡ δE

δh
=
∂Γ
∂h
− d

dx

∂Γ
∂h′

= λ, (5)

which for Γ(h, h′) of (3) reduces to the usual Laplace
pressure condition

Π = −γκ = λ, (6)

where κ = h′′/(1+h′2)3/2 is the curvature of the interface.
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Similarly to the Hamiltonian in classical mechanics,
this differential equation has a first integral,

Gmacro = Γ− h′ ∂Γ
∂h′
− λh (7)

that is conserved along the free surface. This can be seen
by multiplying (5) by h′ and integrating along x. To close
the problem, we need to determine the value of Gmacro

from the contributions at the contact line x = a, b in (4).
The variation of the contact line δa is not independent of
δh(a). Through Taylor expansion one finds the relation
δa = −δh(a)/h′(a). As the contributions should vanish
for arbitrary δh, this provides so-called natural boundary
conditions:

− Γ
h′

+
∂Γ
∂h′

= 0 at x = a, x = b. (8)

Comparing to (7), one recognizes that these boundary
conditions simply yield Gmacro = 0. For the problem at
hand we thus find

Gmacro =
γ√

1 + h′2
− (γsv − γsl)− λh = 0. (9)

At the contact line this indeed gives Young’s law (1).

III. GENERALIZED EQUILIBRIUM
CONDITIONS

A. Formulation

Before analyzing the microscopic free energy, let us
reiterate the structure of the analysis. The bulk equilib-
rium condition is obtained from the functional derivative,
which basically corresponds to a constant pressure. We
therefore introduce the generalized capillary pressure Π
as the functional derivative, yielding the equilibrium con-
dition in the bulk:

Π ≡ δE

δh
= λ, (10)

where λ is, again, the Lagrange multiplier associated to
incompressibility.

The generalized invariant G can be constructed from
integration

G ≡
∫ x̃

a

dxh′(x) [Π(x)− λ] , (11)

which from (10) vanishes for all values of x̃. In the macro-
scopic calculation we closed the problem from the varia-
tion of the contact line, which gave a term Γ(a)δa. This
contribution is due to the discontinuous jump from Γwet

to Γdry across the contact line. We anticipate that on a
molecular level such a discontinuity does not occur, as
the relevant energies vary smoothly with the thickness h.
This implies that in the microscopic model we lose the
boundary condition. Instead, the solution will be selected
internally from the balance of intermolecular forces.

B. Interpretation

The capillary pressure can be interpreted as a purely
geometric effect. For a perfectly flat interface between
two semi-infinite phases it is zero, because a virtual dis-
placement of the interface will still yield a surface be-
tween two unbounded phases. However, any deviation
from this geometry will result into a force on the inter-
face. The best known example is of course the Laplace
pressure for curved interfaces, for which a virtual dis-
placement leads to a change in surface area. Another
example is the disjoining pressure for a thin horizontal
liquid film on a solid substrate, whose thickness falls
within the range of intermolecular forces. In this case
the molecules near the surface feel a change of environ-
ment, due to a replacement of liquid for solid molecules.
We emphasise that both pressures have the same phys-
ical origin and are captured within the single definition
(10).

The integral G represents the horizontal component of
the total force acting on the liquid between the contact
line and the location x. Namely, the horizontal force per
unit length y acting on a vertical slice of liquid reads:

d2f = −Π′(x)hdx dy (12)

The horizontal component of the force is then obtained
from integration by parts

df

dy
= −

∫ x

a

dx̃Π′(x̃)h(x̃)

= h(a)Π(a)− h(x)Π(x) +
∫ x

a

dx̃ h′(x̃)Π(x̃)

= G. (13)

As we have seen from the macroscopic analysis, this hor-
izontal force balance should yield Young’s law for ho-
mogeneous substrates. In the presence of contact angle
hysteresis, however, the invariant G provides a nontrivial
communication across length scales. We show below how
it translates the microscopic force balance into a macro-
scopic contact angle.

C. Microscopic free energy and capillary pressure

We consider pairwise molecular interactions, φαβ(|r′−
r|), where α and β can represent molecules in the liquid
(l) or solid phase (s). We then follow [29], by considering
density-density correlations

ρ
(2)
αβ(r, r′) ≈ ραρβ gαβ(|r′ − r|), (14)

where gαβ is the pair correlation function and we take ρl,s
constant over the liquid domain (L) and solid domain (S)
respectively. This is equivalent to the so-called sharp-
kink approximation in Density Functional Theory [8]. In
the absence of external forces, this then yields the energy
functional
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E[h] =
1
2

∫
L
dr
∫
L
dr′ φ̃ll(|r′ − r|)

−1
2

∫
L
dr
∫
∞
dr′ φ̃ll(|r′ − r|)

+
∫
S
dr
∫
L
dr′ φ̃sl(|r′ − r|), (15)

where we renamed φ̃αβ(r) = gαβ(r)φαβ(r). As this repre-
sents the excess free energy, we subtracted the bulk liquid
energy emerging from an infinite domain of interaction.
The factors 1/2 arise since all pairwise integrations are
counted twice by the double integrations. By definition,
the gaseous domain is the complementary of the solid
and liquid domains. One thus obtains an equivalent sys-
tem if the gas is replaced by vacuum and if the gas-liquid
interaction potential is subtracted from the liquid-liquid
and the solid-liquid potentials. So, once the potentials
are expressed in terms of surface tensions, one rigorously
finds the same result if the gas phase is virtually replaced
by a vacuum.

We again consider profiles that are invariant along the
y direction, bounded by contact lines at x = a and x = b.
The domains of integration then become∫

L
dr =

∫ b

a

dx

∫ ∞
−∞

dy

∫ h(x)

0

dz∫
S
dr =

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ 0

−∞
dz∫

∞
dr =

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ ∞
−∞

dz. (16)

The interface profile h(x) now appears explicitly as the
boundary of the liquid domain. This makes it easy to
evaluate the functional derivative, i.e. the capillary pres-
sure, as

Π(x) =
∫ b

a

dx′
∫ h(x′)

0

dz′ ϕll (x′ − x, z′ − h(x))

−
∫ ∞
−∞

dx′
∫ ∞

0

dz′ ϕll (x′, z′)

+
∫ ∞
−∞

dx′
∫ 0

−∞
dz′ ϕsl (x′ − x, z′ − h(x)) .

(17)

Here we conveniently integrated out the invariant y di-
rection, so that

ϕ(x, z) =
∫ ∞
−∞

dy φ̃
(√

x2 + y2 + z2
)
. (18)

The pressure at the interface can thus be split into a
part due to liquid-liquid interaction and a part due to
solid-liquid interaction, i.e. Π = Πll + Πsl. Inspection of
the integrals reveals that these are simply the potential

energy per unit volume at the free surface, due to the
presence of liquid and solid molecules. The equilibrium
condition is thus that h(x) is an equipotential [5, 30].
Mechanically, a gradient in potential energy would lead
to fluid motion. Note that the recent paper [31] uses the
potential on the free surface to estimate the disjoining
pressure, but then resides to a local approximation for
the functional derivative, similar to equation (5).

D. Surface tensions

Once the molecular interactions have been specified,
one can compute the surface tensions [2, 3]. This is
important in order to establish a connection with the
macroscopic limit. An elegant way to obtain the liquid-
vapor tension γ is to directly derive the Laplace pres-
sure from (17) in the macroscopic limit. In this case
the boundary z = 0 can effectively be replaced by −∞,
while a, b = ±∞. A Taylor expansion h(x′) − h(x) =
h′(x)u + h′′(x)u2/2 and changing variables u = x′ − x
then yields [8, 29]

Π(x) ' −γκ, (19)

with

γ = −π
2

∫ ∞
0

dr r3φ̃ll(r). (20)

Indeed, this is precisely twice the energy required to sep-
arate two semi-infinite liquid domains from contact to
infinity.

The other surface tensions can be derived from the
disjoining pressure of a perfectly flat horizontal film,
Πdisj(h), through the connection [26, 34]

γ + γsl − γsv =
∫ ∞

0

dhΠdisj(h). (21)

This relation expresses that Πdisj(h) is the derivative of
a surface free energy that has the correct macroscopic
limits Γwet and Γdry. Taking h(x) = h(x′) = h and
a, b = ±∞, we find upon integration

γsl − γsv − γ = π

∫ ∞
0

dr r3φ̃sl(r). (22)

Note that (20) is a special case of this result, where the
solid is replaced by liquid so that γsv = 0 and γsv = γ.
For a more rigorous thermodynamic treatment of surface
tension we refer to [3].

IV. HOMOGENEOUS SUBSTRATES

A. Asymptotic analysis: Young’s law

We now compute the equilibrium contact angle from
the microscopic interactions, in the case where the solid
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surface is perfectly homogeneous. In the macroscopic
analysis of Sec. II, Young’s law arises from variation of
the contact line position, δa. If we consider such a varia-
tion for the free energy (15), we find a contribution pro-
portional to

∫ h(a)

0
dz. Since h(a) = 0 by construction,

this variation does not give a nontrivial boundary condi-
tion. As the contact angle should still emerge from the
horizontal force balance, we evaluate the invariant G by
integration (11). If the solid substrates are spatially ho-
mogeneous, the solid-liquid potential is a function of the
film thickness only:

Πsl(h) =
∫ ∞
−∞

dx′
∫ 0

−∞
dz′ ϕsl (x′, z′ − h) . (23)

It contributes to the invariant as

Gsl(x) =
∫ h(x)

0

dh̃Πsl(h̃). (24)

Integrating to a large distance from the contact line, h�
`, this can be further reduced to

Gsl(∞) = π

∫ ∞
0

dr r3φ̃sl(r)

= γsl − γsv − γ, (25)

where we used the definition of surface tensions (22) of
the previous paragraph.

The contribution of the liquid-liquid interaction is
more subtle, as it involves the (unknown) equilibrium
shape h(x),

Gll(∞) =
∫ ∞

0

dxh′(x)[∫ ∞
0

dx′
∫ h(x′)

0

dz′ ϕll (x′ − x, z′ − h(x))

−
∫ ∞
−∞

dx′
∫ ∞

0

dz′ ϕll (x′, z′)
]
, (26)

where we took a = 0 and b = ∞. However, it was
shown by Merchant and Keller [5] that the integral can
be evaluated analytically if one assumes that for large h
the interface approaches a wedge of a well-defined slope,
h(x) ' x tan θ∞. The trick is to consider the difference
between the real h(x) and the straight wedge. Merchant
and Keller then showed that this difference vanishes due
to the double integration over x and x′, irrespective of
the shape h(x). In Appendix A we clarify the crucial
steps in their analysis. The end result depends only on
the value of the asymptotic slope:

Gll(∞) = γ + γ cos θ∞. (27)

Taking λ = 0, the invariance G = Gll + Gsl = 0 yields

γ cos θ∞ + γsl − γsv = 0. (28)

Comparing to (1), we indeed find θ∞ = θY from Young’s
argument. So whatever the shape h(x), the equilibrium

solution approaches Young’s angle for h � `. For finite
drop volumes of typical size R, corrections are of order
λh ∝ γh/R, so that the asymptotic analysis is justified
for `� h� R.

To recapitulate, the variation of the contact line po-
sition does not provide a boundary condition in the mi-
croscopic theory. Instead, there is an internal selection
of the solution for which one can derive the asymptotic
angle θ∞ = θY . This is a completely microscopic demon-
stration of Young’s law. Imposing a wedge angle differ-
ent from θY , hence G 6= 0, will force the solution to pass
through a minimum or a singularity, as only the solution
with G = 0 can reach h = 0.

B. Equilibrium profiles

To analyze the inner structure of the contact line, we
numerically solve the integral equation Π = λ, with the
pressure taken from (17). We consider the following ef-
fective interaction

φ̃αβ(r) =
{
−cαβ/r6 for r ≥ `
−cαβ/`6 for r < `.

(29)

This corresponds to attractive Van der Waals interac-
tions, regularized below r = `, combined with a flat pair
correlation function, g(r) = 1. For simplicity we take
the same regularization length ` for the liquid-liquid and
solid-liquid interactions. Using Sec. III D, we can readily
compute Young’s angle as [27]:

1− cos θY = 2
(

1− csl
cll

)
, (30)

For details on the numerical algorithm we refer to Ap-
pendix C.

Figure 2 shows an equilibrium drop profile, with θY =
0.7. Close to the contact line we observe a change of
contact angle from a microscopic value, θµ, to the equi-
librium angle, θ∞ = θY . Indeed, the dotted line indi-
cates Young’s angle computed from (30), confirming the
asymptotic analysis. This equilibrium angle is attained
at a typical height ` (set to unity in all figures) above the
solid. At larger distances, outside the range of the inter-
actions, the profile is simply the cylindrical cap expected
from macroscopic theory.

In Fig. 3 we present the microscopic angle as obtained
for various wetting conditions. The microscopic and
macroscopic angles coincide only for θY = π/2, for which
the solution is a perfectly straight wedge. For more hy-
drophilic drops, however, the microscopic angle is always
much smaller than Young’s angle. In Appendix B we
derive an approximate relation based on local theories:

θµ ≈
1
2
θY
(
2− cos θY − cos2 θY

)
, (31)

see also the Discussion section. This provides a good
qualitative description of the numerical results (dotted
line, Fig. 3).
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FIG. 2: Equilibrium profile of a drop with interaction (29),
with θY = 0.7. Lengths are expressed in terms of `. Top: at
large scales, the shape is a cylindrical cap. Bottom: a zoom at
the contact line region reveals a variation of the slope, from
a micrscopic angle θµ to the a macroscopic angle θ∞. The
dotted line confirms that θ∞ = θY .
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FIG. 3: Relation between microscopic angle θµ and Young’s
angle θY . Dots: numerical resolution for (29). Dotted line:
interpolation based on local approximations (31). Solid line:
θµ = θY , plotted for clarity only. Note that θµ = θY only at
π/2.

Our numerical results gave no indication of the sur-
prising oscillatory behavior of h(x), as observed by Mer-
chant and Keller [5]. In their simulations, the macro-
scopic wedge angle was imposed as a boundary condi-
tion at infinity, which is different from our finite volume
nanodroplets. Despite this technical difference, the inner
structure of the contact line should be the same. Investi-
gating the microscopic parameters in [5] it seems that the
asymptotic boundary condition was not correctly taken
at Young’s angle [35]. This means that macroscopically
G 6= 0 in their simulations. Enforcing a solution that
at the same time has h = 0, where G = 0, the solution

would have to pass through a singularity. Looking at
the cusp-like structures in [5], we think this is a plausi-
ble explanation. This problem could not possibly occur
in our simulations, as the drop was free to establish the
equilibrium shape.

C. Paradox of the straight wedge

The findings discussed above contradict the result by
Hocking [30], who analytically found equilibrium solu-
tions that remain a perfectly straight wedge at all scales.
Hocking’s solutions exist for all wetting angles, while in
our simulations the wedge was only found for θY = π/2.
The paper [30] starts with the same expression for the
capillary pressure (17), and then uses unregularized Van
der Waals interactions

φαβ(r) =
−cαβ
r6

for r ≥ 0. (32)

Imposing the shape h(x) = x tan θ this yields

Πwedge =
πcll
6h3

(
1− csl

cll
− F (θ)

)
(33)

with F (θ) = 1
2 −

3
4 cos θ+ 1

4 cos3 θ. In order for the pres-
sure to be constant along the interface, for all h, it is
then argued that the equilibrium angle follows from

F (θH) = 1− csl
cll

⇒ θH '
(

1− csl
cll

)1/4

, (34)

where the latter approximation holds for small angles.
Although the paper claims to be consistent with

Young’s law and [5], this is not the case. Comparing
(34) to (30), it is clear that θH 6= θY . Crucially, the
interactions (32) lack a small-scale regularization and di-
verge when r → 0. Integrating over this singularity gives
a divergent contribution, so that the surface tensions are
effectively infinite. As we have seen, the wedge solutions
cease to exist when a regularization is introduced.

The expression (33) nevertheless has a useful interpre-
tation as the scaling for Van der Waals interactions when
h � `. In fact, it has been used to derive the approxi-
mation (31). For small contact angles, the contribution
F (θ) ∝ θ4 can be neglected so that the disjoining pres-
sure is unaffected by the small inclination. For θY = π/2,
however, the term in brackets vanishes and the effect of
Van der Waals forces completely disappears. In this par-
ticular case, the wedge indeed is an exact solution as
observed in our simulations.

V. CONTACT ANGLE HYSTERESIS

A. Analysis

The microscopic determination of θ∞ follows from
asymptotic analysis and does not depend on the homo-
geneity of the solid surface. One can distinguish two



7

types of inhomogeneity that both lead to contact angle
hysteresis: geometrical roughness of the substrate and
variations in surface chemistry. In the latter case, the
analysis of the G integrals can be done explicitly. Let us
therefore consider a spatially varying surface potential,

Πsl = −γ(1 + cos θY )Ψ0(h)− εγ cos(qx+α)Ψ1(h), (35)

where we normalized
∫∞

0
dhΨ0,1(h) = 1. Such a variation

could reflect the crystalline structure of the solid, which
gives rise to a spatial patterns of the solid density ρs on
molecular scale. The chosen form can be seen as a per-
turbation expansion for small inhomogeneities or as part
of a Fourier decomposition of the chemical variations.

The liquid-liquid interaction is completely unaffected
by this surface inhomogeneity, so we can evaluate the
condition G = 0,

cos θ∞ = cos θY + εGq(α), (36)

where

Gq(α) =
∫ ∞

0

dxh′(x)Ψ1(h) cos(qx+ α). (37)

It is clear from (36) that the macroscopic angle θ∞ can
take a range of values, and depends sensitively on the
phase α at the contact line position (taken at x = 0 by
definition).

The calculation of Gq(α) requires the slope h′(x) of
the nontrivial equilibrium solution. One can, however,
get an estimate for the hysteresis by introducing the ap-
proximation h′(x) ≈ tan θY :

Gq(α) ≈
∫ ∞

0

dhΨ1(h) cos(qh/ tan θY + α)

= cosα<
(

Ψ̃
(

q

tan θY

))
+ sinα=

(
Ψ̃
(

q

tan θY

))
,

(38)

where

Ψ̃(q) =
∫ ∞

0

dh eiqh Ψ1(h), (39)

is the Fourier transform of Ψ1(h) times the Heaviside step
function. The amplitude of the hysteresis, characterized
by the advancing and receding contact angles θa and θr,
can then be estimated by

cos θa ≈ cos θY − ε
∣∣∣∣Ψ̃( q

tan θY

)∣∣∣∣ , (40)

cos θr ≈ cos θY + ε

∣∣∣∣Ψ̃( q

tan θY

)∣∣∣∣ . (41)

This result has two intuitive limits. Since the length
scale appearing in Ψ1(h) will again be `, the hysteresis is
controlled by the dimensionless wavelength

Q =
q`

tan θY
. (42)

In the limit Q � 1, one finds |Ψ̃| = 1, because of normal-
ization. It this case the variation of the surface chemistry
is slow and one can locally treat the surface as homoge-
neous, with the relevant surface tensions varying between
±ε. This is the usual ’macroscopic’ interpretation of hys-
teresis based on surface tensions. In the opposite limit,
Q � 1, one finds |Ψ̃| ∝ 1/Q → 0. This scaling is due
to the singularity in the Heaviside function, which deter-
mines the large scale behavior of the Fourier transform.
In this limit, the spatial variation is so quick that it is
averaged out and the hysteresis disappears altogether.

B. An illustration

The approximation above will now be compared to
complete numerical solutions in the presence of hystere-
sis (Fig. 4a). We again consider the interaction (29), for
which we can compute Ψ0(h) for a homogeneous sub-
strate. We consider spatial variations characterized by
Ψ1(h) = Ψ0(h), which gives (Appendix C):

Ψ1(h) =
2
9`

{
(`/h)3 for h ≥ `
8− 9(h/`) + 2(h/`)3 for h < `.

(43)

This function is indeed normalized to unity. The ampli-
tude of the hysteresis can now be computed by evaluating
the integral transform |Ψ̃|, which is plotted in Fig. 4c as
a function of Q.

We have numerically simulated droplets for this inter-
action. We have imposed the drop center to coincide with
a maximum the wall potential has a maximum, so that
mirror symmetry yields two identical contact lines. The
volume was kept constant, yielding a discrete set of solu-
tions of varying contact angle θ∞. As can be seen from
Fig. 4a, the contact line positions for these metastable
solutions are separated by roughly one wavelength. The
drops shown in this figure are the only ones we could
obtained for this volume, reflecting the bounds of hys-
teresis.

As expected from our analysis, the precise phase α of
the potential is slightly different for the various drops.
This is shown in Fig. 4b, in which the numerical results
are compared to (38). This approximation accounts quite
well for the value of θa, as well as for the phase shift
with respect to Πsl, whose extremal values are located at
α = 0 and Π. However, it significantly underestimates θr.
We attribute this to the strong deviation from the wedge
approximation near the contact line (c.f. the flattest drop
in Fig. 4a).

VI. DISCUSSION

A. Internal selection of the contact angle

We have shown how the macroscopic contact angle
emerges from a microscopic force balance, within a mean
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FIG. 4: (a) Metastable solutions for drops of equal volume in
the presence of hysteresis. The phase of the interface poten-
tial is sketched below (note that the solid-liquid interface is
still taken perfectly flat). Simulation parameters: θY = π/4,
ε = 0.427, Q = 3. (b) Contact angle versus the phase of the
potential α. The numerical values (circles) and the approx-

imation (38). (c) Absolute value of |Ψ̃|, approximating the
strenght of the hysteresis for wavelength Q.

field continuum discription. There is a crucial role for
the integral G, which is invariant along the entire in-
terface. Physically, this invariant expresses horizontal
force balance on an arbitrary cross-section of the liquid.
The macroscopic angle can be computed by equating the
value of G for a macroscopic wedge to its value at the
contact line. The height over which the integral attains
its asymptotic value is simply `, the range of the interac-
tions. In this respect, the contact angle is indeed deter-
mined at a molecular scale.

A striking feature of the microscopic model is that the
entire solution follows from the pressure balance, without
the necessity of an external boundary condition. Hence,
there is an internal selection of the contact angle. This
is very different from the usual macroscopic theory, for
which the contact angle has to be imposed as a boundary
condition. Besides this conceptual difference, the internal
selection also works when surface tensions are no longer
well-defined. This occurs for contact angle hysteresis in
the case where variations of the surface chemistry are
of the same scale as the range of interaction (expressed
in Sec. V as Q ∼ 1). Again using the invariant G, the
microscopic model naturally provides a range of contact
angles.

At this point we would like to stress that the free en-
ergy analyzed in this paper oversimplifies the physics near
a contact line: it ignores thermal fluctuations, while the
continuum approach starts to break down at molecular

scales [36]. The present analysis should therefore be con-
sidered as a model calculation, where one can explicitly
identify the selection mechanism. It would be interesting
to combine the present approach with molecular dynam-
ics simulations, or more rigorous density functional calcu-
lations to improve the physical reality. The results for the
(submolecular) angle θµ, which resolved the paradox of
the straight wedge solutions, should be interpreted within
this context. Having said that, there exist experimental
measurements of variations between macroscopic and mi-
croscopic angles, for systems with sufficiently long ranged
interactions [9, 10]. A very similar situation is encoun-
tered in electrowetting, where an applied electric field
induces a change of the macroscopic contact angle [37].
It was recently shown, however, that close to the contact
line one recovers Young’s angle [38, 39].

B. Local approximations

We are now in the position to test local approxima-
tions based on a free energy functional E =

∫
dxΓ(h, h′).

Such a formulation has the great practical advantage that
the equilibrium condition reduces to a second order dif-
ferential equation rather than a nonlocal integral equa-
tion. The standard approach based on a disjoining pres-
sure [7, 26] yields θµ = 0, independent of θY . We refer to
Appendix B for details. This is often interpreted in terms
of a precursor film, which naturally has h′ = 0, although
strictly speaking this is not necessary. Comparing to nu-
merical profiles of the nonlocal theory, we see that this
provides a good approximation for small contact angles.

The approximation clearly fails for large angles, for
which the profile is much closer to a straight wedge, and
θµ 6= 0. We therefore suggest an alternative local approx-
imation:

Γ(h, h′) = γ
(√

1 + h′2 − cos θY
)
f(h), (44)

which has perfect wedge solutions, i.e. θµ = θY . We
again refer to Appendix B for details. The numerical
solutions obtained in Sec. IV B appear to be in between
the straight wedge solutions and those from the standard
models with disjoining pressure. The approximation for
θµ in (31) has been obtained from interpolation between
these two local models. The advantage of the form (44)
is that it provides an internal selection of the contact
angle. This means that when applied to the nonequilib-
rium situation of a moving contact line, the solution is
self contained and no longer requires an additional con-
dition borrowed from equilibrium. It remains to be in-
vestigated how the local approximations compare to the
nonlocal theory in the dynamical case.

Let us conclude by noting that we have not been able
to come up with a self-consistent derivation of a local
approximation of the free energy for arbitrary θ. As sug-
gested in [8], this is perhaps not possible due to the in-
trinsically nonlocal character of the problem.
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APPENDIX A: CALCULATION OF Gll

We provide a graphical representation of the analy-
sis by Merchant and Keller [5] to compute Gll. Expres-
sion (26) can be seen as the integral over h, represented
schematically by the black dot moving along the inter-
face (Fig. 5b), of the potential energy at the interface
evaluated at the position of the black dot. This potential
itself is an integral over the entire liquid volume (light
gray zone) of the intermolecular potential. Note that by
considering ϕll we already integrated out the invariant
direction parallel to the contact line. Diagramatically,
we have represented the potential as the interaction of
the black dot with the dark grey rectangle, integrated
over all positions of the open square.

The trick is to compare the result for an arbitrary
shape that tends to a given angle θ (Fig. 5b), to that for
a perfect liquid wedge of same angle (Fig. 5c). The differ-
nce between the two cases can be expressed as an integral
over h (moving black dot) over the domain sketched in
Fig. 5d. This domain extends from the real interface
(solid line) to the plane of angle θ (dotted line). The dif-
ference is counted positively if the interface is below the
plane (light gray) and negatively otherwise (dark gray).
If we interchange the position of the solid dot and the
square dot, the potential energy due to the rectangle is
exactly the same, but with opposite sign (Fig. 5e). Since
both contributions are encountered through the double
integration, the total difference vanishes by antisymme-
try. This means that we can directly compute Gll by
considering the simple wedge geometry, which gives the
result (27) [5]. Note that this argument requires the as-
sumption that the interaction depends only on the dis-
tance between two points, but not on the spatial location
of the points. If the interaction were inhomogeneous, the
perfect antisymmetry would be broken.

APPENDIX B: LOCAL APPROXIMATIONS

The usual local approximation is to add the Laplace
pressure and the disjoining pressure, giving the equilib-
rium condition

− γκ+ Πdisj(h) = λ. (B1)

(a)

(d) (e)

(b) (c)x

h
θ θ

θθ

θ

FIG. 5: (a) Gll can be interpreted as the total force on a liq-
uid corner due to liquid-liquid interactions. We define h as
the distance to the solid surface. (b) Graphical representa-
tion of Gll as the potential at the interface at z = h, (black
dot), integrated over all h (moving the black dots along the
interface). The potential is decomposed as the contribution
of the dark grey rectangular zone, summed over all positions
of the square. (c) We compare the result for (b) to that for
a liquid wedge of angle θ. (d) The differce beteen (b) and
(c) is expressed by integration over a new domain (see text),
consisting of positive (light gray) and negative (dark grey)
contributions. (e) Inverting the two moving points, the con-
tribution is identical but with opposite signs.

This can be derived from the free energy

Γ1(h, h′) = γ
(√

1 + h′2 − 1
)

+γ(1−cos θY )f(h), (B2)

through the standard Euler-Lagrange description (see
Sec. II). The function f(h) is the integrated disjoining
pressure, renormalized such that f(0) = 0, f(∞) = 1.
The invariant corresponding to this free energy reads

G1 = γ

(
1

(1 + h′2)1/2
− 1
)

+ γ(1− cos θY )f(h), (B3)

so that the equilibrium condition G1 = 0 yields θµ = 0,
independent of θY .

For larger angles we suggest an alternative local ap-
proximation:

Γ2(h, h′) = γ
(√

1 + h′2 − cos θY
)
f(h), (B4)



10

which has a capillary pressure

Π2 = −γκf(h)− df

dh

(
1

(1 + h′2)1/2
− cos θY

)
(B5)

and a first integral

G2 = γ

(
1

(1 + h′2)1/2
− cos θY

)
f(h). (B6)

The equilibrium solution has θ = θY for any value of
h, indeed representing a straight wedge. In particular
θµ = θY .

The solution of the nonlocal equation appears to be
bounded by the local approximations obtained from Γ1

and Γ2. To estimate θµ, we therefore propose a linear
interpolation

θµ = νθµ,1 + (1− ν)θµ,2 = (1− ν)θY . (B7)

The weight ν can be estimated from comparison to the
pressure on a straight wedge of angle θY , Eq. (33), as
computed by Hocking [30]. Even though Hocking’s wedge
is not an equilibrium solution, it does provide the correct
nonlocal asymptotic disjoining pressure for h � `. For
the second local approximation one finds Π2 = 0 for a
wedge of θY , while the first approximation asymptotically
gives (33) without the contribution F (θ). We therefore
equate

ν

(
1− csl

cll

)
=
(

1− csl
cll
− F (θ)

)
. (B8)

Combined with (B7), this gives prediction (31) shown in
Fig. 3.

APPENDIX C: NUMERICAL SOLUTION OF
DROP PROFILES

This appendix provides details on the numerical resolu-
tion of equilibrium drop shapes. We consider the effective
interaction

φ̃αβ(r) =
{
−cαβ/r6 for r ≥ `
−cαβ/`6 for r < `.

(C1)

The constants csl and cll can be related to the surface
tensions, using (22):

γ =
3πcll
8`2

(C2)

γ(1 + cos θY ) =
3πcsl
4`2

. (C3)

1. Algorithm

We perform the following iterative procedure for h(x)
in order to find the equipotential surface. At step n,

the (discretized) shape of the drop is noted hn(x). The
potential corresponding to this shape, Πn(x), (see the
second part of the appendix). The shape is evolved ac-
cording to the equation:

hn+1(x) = hn(x) + δ (< Πn > −Πn(x)) (C4)

where < Πn > is the average potential. The parameter δ
is fixed at a value sufficiently small to ensure numerical
stability. The positions of the contact lines are evolved
to ensure the mass conservation between steps: the drop
spreads when the potential at the contact line is smaller
than its average value; otherwise, it shrinks.

In practice, we have observed that the result becomes
independent of the discretisation when the mesh size be-
comes lower than 0.05 (= 0.03 for the figures shown here).
The convergence of the calculation, starting from a spher-
ical cap takes approximately 300 steps (1000 for the fig-
ures shown here). The spatial variations of the potential
then reach the numerical noise level.

2. Evaluation of the pressure

We evaluate the pressure according to (17). The sec-
ond integral is constant and can thus be ignored. As the
effective interaction is defined over two domains, we need
to to separate zones of integration into those that have
r ≥ ` and r < ` respectively. First consider the solid-
liquid interaction, i.e. the third integral of (17). If h ≥ `,
the integral is easily performed as

Πsl(h) =
∫ π/2

0

dθ

∫ 2π

0

dϕ

∫ +∞

h/ cos θ

r2 sin θφ̃sl(r)dr

= −πcsl
6h3

. (C5)

For h < `, the domain has to be separated into various
regions. Introducing cosα = h/`, we get for h < `:

Πsl(h) =

−2πcsl
∫ π/2

α

dθ sin θ
∫ +∞

h/ cos θ

dr/r4

−2πcsl
∫ α

0

dθ sin θ

(∫ `

h/ cos θ

r2dr/`6 +
∫ +∞

`

dr/r4

)
,

(C6)

which reduces to (for h < `),

Πsl(h) = −πcsl
6`3

(
8− 9(h/`) + 2(h/`)3

)
. (C7)

This potential Πsl is indeed continuous at h = `, and it
obeys the property:∫ ∞

0

dhΠsl(h) =
3πcsl
4`2

= γsl − γ − γsv = −γ(1 + cos θY )

(C8)
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FIG. 6: (a) The interaction potential at the black point, due
to the liquid zone at the same x as the open square (rectangu-
lar zone), is decomposed into the two regions shown in light
and dark gray. (b) The elementary configuration allowing to
express the potential due to the liquid-liquid interaction is its
contribution due to a band of liquid of height h at a distance
∆ from the point considered.

Provided that we realise that γll = 0, the same formula
can be applied to the case of the liquid-liquid and solid-
solid interactions:

cll =
8γ`2

3π
(C9)

The liquid-liquid potential can be expressed as:

Πll =
∫ b

a

dx′
∫ ∞
−∞

dy′
∫ h(x′)

0

φ̃ll(r)dz′ (C10)

with r2 = (x′ − x)2 + y′2 + (z′ − h(x))2. The integral
over z can be decomposed into two contributions of the
same form, as shown in Fig. 6). Introducing the energy
of interaction ζ(∆, h) between a point and a rectangular
zone of height h, infinite in the transverse direction, at a
distance ∆,

ζ(∆, h) =
∫ ∞
−∞

dy′
∫ h)

0

φ̃ll

(√
∆2 + y′2 + z′2

)
dz′

(C11)
we get:

Πll(x) =
∫ ∞
−∞

d∆ (ζ(∆, h(x)) + ζ(∆, h(x+ ∆)− h(x)))

(C12)

Importantly, ζ is defined as an odd function of h
(ζ(∆,−h) = −ζ(∆,−h)) but an even function of ∆.
In the situation where ∆ > `, we introduce cosα =(

1 + h2

∆2 cos2 ϕ

)−1/2

and get:

ζ = −16γ`2

3π

∫ π/2

0

dϕ

∫ α

0

cos6 θ

∆6
∆2 sin θ

cos3 θ
dθ (C13)

It simplifies into:

ζ

γ
= − 2h2 + 3∆2

3∆4 (h2 + ∆2)3/2
`2h for ∆ > ` (C14)

Now for ∆ < `, there is a circular screening zone of radius√
`2 −∆2. First situation, the screening zone is smaller

than the height:

ζ = −16γ`2

3π

∫ π/2

0

dϕ

[∫ ∆/`

cosα

x6

∆6

∆2dx

x3
+
∫ 1

∆/`

1
`6

∆2dx

x3

]
(C15)

For `2 > ∆2 > `2 − h2, it simplies into:

ζ

γ
= − (2h2 + 3∆2)`2h

3∆4 (h2 + ∆2)3/2
+

2`2

3∆4
+

4∆2

3`4
− 2
`2

(C16)

Second situation, the screening zone radius
√
`2 −∆2 is

larger than the height h. We define cosϕ0 = h/
√
`2 −∆2

and get:

ζ = −16γ`2

3π

[∫ ϕ0

0

dϕ

∫ 1

cosα

1
`6

∆2dx

x3

+
∫ π/2

ϕ0

dϕ

(∫ ∆/a

cosα

x6

∆6

∆2dx

x3
+
∫ 1

∆/a

1
`6

∆2dx

x3

)]

For `2 − h2 > ∆2, It finally simplies into:

ζ

γ
=

2h
√
`2 −∆2 − h2

3 (∆2 + h2)π

(
1

∆2
−

4
(
∆2 + h2

)
`4

)

−
2`2h

(
3∆2 + 2h2

)
sin−1

(√
∆2 + h2

)
3∆4 (∆2 + h2)3/2

π
(C17)

+
4

3π

(
`2

∆4
− 3
`2

+
2∆2

`4

)
sin−1

(
h√

`2 −∆2

)
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