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The effect of the exchange-correlation potential in ab initio electron transport calculations is
investigated by constructing optimized effective potentials (OEP) using different energy functionals
or the electron density from second-order perturbation theory. We calculate electron transmission
through two atomic chain systems, one with charge transfer and one without. Dramatic effects
are caused by two factors: changes in the energy gap and the self-interaction error. The error in
conductance caused by the former is about one order of magnitude while that caused by the latter
ranges from several times to two orders of magnitude, depending on the coupling strength and
charge transfer. The implications for accurate quantum transport calculations are discussed.

PACS numbers: 73.40.Cg, 72.10.-d, 85.65.+h

The calculation of electron transport through sin-
gle molecules directly from quantum mechanics is cur-
rently being intensively investigated for both funda-
mental physics and applications in molecular electron-
ics [1]. In such a calculation, properties of the par-
ticular molecule must be incorporated into an accu-
rate transport model. A frequently used theoretical ap-
proach is the single-particle Green function (GF) method
[2] combined with a density functional theory (DFT)
[3] electronic structure calculation. In this approach
[4, 5, 6, 7, 8], the atomic structure of the entire lead-
molecule-lead system is taken into account explicitly
[7, 8]. Despite its advantages and high efficiency for large
systems, several aspects of this approach remain prob-
lematic [9, 10, 11, 12, 13, 14]. Here we address one aspect:
we show that an improved description of electron-electron
exchange and correlation within Kohn-Sham DFT dra-
matically changes the predicted conductance.

In the standard GF+DFT approach, all electron-
electron interaction effects are incorporated through
the self-consistent DFT calculation, while the transmis-
sion calculation is simply single-particle. Consequently,
as emphasized by others [11, 13], exchange-correlation
corrections to the expression for the current are ne-
glected. But even before considering those corrections,
self-interaction error (SIE) is a potentially serious prob-
lem within the GF+DFT method itself [3, 12, 14]: it
leads to an overly extended charge distribution and,
therefore, inaccurate molecule-lead charge transfer, espe-
cially for weakly coupled systems. In ab initio transport
calculations, SIE will directly affect the position of the
chemical potential in the molecular HOMO-LUMO gap
(“gap” for short), as well as the broadening of the HOMO
and LUMO orbitals, possibly producing large errors in
the conductance [12]. It is thus critical to improve the xc
potential so as to eliminate the effects of SIE. Another
well-known problem with DFT is that the predicted gap
is too small, often leading to a significant overestimation

of the conductance. The solution to this problem relies
on a quasiparticle calculation or the construction of a
SIE-free functional with a nonlocal xc potential. In this
paper, we focus on eliminating the SIE and revealing the
magnitude of the errors caused by the two problems.

One way to eliminate SIE is to use Hartree-Fock (HF)
theory: the exact treatment of exchange eliminates SIE.
However, because HF involves a single determinant and
lacks dynamical screening, the LUMO orbital is not phys-
ically meaningful and the gap is too large for extended
systems and large molecules. Hybrid functionals, like
B3LYP [15, 16], are a possible compromise: these mix the
HF exchange potential with the local effective potential
obtained from the local density approximation (LDA) or
generalized gradient approximation. Although B3LYP is
a significant improvement over LDA for almost all molec-
ular systems, SIE still remains [17].

The optimized effective potential (OEP) approach is a
direction for improving DFT calculations [18], in which
the (local) effective potential is expressed as an implicit
density functional in terms of the Kohn-Sham orbitals.
OEP enables one to construct a local xc potential from
any energy functional, such as the HF exact exchange
(EXX) or B3LYP functionals, or from an electron den-
sity obtained from a more accurate theory [19], such
as second-order many-body perturbation theory (MP2).
Most OEP calculations to date use the HF energy func-
tional (EXX-OEP). This simplest exchange-only OEP
approach improves systematically the electronic struc-
ture of various semiconductors [20]: the band gaps are
significantly improved over those of both LDA and HF,
although the underlying reason is still open [21, 22].

In this paper, we implement the OEP approach in
DFT-based ab initio transport calculations and inves-
tigate, for the first time, the effect of different xc

potentials—LDA, HF, EXX-OEP, B3LYP, B3LYP-OEP,
and MP2-OEP. Our purpose in using OEP is to con-
struct a local xc potential which is SIE free (EXX-OEP
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FIG. 1: Schematic view of the atomic chain systems cal-
culated. The extended molecule is indicated by the dashed
frame. The atomic separations in the lead, molecule, and
between them are indicated. Note that there is no charge
transfer in system A while there possibly is in system B.

and MP2-OEP), allowing us to assess the significance of
the SIE and the energy gap in transport. We calculate
electron transmission through two simple systems con-
sisting of atomic chains (Fig. 1), one in which molecule-
lead charge transfer does not occur (system A) and one
(system B) which does show such transfer.

The infinite open system is divided into three parts:
left and right leads, and device region. The latter
includes large parts of the leads to accommodate the
molecule-lead interaction and so achieve good conver-
gence. The electronic structure calculations are carried
out in a cluster geometry [23], both for the traditional xc
potentials – LDA, HF exchange, and B3LYP – and for
MP2. In all these calculations, the wave function is ex-
panded in the Gaussian basis set 6-311G**. For system
A, the cluster is H128; for B, it is H56–Li6–H56. Both
are much larger than the device region (Fig. 1) to ensure
that the middle part of the left and right H-chain has the
proper bulk lead properties. Because our focus is the de-
vice region, the electronic structure of the left and right
leads is described by LDA in all the calculations.

The OEP approach using HF and B3LYP energy func-
tionals has been implemented in the efficient way de-
scribed in Ref. 18. For MP2-OEP, we find the OEP from
the electron density given by an MP2 calculation [19].
In our calculations, the OEP [veff(r)] is expanded in the
6-311G** Gaussian basis set. (Test calculations using
cc-pvdz and cc-pvtz show only minor difference.)

The self-consistent veff(r) determines the optimized
Hamiltonian HD of the device region. In terms of
the basis states {φi(r)} with overlap matrix S, the re-
tarded Green function of the device region is GD(E) =
[

E+
SD − HD − ΣL(E) − ΣR(E)

]

−1
, where ΣL,R(E) is

the self-energy for the semi-infinite left or right lead. The
electron transmission coefficient at any energy, T (E), is
calculated from the Green function, and the conductance,
G, then follows from a Landauer-type relation [2, 8].

The transmission through system A is shown in Fig. 2
for both a typical short molecule-lead separation (1.2 Å)
and a longer separation (1.8 Å) corresponding to weaker
coupling. Because there is no molecule-lead charge trans-

FIG. 2: (color online) Transmission through system A with
(a) 1.2 Å and (b) 1.8 Å molecule-lead separation. Results for
six functionals with different xc potentials are shown, and the
equilibrium conductance is listed in the legend.

fer, the Fermi energy is right at the middle of the gap.
For both values of the molecule-lead separation, the re-
sults divide into two classes: the HF result and the oth-
ers. The very small HF conductance is related to the gap
being much larger.

Let us first look at the SIE issue by dividing the re-
sults in the second class into three groups: with SIE
(LDA), partially with SIE (B3LYP and B3LYP-OEP),
and without SIE (EXX-OEP and MP2-OEP), denoted
hereafter by groups I, II, and III, respectively. From
Fig. 2, increased SIE leads to increased conductance:
Ggroup I > Ggroup II > Ggroup III. This trend follows from
noting that SIE overly broadens the HOMO and LUMO
states. It is clear in Fig. 2 that this trend is dominated
by the SIE regardless of the gap behavior; for example,
the B3LYP gap is noticeably larger than the MP2-OEP
gap but the MP2-OEP conductance is much smaller than
the B3LYP one. This indicates that within DFT the SIE
issue, rather than the gap issue, is more important in de-
termining the conductance. Thus, EXX-OEP and MP2-
OEP should be a significant improvement over the other
xc potentials for DFT-based transport calculation.

For smaller separation (stronger coupling), Fig. 2(a),
all the xc potentials give a similar conductance – the
maximum difference (between LDA and EXX-OEP) is
only about a factor of 2. This is understandable be-
cause SIE mainly affects systems containing localized
electrons. As the coupling becomes weaker, Fig. 2(b),
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FIG. 3: (color online) Electric field induced electron transfer
(change in Q) between two H8 clusters separated by 8 Å (as
shown in the inset). For such a large separation, the electron
transfer should be an integer. For HF, this is the case; how-
ever, LDA and B3LYP calculations show a substantial SIE.

the peaks in T (E) become sharper and the conductance
decreases. Note that the spread in conductance values
becomes larger: now the maximum difference (between
LDA and EXX-OEP) is about a factor of 10.

To show the effect from the gap, we first examine
the real transport gap of the H16 molecule by calcu-
lating the ionization potential (I) and electron affinity
(A) using the delta self-consistent field method (∆SCF)
and the outer valence Green function method (OVGF)
[24]. The result for I−A is ∆SCF(HF, LDA, B3LYP)=
4.7eV, 6.0eV, 5.9eV, and OVGF= 6.6eV. Note that all
the results are substantially smaller than the 8eV HF
gap, indicating that it is too large. In particular, the
large difference between ∆SCF(HF) and HF shows that
HF does not give a good description for this long-chain
molecule because of the lack of screening/correlation, de-
spite the fact that it works well for very small molecules
(the screening is very weak there, see the database at
http://srdata.nist.gov/cccbdb). On the other hand, I−A
is significantly larger than all the DFT gaps (2 ∼ 3 eV)
in the second class, indicating that they are too small
(EXX-OEP does not work well here). A rough estima-
tion of the effect of the gap is the difference in conduc-
tance between EXX-OEP and HF, both of which lack
correlation and are SIE free. In Fig. 2, this difference is
about one order of magnitude for both strong and weak
coupling; because the HF gap is too large, this rough
estimation is probably an overestimate.

So far we have discussed the SIE and gap issues for the
system without molecule-lead charge transfer, where SIE
causes overly broadened HOMO and LUMO states. For
systems with charge transfer, SIE is a more significant
problem because it may lead to too much charge trans-
fer, particularly in weakly coupled systems. To directly
demonstrate this, we calculate, by using Mulliken popu-
lation analysis, the charge transfer between two weakly
coupled H atomic chains induced by a strong electric field
(see Fig.3). Each chain contains 8 H atoms separated by

FIG. 4: (color online) Transmission through system B with
(a) 2.8 Å and (b) 4.0 Å molecule-lead separation for six energy
functionals with different xc potentials. In the legend, the
equilibrium conductance and the charge transfer from the Li
cluster to the H-chain are listed. The SIE-infected functionals
place the chemical potential near a molecular resonance, while
the SIE-free functionals place it near the middle of the gap.

1 Å, and the separation between the two chains is 8 Å.
Because of the very large separation, the physical elec-
tron transfer must be an integer. In HF, the electron
transfer is indeed always an integer, showing that it is
SIE free. For LDA, the result is almost linear in the elec-
tric field (full SIE), while B3LYP significantly improves
upon LDA but is still not accurate (partial SIE).

The transmission through system B, in which there
may be substantial charge transfer, is shown in Fig. 4 for
two values of the molecule-lead separation. Molecule-lead
charge transfer determines the position of the chemical
potential (fixed in the lead) in the molecular gap, and
therefore the resulting conductance. The charge transfer
and conductance are listed in the figure. Note the strik-
ingly different behavior of the two groups of function-
als: for functionals with SIE (LDA, B3LYP, and B3LYP-
OEP), the chemical potential enters the HOMO reso-
nance because the charge transfer is large, while for func-
tionals without SIE (HF, EXX-OEP, and MP2-OEP), the
chemical potential is at the middle of the gap because the
charge transfer is near zero. Consequently, the conduc-
tance given by these two groups of functionals are very

http://srdata.nist.gov/cccbdb


4

different, up to three orders of magnitude.
For the smaller separation, 2.8 Å in Fig. 4(a), the func-

tionals with SIE give a charge transfer of about 0.5 e, and
the resulting conductance is around 0.8G0. When the
separation is increased to 4.0 Å [panel (b)], the peaks be-
come sharper, and the conductance in all cases decreases
by more than an order of magnitude. In contrast, the
charge transfer resulting from the SIE functionals de-
creases only slightly, showing clearly that it is an arti-
fact of SIE. Despite the quantitative differences between
the stronger and weaker coupling, the broad features in
the two cases are the same: the biggest step in conduc-
tance (a factor of ∼30) is between the SIE functionals
and MP2-OEP followed by two smaller decreases, first
from MP2-OEP to EXX-OEP and then further to HF,
each by about a factor of 10. Here the effect from the
gap is also about one order of magnitude, from comparing
EXX-OEP and HF as for system A.
While it is clear, in terms of SIE, that the EXX-

OEP and MP2-OEP calculations improve significantly
the standard GF+DFT calculation, it is not obvious
which one of the SIE-free functionals – HF, EXX-OEP,
or MP2-OEP – gives a conductance closest to the truth.
MP2-OEP provides a near-exact local effective potential
for Kohn-Sham DFT, but its finite xc potential disconti-
nuity is not included in the gap. As a result, its gap is too
small. EXX-OEP gives a slightly larger gap which, how-
ever, is still too small, and correlation is absent. HF, on
the other hand, yields too large a gap, and correlation is
also absent. Therefore, in terms of transport, EXX-OEP
and MP2-OEP probably overestimates the conductance
while HF probably underestimates it. The error seems
to be about a factor of 10.
Finally, we relate the present calculation to the more

rigorous time-dependent DFT formalism (TDDFT) [25,
26]. In principle, unlike DFT, TDDFT can treat the elec-
tronic structure of excited states [27]. A Landauer-like
form for the steady-state current can be derived from
TDDFT [26]: in the linear-response regime (zero bias),
the current is a Kohn-Sham term plus a correction from
dynamical xc effects. The effective potential in our cal-
culation can be regarded as the long time limit of that
in the Kohn-Sham term, which is the major part of the
current. The missing dynamical xc effect is an open issue
studied in [11, 13]. Our results on the effects of the xc

potential are helpful for improving TDDFT calculations
within the adiabatic approximation.
In summary, by implementing the OEP approach in

an ab initio transport calculation, we have systematically
investigated the effect of different local and nonlocal xc
potentials. Dramatic effects, up to orders of magnitude,
originate from two factors – the SIE and the energy gap.
The former will dominate for systems with charge trans-
fer and can be eliminated by using a SIE-free OEP po-
tential, while the latter is difficult to treat within DFT
and leads to a typical overestimation of the conductance

by about a factor of 10. Possible solutions are either to
perform transport calculations using quasiparticle states,
like those in GW approximation, or to develop SIE-free
energy functionals without the discontinuity problem.
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