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In quantum-mechanical/molecular-mechanical �QM/MM� treatment of chemical reactions in
condensed phases, one solves the electronic Schrödinger equation for the solute �or an active site�
under the electrostatic field from the environment. This Schrödinger equation depends
parametrically on the solute nuclear coordinates R and the external electrostatic potential V. This
fact suggests that one may use R and V as natural collective coordinates for describing the entire
system, where V plays the role of collective solvent variables. In this paper such an �R ,V�
representation of the QM/MM canonical ensemble is described, with particular focus on how to treat
charge transfer processes in this representation. As an example, the above method is applied to the
proton-coupled electron transfer of a ubiquinol analog with phenoxyl radical in acetonitrile solvent.
Ab initio free-energy surfaces are calculated as functions of R and V using the reference interaction
site model self-consistent field method, the equilibrium points and the minimum free-energy
crossing point are located in the �R ,V� space, and then the kinetic isotope effects �KIEs� are
evaluated approximately. The results suggest that a stiffer proton potential at the transition state may
be responsible for unusual KIEs observed experimentally for related systems. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2737048�

I. INTRODUCTION

Accurate ab initio treatment of chemical reactions in so-
lution and biological systems is a challenging task in theo-
retical chemistry. A very useful approach for this purpose are
the so-called quantum-mechanical/molecular-mechanical
�QM/MM� methods, where one treats the electronic structure
of the solute �or an active site� with quantum-chemical meth-
ods and the rest of the system with empirical force fields. In
the former calculation, one solves the following electronic
Schrödinger equation for the solute:

�Ĥ0 + Q̂ · V�� = E� , �1�

where V is the external electrostatic potential acting on sol-
ute atomic sites �here, we employ a site-site representation
for solute-solvent electrostatic interaction; see Sec. II�. The
above Schrödinger equation depends parametrically on the
solute nuclear coordinates �denoted as Ru� and the external
potential V. This fact suggests that one may use Ru and V as
natural collective coordinates for describing the entire sys-
tem, where V plays the role of collective solvent coordinates.
This type of idea has been utilized by several authors in the
literature,1–8 including recent work by Lu and Yang6,7 for
constructing a reaction-path potential for enzyme reactions,
and also by Yamazaki and Kato8 for locating conical inter-
sections of photochemical reactions in solution. In this paper
we describe such an �Ru ,V� representation of the canonical
ensemble based on the QM/MM framework, with particular
emphasis on its kinetic aspects. The central quantity here is a

V-resolved free energy, F�Ru ,V�, which relates to the prob-
ability density for observing a particular value of the solvent
electrostatic potential V. By construction, this V-resolved
free energy can be separated neatly into the electronic energy
of the quantum solute and the statistical self-energy �or free-
energy cost� of the classical solvent. Similar decomposition
of the nonequilibrium solvation free energy is well-known
for the quantum solute embedded in a dielectric
continuum.9–13 Our particular interest here is how to describe
charge transfer reactions in this �Ru ,V� representation. To
this end, we discuss in detail how one can transform the
standard rate expressions for nonadiabatic electron transfer
�including the mixed quantum/classical case� from Cartesian
to the �Ru ,V� representation. Interestingly, the resulting rate
expressions take a form very similar to those in Cartesian
space, and also provide some rationale for quantizing a pro-
ton directly on a classical free-energy surface �Sec. II D 2�.

Our second aim is to apply the above method to a
proton-coupled electron transfer �PCET� reaction. PCET usu-
ally refers to a process where an active electron transfers
between two different � orbitals of electron donor-acceptor
groups, while a proton transfers between proton donor-
acceptor sites due to the associated change in the diabatic
potential energy �see Refs. 14 and 15 for recent reviews�.
Concerted PCET reactions can proceed more preferentially
than single proton or single electron transfer due to a lower
activation barrier of the former.14 This type of reaction is
thought to play an important role in many biological pro-
cesses, including photosynthesis, respiration, and DNA rep-
lication and repair.15 In order to avoid inherent complexity of
biological processes, model synthetic systems have been in-
vestigated to obtain mechanistic insights into PCET
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reactions.15 Theoretical studies are still limited compared to
the usual hydrogen transfer reactions, but representative
work includes the quantum-chemical calculations by Mayer
et al.16 and by Skone et al.17 that revealed an important dif-
ference in electronic structure between PCET and hydrogen
atom transfer �HAT� pathways, and the reaction rate theory
developed by Cukier,18–20 and Soudackov and
Hammes-Schiffer21–23 based on a dielectric continuum model
�see also a recent molecular-dynamics based approach in
Ref. 24�.

In this paper we study the PCET reaction of a ubiquinol
analog with phenoxyl radical in acetonitrile using the V rep-
resentation mentioned above. Quinone and quinol are
“shuttles” of electrons and protons over different compo-
nents of cell membrane, and ubiquinol is a doubly reduced
form of ubiquinone that can be found ubiquitously in mam-
malian cells. Our motivation for choosing this particular sys-
tem is twofold: first, Mayer et al.16 predicted that the hydro-
gen exchange reaction between phenol and phenoxyl radical
in the gas phase proceeds via PCET rather than HAT mecha-
nism due to the lower activation barrier of the former. Sec-
ond, a recent experiment by Cape et al.25 revealed that the
apparent activation energy �G‡ for the PCET reaction of
ubiquinol with a poly-pyridyl ruthenium complex in acetoni-
trile exhibits an inverted relation for the proton �H� and deu-
teron �D� transfer, namely �G‡�H���G‡�D�. An analogous
inverted kinetic isotope effect �KIE� was also observed by
Nagaoka et al.26 for the reaction of ubiquinol with a toco-
pherol derivative in ethanol �a model reaction of antioxida-
tive radical trapping in biomembrane�. The primary mecha-
nism for these unusual KIE is still unknown, though relevant
theoretical arguments have been made in the literature.27

The outline of this paper is as follows: In Sec. II we
describe the �R ,V� representation of the QM/MM canonical
ensemble and consider how to treat charge transfer processes
in this representation. Approximate ways for calculating
V-resolved free energy are discussed in Appendix A. In Sec.
III we apply the above method to the PCET reaction of a
ubiquinol complex in solution, where we utilize the reference
interaction site model self-consistent field �RISM-SCF�
�Refs. 28 and 29�/second-order Møller-Plesset perturbation
�MP2� method. In Sec. IV we conclude by mentioning some
technical issues to be addressed.

II. CHARGE TRANSFER RATES IN THE EXTERNAL-
POTENTIAL REPRESENTATION

A. Ab initio treatment of the solute in solution

In this paper we assume a QM/MM model for the solu-
tion with a nonpolarizable MM force field for the solvent.
Then, the potential energy of the total system may be written
as

U�R ;�� = ���Ĥ0��� + Q��� · V�R�
+ Uuv

LJ�R� + Uvv�Rv� , �2�

where we denote the Cartesian coordinates of the solute, sol-
vent, and the total system as Ru, Rv, and R = �Ru ,Rv�, re-
spectively. Uuv

LJ�R� is the short-range solute-solvent interac-

tion �typically of the Lennard-Jones form� and Uvv�Rv� is the
potential energy of the bulk solvent �including both short-

and long-range interactions�. Ĥ0 and � are the solute elec-
tronic Hamiltonian in the gas phase and the solute electronic
wave function, respectively. �For notational simplicity, we

will not denote the parametric dependence of Ĥ0 and � on
Ru explicitly.� Note that � in Eq. �2� is subject to the elec-
trostatic field produced by the solvent, which is denoted here
as

V�R� = �V�Ru,1;Rv�, . . . ,V�Ru,N;Rv�� , �3�

with

V�x ;Rv� = �
s

solvent
qs

�x − Rv,s�
, �4�

where 	Ru,k
 and 	Rv,s
 are solute and solvent atomic sites,
respectively, and 	qs
 is partial charges associated with the
solvent sites. The external potential V�R� is coupled with
partial charges of the solute, Q���= �Q1��� , . . . ,QN����, as
in Eq. �2�, where the partial charges are functionals of the
solute wave function �. In this paper we employ an
electrostatic-potential-based definition of partial charges,
which allows a compact operator notation as30–33

Q��� = ���Q̂��� , �5�

where Q̂ is a type of one-electron operator that generates
partial charges on solute atomic sites. To proceed further, it is
convenient to define a solvated electronic Schrödinger equa-
tion of the form

�Ĥ0 + Q̂ · V����Ru,V�� = E�Ru,V����Ru,V�� , �6�

where V� is an arbitrary input parameter �in the same sense
as the solute nuclear coordinates Ru�. E�Ru ,V�� will be
called the solvated electronic energy of the solute, and it
represents the sum of the solute bare electronic energy and
the solute-solvent electrostatic coupling, i.e.,

E�Ru,V�� = ���V���Ĥ0���V��� + Q���V��� · V�, �7�

where we abbreviate ��Ru ,V�� as ��V��. The solute wave
function under the instantaneous electrostatic field from the
solvent V�R� can then be written as ��V�R��, and the
QM/MM potential energy in Eq. �2� becomes

U�R ;��V�R��� = E�Ru,V�R�� + Uuv
LJ�R� + Uvv�Rv� .

�8�

Note that Uuv
LJ�R� and Uvv�Rv� do not depend on the solute

wave function in the present model.

B. V-resolved free energy

The central quantity in the following discussions is the
V-resolved free energy, F�Ru ,V��, which is defined by in-
serting the resolution of unity 1=�dV���V�−V�R�� into the
�configurational� partition function as34
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Z =� dRu� dRve−�U�R;��V�R���

= Zv� dRu� dV�e−�F�Ru,V�� , �9�

with

e−�F�Ru,V�� =
1

Zv
� dRve−�U�R;��V�R�����V� − V�R�� ,

�10�

where Zv is the partition function of the bulk solvent,35 Zv
=�dRv exp�−�Uvv�Rv��. The above F�Ru ,V�� may be
viewed as the solvation free energy of the quantum solute
with a fixed geometry Ru under the additional constraint that
V�R�=V�. Due to the presence of ��V�−V�R��, one can
replace V�R� in Eq. �10� with V� and extract the solvated
electronic energy E�Ru ,V�� as

e−�F�Ru,V�� = e−�E�Ru,V�� 1

Zv
� dRve−�U0�R���V� − V�R�� ,

�11�

where U0�R� is the short-range solute-solvent interaction
plus the bulk solvent potential,

U0�R� = Uuv
LJ�R� + Uvv�Rv� . �12�

By introducing the solvent self-energy S0�Ru ,V�� de-
fined by

e−�S0�Ru,V�� =
1

Zv
� dRve−�U0�R���V� − V�R�� , �13�

one can rewrite Eq. �11� compactly as

F�Ru,V�� = E�Ru,V�� + S0�Ru,V�� . �14�

That is, F�Ru ,V�� is determined by the balance of two terms,
namely �i� the electronic energy E�Ru ,V�� of the quantum
solute that includes all the solute-solvent electrostatic inter-
actions, and �ii� the self-energy S0�Ru ,V�� that describes the
free-energy cost for the classical solvent to produce V�
around an uncharged solute. In Appendix A we describe ap-
proximate ways for calculating F�Ru ,V� based on the
Gaussian fluctuation model for the solvent.1,2

C. Electron transfer rate in the classical nuclear limit

We now transform the standard rate expression for non-
adiabatic electron transfer �ET� in the classical nuclear limit
from Cartesian to the �Ru ,V�� representation �see Sec. II D
for the quantization of light atoms�. The diabatic wave func-
tions involved in the ET reaction are denoted as �I and �II,
with their electronic coupling given by Vel. We calculate the
transition rate from �I to �II with the following golden rule
expression:36

kET = �
1

ZI
� dRe−�UI�R���UI�R� − UII�R�� , �15�

where UK�R�=U�R ;�K�V�R��� �K=I , II� is the potential
energy corresponding to each diabatic state, ZI is the reactant

partition function ZI=�dR exp�−�UI�R��, and � is the pre-
factor given by �2� /��Vel

2 . Here, the nuclear dependence of
Vel has been neglected �the Condon approximation�. In the
above golden rule approximation, electronic transitions occur
only on the crossing seam between diabatic potential-energy
surfaces, namely UI�R�=UII�R�. The usual method for
evaluating Eq. �15� is to insert the resolution of unity 1
=�d�U���UI�R�−UII�R�−�U�� into the integrand of Eq.
�15� to obtain37–44

kET = �
1

ZI/Zv
� d�U����U��e−�GI��U�� , �16�

where the energy-gap free-energy GK��U�� for each diabatic
state �K=I , II� is defined by

e−�GK��U�� =
1

Zv
� dRe−�UK�R���UI�R� − UII�R� − �U�� .

�17�

The above free energy can be evaluated using the standard
histogram method, and in many cases GK��U�� becomes a
quadratic function of �U� to a very good approximation.
Using the relation GI��U��=GII��U��+�U� that holds rig-
orously by definition, one can rewrite Eq. �16� as

kET = �
1

ZI/Zv
� d�U�e−�GI��U��

	��GI��U�� − GII��U��� , �18�

which allows an interpretation that electron transfer occurs at
the crossing point of two free-energy curves, GI��U�� and
GII��U��.

One can proceed in a similar manner when one chooses
the solvent electrostatic potential V�R� as collective solvent
coordinates. That is, one inserts the resolution of unity as

kET = �
1

ZI
� dR� dV�e−�UI�R�

	��UI�R� − UII�R����V� − V�R�� , �19�

and, using the following relation �cf. Eq. �8��:

�UI�R� − UII�R��V�R�=V� = EI�Ru,V�� − EII�Ru,V�� ,

�20�

one rewrites Eq. �19� as

kET = �
1

ZI/Zv
� dRu� dV�e−�FI�Ru,V��

	��EI�Ru,V�� − EII�Ru,V��� , �21�

where EK�Ru ,V�� and FK�Ru ,V�� are diabatic counterparts
of E�Ru ,V�� and F�Ru ,V�� defined in the previous section.
The matching condition of the total potential energies in Eq.
�15� is thus recast into that of the solvated electronic ener-
gies, EI=EII. One can further rewrite the above equation as
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kET = �
1

ZI/Zv
� dRu� dV�e−�FI�Ru,V��

	��FI�Ru,V�� − FII�Ru,V��� , �22�

by adding the self-energy term S0�Ru ,V�� to both EI and EII

in the delta function �note that the self-energy does not de-
pend on �K�. The last equation is interesting in that the
electronic transition could be viewed as occurring between
two free-energy surfaces, FI and FII, in the reduced �Ru ,V��
space. Free-energy-based expressions such as Eq. �22� may
be useful when one wishes to avoid explicit reference to the
underlying potential energy �e.g., when one invokes an im-
plicit solvent model�. Of course, this does not mean that one
can unconditionally interpret a free energy as an effective
potential energy. For example, it is a highly nontrivial matter
whether or under what condition one may quantize a proton
directly on a classical free-energy surface �see Sec. II D 2�.

D. Proton-coupled electron transfer rate

When light atoms play important roles in a reaction, e.g.,
in the case of proton-coupled electron transfer �PCET�, it is
desirable to take appropriate account of nuclear quantum ef-
fects. A useful starting point to that end is the following
mixed quantum-classical rate expression �again within the
golden rule approximation�:36

kET = �
1

ZI
�
m

�
n
� dR̃e−�UIm�R̃��Tmn�R̃��2

	��UIm�R̃� − UIIn�R̃�� , �23�

where R̃ is the classical �Cartesian� coordinates of the entire

system except for the proton, and UKl�R̃� �K=I , II� is the
eigenenergy of the following nuclear Schrödinger equation
for the proton:

�T̂p + UK�R��
Kl�rp;R̃� = UKl�R̃�
Kl�rp;R̃� . �24�

Here, UK�R� is the classical diabatic potential energy, rp is

the �three-dimensional� proton coordinates, and T̂p is the ki-

netic energy operator for rp. Tmn�R̃� is the Franck-Condon

factor given by Tmn�R̃�= �
Im�R̃��
IIn��R̃��. The rate expres-
sion in Eq. �23� describes the sum of transitions from the mth
reactant vibronic state to the nth product vibronic state. Our
goal in this section is to transform this rate expression from
Cartesian to the V representation, as carried out in Sec. II C.
In what follows, we first discuss a rigorous �but somewhat
cumbersome� transformation and then proceed to a more ap-
proximate �thus much simpler� method for practical pur-
poses.

1. Rigorous transformation using the discrete
variable representation

In order to transform Eq. �23� rigorously to the
V-representation, it is convenient to go back to the original
golden rule expression that underlies Eq. �23� �i.e., that be-

fore taking the classical limit of R̃�,

kET = �
1

QI
�

a
�

b

e−�WIa���Ia��IIb���2��WIa − WIIb� , �25�

where �Kl and WKl are the eigenpair of the nuclear

Schrödinger equation in the entire R space, i.e., ĤK�Kl

=WKl�Kl with ĤK= T̂R+UK�R�. QI is the reactant partition
function, QI=�ae−�WIa. It is easy to rewrite the above equa-
tion to a time-dependent form,

kET = �
1

QI
� dt

2��
trR�e−�ĤIeiĤIIt/�e−iĤIt/�� . �26�

We then take the classical limit of R̃ via the following
replacement:43,45,46

trR → trp� � dP̃dR̃

�2���L , �27a�

ĤK → T̂p + TR̃ + UK�R� , �27b�

where trp is the quantum trace over the proton degrees of

freedom, P̃ is the conjugate momenta of R̃, and L=dim R̃.
To proceed further, we make a very minor approximation
that the dependence of U0�R� in Eq. �12� on rp can be ne-
glected due to the small van der Waals radius of the proton.
The above replacement in Eqs. �27a� and �27b� then gives

kET = �
1

ZI
� dt

2��
� dR̃e−�U0�R̃�

	 trp�e−�ĥI�V�R��eiĥII�V�R��t/�e−iĥI�V�R��t/�� , �28�

where ĥK�V�R�� is the solvated protonic Hamiltonian de-
fined by

ĥK�V�� = T̂p + EK�Ru,V�� �29�

at V�=V�R�, and EK�Ru ,V�� is the solute electronic energy

in Eq. �7�. Expanding the protonic Hamiltonian ĥK�V�R�� in
terms of its eigenstates gives the mixed quantum-classical
rate expression in Eq. �23�, which is not convenient to trans-
form to the V representation. Inserting the resolution of unity
1=�dV���V�−V�R�� into Eq. �28� is not very helpful either
because rp is a quantum operator and the replacement of

V�R� in ĥK�V�R�� by V� is not allowed. This problem can

be avoided, however, by expressing ĥK�V�R�� in the discrete
variable representation �DVR� as follows:

ĥK�V�R�� → ĥK
DVR�VQ�R̃��


 �
i

�
j

�rp
�i���Tij + �ij�EK�Ru,V�R���rp=rp

�i��
	�rp

� j�� , �30�

where 	rp
�i�
 are DVR points expressed in terms of solute

backbone coordinates R̃u �defined via R̃ = �R̃u ,Rv�� and 	Tij

is an appropriate kinetic energy matrix in the DVR. VQ�R̃�
in Eq. �30� is a quantum version of V�R�, which includes the
external potential on all the DVR points of the proton,
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Vp
�i��R̃�
V�rp

�i� ;Rv� �i=1, . . . ,M� in addition to those on the

remaining solute sites Ṽ�R̃�, i.e.,

VQ�R̃� = �Vp
�1�, . . . ,Vp

�M�,Ṽ� . �31�

It is now straightforward to reduce the solvent Cartesian

coordinates Rv to the external potential VQ�R̃� by inserting

the resolution of unity 1=�dVQ� ��VQ� −VQ�R̃�� into Eq. �28�
�after expressing ĥK in the DVR�, which gives

kET = �
1

ZI/Zv
� dt

2��
� dR̃u� dVQ� e−�SQ�R̃u,V�Q�

	 trp�e−�ĥI
DVR�VQ� �eiĥII

DVR�VQ� �t/�e−iĥI
DVR�VQ� �t/�� , �32�

where SQ�R̃u ,VQ� � is an analog of the self-energy defined by

e−�SQ�R̃u,VQ� � =
1

Zv
� dRve−�U0�R̃���VQ� − VQ�R̃�� . �33�

Performing an eigenstate expansion of ĥK
DVR�VQ� � via

ĥK
DVR�VQ� �
Kl�rp;R̃u,VQ� � = �Kl�R̃u,VQ� �
Kl�rp;R̃u,VQ� � ,

�34�

we obtain a desired rate expression in the V representation,

kET = �
1

ZI/Zv
�
m

�
n
� dR̃u

	� dVQ� e−���Im�R̃u,VQ� �+SQ�R̃u,VQ� ��

	 �Tmn�R̃u,VQ� ��2���Im�R̃u,VQ� � − �IIn�R̃u,VQ� �� ,

�35�

where Tmn�R̃u ,VQ� � is the overlap between 
Im and 
IIn at

�R̃u ,VQ� �.

2. Probe-point approximation

Although the above DVR approach is rather rigorous,
one can obtain a much simpler rate expression by approxi-
mating the external potential acting on the proton as

V�rp;Rv� � V�rp
#�R̃u� ;Rv� , �36�

where rp
#�R̃u� is a “probe” point that evaluates the external

field instead of the instantaneous position of the proton. In
the simplest case, rp

# could be chosen roughly as the mid-
point between the donor and acceptor atoms. The above ap-
proximation is based on the expectation that V�rp ;Rv� will
not vary too rapidly as a function of rp within a proton
donor-acceptor interface �see Appendix B for an improved
treatment�. Once the probe-point approximation has been
made, one can readily obtain a mixed quantum-classical rate
expression in the V representation by defining an approxi-
mate V-vector as

V�R� � V#�R̃� 
 �V�rp
#;Rv�,Ṽ�R̃�� , �37�

replacing ĥK�V�R�� by ĥK�V#�R̃�� in Eq. �28�, and then in-

serting the resolution of unity 1=�dV���V�−V#�R̃�� into

Eq. �28� so that V#�R̃� in ĥK�V#�R̃�� may be replaced by V�

�note that V#�R̃� is no longer a quantum operator and thus
the above replacement is valid�. The result is

kET = �
1

ZI/Zv
�
m

�
n
� dR̃u� dV�e−���Im�R̃u,V��+S0

#�R̃u,V���

	 �Tmn�R̃u,V���2���Im�R̃u,V�� − �IIn�R̃u,V��� , �38�

where S0
#�R̃u ,V�� is a variant of the self-energy defined by

e−�S0
#�R̃u,V�� =

1

Zv
� dRve−�U0�R̃���V� − V#�R̃�� , �39�

while �Kl�R̃u ,V�� is the eigenenergy of the following pro-
tonic Schrödinger equation:

ĥK�V��
Kl�rp;R̃u,V�� = �Kl�R̃u,V��
Kl�rp;R̃u,V�� .

�40�

The above rate expression has an interesting implication for
the quantization of proton on a classical free-energy surface.
To see this, let us rewrite Eq. �38� as

kET = �
1

ZI/Zv
�
m

�
n
� dR̃u� dV�e−�FIm�R̃u,V��

	 �Tmn�R̃u,V���2��FIm�R̃u,V�� − FIIn�R̃u,V��� ,

�41�

by defining a quantized free energy FKl�R̃u ,V�� as follows:

FKl�R̃u,V�� = �Kl�R̃u,V�� + S0
#�R̃u,V�� . �42�

This quantized free energy can be obtained equivalently by
solving the following Schrödinger equation:

�T̂p + FK�Ru,V���
Kl�rp;R̃u,V��
= FKl�R̃u,V��
Kl�rp;R̃u,V�� , �43�

where the following �classical� free energy:

FK�Ru,V�� = EK�Ru,V�� + S0
#�R̃u,V�� , �44�

has been used as the proton “potential.” That is, within a
single-point approximation like Eq. �36�, the vibronic free
energy FKl can be obtained by quantizing the proton directly
on a classical free-energy surface. This observation is inter-
esting because, in previous works employing a dielectric
continuum model, PCET reactions were discussed based en-
tirely on free-energy surfaces. For example, Cukier utilized a
protonic Schrödinger equation of the form18–20

�T̂p + Feq
K �Ru��
Kl�rp;R̃u� = FKl�R̃u�
Kl�rp;R̃u� , �45�

where the equilibrium solvation free energy was used as the
proton potential. This choice thus neglected all the nonequi-
librium solvation effects that may affect the protonic eigen-
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states. Subsequently, Soudackov and Hammes-Schiffer de-
veloped an improved rate theory,21,22 where they introduced
two scalar solvent variables, zp and ze. These solvent vari-
ables represent the diabatic energy gap for single proton and
single electron transfer processes, respectively, and they
characterize the nonequilibrium polarization state of the di-
electric. Their protonic Schrödinger equation reads qualita-
tively as

�T̂p + FK�Ru,V�zp,ze���
Kl�rp;R̃u,zp,ze�
= FKl�R̃u,zp,ze�
Kl�rp;R̃u,zp,ze� , �46�

which may be regarded as a restricted solvent-space version
of Eq. �43�. Here, the most important solvent variables �i.e.,
zp and ze� have been retained so as to simplify the description
of the rate process �see the original literature for more rigor-
ous discussions�.21,22

III. APPLICATION TO A UBIQUINOL-PHENOXYL
COMPLEX IN ACETONITRILE

A. Electronic states

We now apply the above method to the PCET reaction of
a ubiquinol analog �2,3-methoxyl 5,6-methyl p-benzoquinol�
with phenoxyl radical in acetonitrile �Fig. 1�, where the iso-
prenoid units of natural ubiquinol are replaced by a methyl
group for computational simplicity.47 As mentioned in the
Introduction, our choice of this system is motivated by a
recent experiment by Cape et al.,25 where an interesting, in-
verted kinetic isotope effect �KIE� �i.e., �G‡�H���G‡�D��
has been observed for the PCET reaction of ubiquinol with a
poly-pyridyl ruthenium complex in acetonitrile. A similar in-
verted KIE was also observed for the oxidation of ubiquinol
by a tocopherol derivative �vitamin E� in ethanol.26

In the present PCET reaction, the active electron trans-
fers from the highest doubly occupied � orbital of ubiquinol
to the singly occupied � orbital of phenoxyl radical, while
the proton transfers between the two phenolic oxygen atoms.
In fact, one can think of two distinct reaction pathways,
namely the classic HAT and PCET pathways, by assuming
that the present reaction proceeds in a qualitatively similar
manner to the phenol/phenoxyl self-exchange reaction in the
gas phase �see Fig. 1 of Ref. 16�. In the HAT pathway of the
phenol/phenoxyl reaction, the transferring proton approaches
the unpaired electron of the acceptor oxygen atom �thus in-
ducing a three-electron, three-center process�, while in the

PCET pathway the proton approaches the lone-pair electrons
of the acceptor oxygen �a four-electron, three-center pro-
cess�. In this paper we focus only on the PCET pathway
because the HAT pathway is shown to possess a much higher
activation energy than the PCET one in the case of the
phenol/phenoxyl complex.16

Hereafter, we assume that the electron transfer is in the
nonadiabatic regime and one can make the golden rule ap-
proximation discussed in Sec. II. This assumption seems
valid because the spatial overlap of � orbitals on ubiquinol
and phenoxyl radical is rather small. With this assumption
we calculated the diabatic electronic wave functions of the
complex using the restricted open-shell Hartree-Fock
�ROHF� plus second-order Møller-Plesset perturbation
�MP2� theory. The diabatic character of the wave function
was maintained by preparing the ROHF wave function of a
noninteracting complex with a prescribed diabatic character
and then evaluating the total energy of the corresponding
interacting system at the ROHF/MP2 level. The basis set
used was �9s5p1d� / �3s2p1d� for C and O atoms, and
�4s� / �2s� for H atoms, with additional polarization functions
on hydroxyl hydrogens.48 All the calculations were per-
formed with our modified version of the GAMESS quantum
chemistry package.49

B. Equilibrium solvation free-energy surfaces

The first step for studying the title reaction is to examine
the topography of equilibrium solvation free-energy surfaces
as a function of solute nuclear coordinates. In this section we
use the following definition of equilibrium solvation free-
energy �equivalent with Eq. �A26��:

Feq�Ru� = − �−1 ln
1

Zv
� dRv exp	− �U�R ;�eq�Ru��
 ,

�47�

where the solvent is in equilibrium with partial charges of the
solute �having a fixed geometry�, while the solute wave func-
tion �eq is calculated under the average electrostatic field
from the solvent. We calculated the above free energy using
the RISM-ROHF/MP2 method,28,29 where the solvent is de-
scribed in terms of site-site radial distribution functions. The
RISM integral equation involved was solved with the
hypernetted-chain closure �HNC� relation at the solvent tem-
perature and density of 295 K and 0.777 g/cm3, respectively.
The MM force-field parameters for CH3CN were taken from
Ref. 50, while those for the solute-solvent LJ interactions
were from AMBER.51 Partial charges on the solute sites were
determined using the RESP method.30 Figure 2 displays the
equilibrium free-energy surfaces thus obtained as a function
of proton coordinate r and donor-acceptor distance R given
by

r = R�OH� − R�O�H� , �48a�

R = R�OO�� , �48b�

where H denotes the transferring proton while O and O� are
the donor and acceptor oxygen atoms, respectively. The re-
maining solute coordinates were optimized at the RISM-

FIG. 1. Hydrogen-bonding complex of a ubiquinol analog and phenoxyl
radical. Dashed lines indicate intra- and intermolecular hydrogen bonds.
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ROHF level. Dynamic electron correlation energy was fur-
ther estimated with the MP2 method.52 The two surfaces in
Fig. 2 describe the reactant and product diabatic states, de-
noted as state I and II, respectively. In state I the active
electron resides on the ubiquinol side, while in state II it
resides on the phenoxyl side. The minimum free-energy
point on each surface was found to be �r ,R�
= �−0.976,2.801� Å for state I and �r ,R�= �0.956,2.841� Å
for state II. This length of donor-acceptor distance indicates a
weak to moderate hydrogen bond, and accordingly the equi-
librium position of the proton is different by about 1 Å be-
tween the two states. The corresponding solute geometry
�not shown here� was qualitatively similar to that of the
phenol/phenoxyl complex in the gas phase.16 The main fea-
tures include: �i� two benzene rings are nearly coplanar, with
methoxyl methyl groups tilted in the out-of-plane direction,
and �ii� the transferring proton is doubly hydrogen-bonded to
the acceptor oxygen atom of phenoxyl radical and to the
oxygen atom of the o-methoxyl group of ubiquinol �indi-
cated by dashed lines in Fig. 1�. The reaction free energy,
defined here as the difference of minimum free-energy val-
ues of state I and II, was estimated to be −15.6 kcal/mol,
indicating that this reaction is strongly exothermic in aceto-
nitrile. Though the two surfaces exhibit a crossing seam in
Fig. 2, this crossing does not provide a useful estimate of the
activation free energy because the solute coordinates other
than r and R as well as the solvent distribution are optimized
�or equilibrated� separately for each diabatic state and thus
take different values on the crossing seam.

The dipole moment of the solute under equilibrium sol-
vation is plotted in Fig. 3 as a function of proton coordinate
r. For an illustrative purpose, the donor-acceptor distance R
was fixed at 2.6 Å, which is an intermediate value between
R�2.4 Å �around the crossing region� and R�2.8 Å �the
equilibrium regions� as seen in Fig. 2. Figure 3 reveals that
the dipole moment for each diabatic state amounts to 12–14
debye as the proton approaches the midpoint of the donor
and acceptor oxygen atoms. This large change in the dipole
moment is partly due to the spatial separation of two phenyl
groups, whose partial charges �in addition to those in the

hydrogen-bond interface� vary as a function of proton coor-
dinate r. Note that the orientation of dipole moment is anti-
parallel between the two states; it orients from the ubiquinol
to phenoxyl side in state I and vice versa in state II. This is
because the sign of partial charges �particularly on phenyl
groups� are reversed between the two states, reflecting the
transfer of a �-electron between the phenyl groups. This
large change in the dipole moment induces a significant re-
organization of solvent upon proton and electron transfer.

C. Transition state in the combined solute-solvent
space

In order to calculate the activation free energy for elec-
tron transfer, one needs to take into account the matching
condition between diabatic potential energies, namely
UI�R�=UII�R� �cf. Eq. �15��, which is lacking in the defini-
tion of equilibrium solvation free energy in Eq. �47�. This
matching condition is treated traditionally by calculating the
probability density of the diabatic energy gap. As discussed
in Sec. II C, an alternative approach is to express the match-
ing condition in terms of V-resolved free energy, where the
external potential V�R� is employed as collective solvent
coordinates. The relevant situation is illustrated in Fig. 4,
where the diabatic free energies, FI�Ru ,V� and FII�Ru ,V�,
are plotted as functions of Ru and V �note that multidimen-
sional quantities, Ru and V, are projected onto one-
dimensional axes�. In this figure, the Ru axis specifies vari-
ous solute geometries while the V axis specifies various
solvation structures. The electron transfer proceeds by start-
ing from the reactant �point A in Fig. 4�, passing through an
intermediate crossing point �X�, and ends at the product �B�.
In the V direction, FI and FII are multidimensional parabo-
loids to a very good approximation �cf. Eq. �A23��. Dashed
lines in Fig. 4 represent the equilibrium solvation paths for
the individual diabatic states, where V is equilibrated to the
solute partial charges at each Ru. The equilibrium value of V
will be denoted as Veq

K �Ru� �K=I , II�. Note that these equi-
librium solvation paths correspond to the equilibrium solva-
tion free-energy surfaces plotted in Fig. 2. The vertical arrow
in Fig. 4 indicates the free-energy cost for attaining nonequi-
librium solvation or desolvation �i.e., to reach the crossing
point X�.

FIG. 2. �Color� Equilibrium solvation free energy defined by Eq. �47� as a
function of proton coordinate r and donor-acceptor distance R given by Eqs.
�48a� and �48b�. Red and blue lines represent the reactant and product di-
abatic free-energy surfaces, respectively.

FIG. 3. Dipole moment of the complex under equilibrium solvation as a
function of proton coordinate r. Line with circles �squares� represents the
reactant �product� diabatic state. Note that the dipole moment orients from
the ubiquinol side to the phenoxyl side in state I and vice versa in state II.
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Our task is then to find the minimum free-energy cross-
ing �MFX� point �i.e., the “transition state”� in the reduced
�Ru ,V� space. However, it should be noted that such a task
can be very demanding computationally unless analytical de-
rivatives of FK�Ru ,V� are available with respect to Ru and
V. Since such a derivative is not available for the RISM-
ROHF/MP2 method at present, we have performed a grid-
based optimization that locates the MFX point approximately
in a reduced-dimensional space. Specifically, we first param-
etrize the solute geometry in terms of three variables, r, R,
and s, where r and R are those defined by Eqs. �48a� and
�48b�, while s is a linear interpolation parameter that de-
scribes the solute backbone geometry as follows:

qi�r,R,s� = �1 − s�qi
I,opt�r,R� + sqi

II,opt�r,R� . �49�

Here, 	qi
 �i=1, . . . ,112� denotes the internal coordinates of
the solute except for �r ,R�, and 	qi

K,opt�r ,R�
 �K=I , II� are
those optimized at the RISM-ROHF level at given values of
�r ,R�. We then calculated the following free energy �see Ap-
pendix A for its derivation�:

FK�r,R,s,V� = Feq
K �r,R,s� + �Felec

K �r,R,s,V�
+ �For

K�r,R,s,V� , �50�

where �Felec
K represents the contribution from solute elec-

tronic polarization,

�Felec
K �r,R,s,V� = 1

2�V − Veq
K � · Keq

K · �V − Veq
K � , �51�

while �For
K is the contribution from solvent orientational po-

larization,

�For
K�r,R,s,V� =

1

2�
�V − Veq

K � · �Ceq
K �−1 · �V − Veq

K � .

�52�

Keq
K in Eq. �51� is the charge-response kernel �CRK�,31–33

which was calculated by three-point differentiation of solute
partial charges with respect to the external potential, while

Ceq
K in Eq. �52� is the covariance matrix of V�R� that was

calculated analytically by solving the coupled perturbed
RISM equation.8,53 Note that all of the Veq

K , Keq
K , and Ceq

K are
functions of �r ,R ,s�. We then minimized the above free en-
ergy with respect to V within the crossing seam, i.e.,

FX�r,R,s� = min
V,


	FI�r,R,s,V� + 
�FI�r,R,s,V�

− FII�r,R,s,V��
 , �53�

where 
 is the Lagrange multiplier. We denote the value of V
that minimizes the right-hand side of Eq. �53� as VX

=VX�r ,R ,s� and refer to �r ,R ,s ,VX� as a local crossing
point at a given solute geometry. Figure 5 displays the

FIG. 5. �a� FX�r ,R ,s� defined by Eq. �53� as a function of s at �r ,R�
= �−0.33,2.4� Å �solid line�, where s is a linear interpolation parameter of
the solute backbone geometry. Dashed and dash-dotted lines represent the
equilibrium solvation free energy for the reactant and product diabatic
states, Feq

I �r ,R ,s� and Feq
II �r ,R ,s�, respectively. �b� Decomposition of the

desolvation energy, FX�r ,R ,s�−Feq
I �r ,R ,s�, for the reactant diabatic state:

Dash-dotted, dashed, and solid lines represent �Felec
I �r ,R ,s�, �For

I �r ,R ,s�,
and their sum, respectively. �c� The same as �b� but for the product diabatic
state �K=II�.

FIG. 4. Schematic illustration of the V-resolved free energy, F�Ru ,V�, as a
function of the solute nuclear coordinates Ru and the external potential V.
Points A and B represent the reactant and product configurations, A� and B�
are thermally excited states under equilibrium solvation, and X is the mini-
mum free-energy crossing �MFX� point between the two diabatic free-
energy surfaces. Dashed lines represent the equilibrium solvation paths on
the individual diabatic states. The vertical arrow represents the nonequilib-
rium solvation �or desolvation� process from the equilibrium solvation path.
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section of FX�r ,R ,s� as a function of s at �r ,R�
= �−0.33,2.4� Å together with the equilibrium solvation free
energies, Feq

I �r ,R ,s� and Feq
II �r ,R ,s�. This figure reveals that

FX relaxes by as much as 7 kcal/mol when one varies s from
0 to 0.6, indicating that such a geometrical change can be
important in accurately estimating the activation energy.
Note that FX is always greater than both Feq

I and Feq
II due to

the presence of desolvation energy �indicated by the vertical
arrow in Fig. 4�. Figures 5�b� and 5�c� plot the desolvation
energy FX−Feq

K and its solute and solvent components,
�Felec

K �r ,R ,s ,VX� and �For
K �r ,R ,s ,VX�. These figures indi-

cate that the distortion of solute wave function from ��Veq
K �

to ��VX� is of minor importance compared to the solvent
orientational reorganization. As the last step of the transition-
state search, Fig. 6 displays minsFX�r ,R ,s� as a function of
�r ,R�, from which the global MFX point was identified to be
�r‡ ,R‡ ,s‡�= �−0.265 Å ,2 .447 Å ,0 .606�, and the associated
activation energy �defined as �F‡=FX�Ru

‡�−Feq
I �Ru,eq

I �� was
estimated to be 11.6 kcal/mol. This activation energy can be
further divided into equilibrium and nonequilibrium solva-
tion components, namely, �F‡=�Feq

‡ +�Fneq
‡ , where �Feq

‡ is
the free-energy difference along the equilibrium solvation
path in the �Ru ,V� space �A→A� in Fig. 4�, while �Fneq

‡ is
the desolvation energy at the transition state Ru

‡ �A�→X in
Fig. 4�. The result is

�Feq
‡ = Feq

I �Ru
‡� − Feq

I �Ru,eq
I � = 5.1 kcal/mol, �54a�

�Fneq
‡ = FI�Ru

‡,V‡� − Feq
I �Ru

‡� = 6.5 kcal/mol, �54b�

where V‡ denotes the external potential at the global MFX
point. The equilibrium and nonequilibrium solvation thus
makes similar contribution to the total activation energy for
the present system. Furthermore, the components �Felec

‡ and
�For

‡ were estimated to be −0.8 and 7.3 kcal/mol, respec-
tively, again indicating a relatively minor importance of the
former to the total activation energy.

To understand the nonequilibrium solvation more intu-
itively, Fig. 7 visualizes the electrostatic potential produced
by the solvent upon solute sites. Under the equilibrium sol-
vation in state I �panel �a��, the external potential is positive
on the ubiquinol side �in an average sense� and negative on
the phenoxyl side. This is because the phenyl carbon atoms

of ubiquinol are negatively charged and the solvent stabilizes
them with positive values of the external potential. Under the
equilibrium solvation in state II �panel �b��, the external po-
tential exhibits a qualitatively inverted character from panel
�a�. This is because the ubiquinol phenyl group becomes
more positively charged due to the electron transfer from the
ubiquinol to the phenoxyl side. At the transition state �panel
�c��, the external potential exhibits an intermediate character
between panels �a� and �b�, as expected, which suggests that
neither the ubiquinol nor phenoxyl atoms are stabilized more
strongly by the solvent. This unbiased solvation facilitates
the matching of diabatic potential energies, which is required
for electron transfer events to occur �within the classical
golden rule approximation�.

D. Reaction rates and kinetic isotope effects

In the previous sections we have assumed the classical
treatment of the proton, and here we wish to quantize it in

FIG. 6. Plot of mins FX�r ,R ,s� as a function of r and R. The cross symbol
indicates the location of the minimum free-energy crossing point. Contours
are plotted with a spacing of 1 kcal/mol, starting from 12 kcal/mol.

FIG. 7. �Color� Solvent electrostatic potential V acting on solute atomic
sites. Panels �a�, �b�, and �c� depict Veq

I �Ru
‡�, Veq

II �Ru
‡�, and V‡, respectively.

Red, blue, and green lines around the individual atoms indicate positive,
negative, and intermediate values of the solvent electrostatic potential,
respectively.
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order to discuss kinetic isotope effects �KIE�. For this pur-
pose, we employ the simplest version of the rate expressions
derived in Sec. II D �cf. Eq. �41��,

kET = �
1

ZI
�
m

�
n
� dXe−�FIm�X��Tmn�X��2

	��FIm�X� − FIIn�X�� , �55�

with ZI=�m�dX exp�−�FIm�X��, where X = �R̃u ,V� is the
classical coordinates of the system excluding the proton and
FIm�X� is the eigenenergy of the following protonic
Schrödinger equation:

�T̂p + FI�Ru,V��
Im�rp;X� = FIm�X�
Im�rp;X� . �56�

Note that the classical free energy FI�Ru ,V� is used as the
proton “potential,” which can be justified under the probe-
point approximation discussed above. Figure 8 displays the
section of FI�rp ,X‡� and FII�rp ,X‡�, with X‡= �Ru

‡ ,V‡� as a
function of xp �here, the x axis is chosen in the direction from
the donor to acceptor oxygen atoms�.54 Here, we evaluate
Eq. �55� very approximately by using only the information
about the reactant and transition-state configurations, thus
similar in spirit to classical transition state theory �TST�.
Specifically, we extract the integrand of Eq. �55� to define the

following relative reaction rate k̃:

kET � k̃ 

�mexp�− �FIm�X‡��Dm

‡

�mexp�− �FIm�Xeq
I �� , �57�

where Dm
‡ is a type of Franck-Condon weighted density,

Dm
‡ = �

n

�Tmn�X‡��2��FIm�X‡� − FIIn�X‡�� . �58�

Note that only the factors that most likely impact the
KIE have been retained, and that the possibly important
variation in the donor-acceptor distance has also been ne-
glected. This approximation is motivated by the expectation
that the integrand in Eq. �55� may take the maximum value
at around the classical MFX point �after including the sum-
mation over m and n into the integrand�. Our idea is simply

to take the ratio of k̃ in Eq. �57� for proton �H� and deuteron

�D� transfer in order to estimate the KIE. However, this
simple approach has a formal difficulty that Dm

‡ vanishes �if
literally evaluated� because of the discrete nature of FIm and
FIIn in the delta function. We thus modify the above defini-
tion of Dm

‡ slightly by first writing it in a time-dependent
form,

Dm
‡ =� dt

2��
eiFIm�X‡�t/�

	�
Im�rp;X‡��e−iĥII�X‡�t/��
Im�rp;X‡�� , �59�

with ĥII�X‡�= T̂p+FII�rp ,X‡� and changing the shape of
FII�rp ,X‡� artificially to a dissociative one �shown by the
dashed line in Fig. 8�. This modification seems reasonable
because the product potential is much deeper than the reac-
tant one due the exothermicity of the reaction, and thus the
density of product vibrational states is rather large in the
energy region near the �classical� MFX point.

Table I summarizes the quantized free energies measured
from the bottom of the diabatic free-energy surface at X
=Xeq

I or X‡ �thus physically meaning the proton vibrational
energy� and Dm

‡ calculated with Eq. �59�. Table I shows that
the vibrational ground-state energy at the transition state is
close to that of the classical MFX point, indicating that the
corresponding wave function has a sufficient overlap with
the product wave functions in the same energy region. This is
verified by the fact that Dm

‡ depends rather weakly on the
state index m. The fluctuations in the factor Dm

‡ are due to
different vibrational patterns of the reactant wave function;
Dm

‡ increases when the proton is more excited along the di-
rection from the donor to acceptor oxygen atoms, and re-
mains the same or even decreases when the vibration is along
an orthogonal direction �e.g., out of the phenyl plane�. Note
that the proton will be vibrationally excited when transfer-
ring from state I to state II, because the present reaction is
strongly exothermic and the proton potential of state II is
much lower in energy than that of state I as shown in Fig. 8.
It is also interesting to note that the zero-point energy �ZPE�
at the transition state, 8.8 kcal/mol, is slightly greater than
that in the reactant configuration, 7.8 kcal/mol. The stiffness

FIG. 8. Section of FK�rp , R̃u
‡ ,V‡� �K=I , II� as a function of xp �displacement

of proton along the line connecting the donor-acceptor oxygens�. The origin
of the abscissa and ordinate is chosen at the �classical� minimum free-energy
crossing point. Dashed line represents the modification of the product po-
tential to a dissociative one �cf. Eq. �59��.

TABLE I. Quantized free energies �in kcal/mol� measured from the bottom
of the proton potential, i.e., ��m�X�=FIm�X�−min FI�rp ,X� with X =Xeq

I

�reactant state� or X =X‡ �transition state�. Dm
‡ is the Franck-Condon

weighted density by Eq. �58�. Values of Dm
‡ are scaled such that Dm

‡ �m=0�
becomes unity for the H transfer.

m ��m�Xeq
I � ��m�X‡� Dm

‡

H transfer
0 7.8 8.8 1.00
1 9.9 11.6 0.71
2 11.7 12.8 1.30
3 12.3 14.6 0.57
4 13.7 15.7 1.20

D transfer
0 5.5 6.2 0.40
1 6.9 8.2 0.29
2 8.2 9.1 0.88
3 8.5 10.3 0.26
4 9.6 11.2 0.67
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of the proton potential can be compared via normal-mode
frequencies of the proton at the transition state X‡

�1006, 1473, 3846� cm−1, and those at the reactant state Xeq
I

�726, 1201, 3577� cm−1; i.e., the proton potential is stiffer at
the transition state than at the reactant state.

By substituting the data in Table I and the classical ac-
tivation energy �F‡=11.6 kcal/mol into Eq. �57�, we obtain

the Arrhenius plot of relative reaction rate k̃ in Fig. 9. An
important observation here is that the slopes of the two
curves are almost the same, suggesting that the apparent ac-
tivation energies �G for the H and D transfer are very close,
i.e., �G�H���G�D�. This is in contrast with electronically
adiabatic hydrogen transfer reactions in the thermally acti-
vated regime �i.e., not dominated by tunneling�, where
�G�H���G�D� is expected from the classical transition-
state theory rate expression with zero-point energy correc-
tions for the transferring hydrogen.55 In the present case, the
similar values of �G for H and D transfer are due to the
cancellation of two factors: �i� the slightly larger �ZPE-
corrected� activation energy for the H transfer, 11.6+8.8
−7.8=12.6 kcal/mol, than that for the D transfer, 12.3 kcal/
mol, where there is no missing degree of freedom in defining
the ZPE, and �ii� the slightly larger value of Dm

‡ for the H
transfer due to greater spreading of the wave function. Thus,
the mechanism for determining the apparent activation en-
ergy is somewhat different from that of the electronically
adiabatic hydrogen transfer reactions. The KIE at 23 °C was

estimated to be 1.7 by simply taking the ratio of k̃ in Eq. �57�
for H and D transfer. This value of KIE is similar to the
experimentally observed value of 1.8 for the PCET reaction
of ubiquinol with a poly-pyridyl ruthenium complex in
acetonitrile,25 though the inverted activation energy reported
in previous experiments25,26 was not observed in the present
work. We emphasize here that the present estimate of KIE
would increase somewhat if we take into account the varia-
tion in the donor-acceptor distance around the transition
state. This is because the proton can tunnel to the acceptor
group before the classical coordinates X reaches its
transition-state value X‡. The impact of this corner-cutting
effect depends on the balance between the variation in the
Franck-Condon factor and the free-energy cost for decreas-
ing the donor-acceptor separation.23 Nevertheless, we expect
that the improved estimate of KIE would remain moderate

due to the absence of any steric hindrance that precludes the
approach of donor-acceptor groups. This is in contrast with
the ubiquinol oxidation by a derivative of �-tocopherol �vi-
tamin E�, where the KIE amounts to 20 because of the pro-
tection of the acceptor oxygen atom by bulky isopropyl
groups.26 Large KIE values were also observed for PCET
reactions in protein, where the protein environment itself
prevents the approach of donor-acceptor groups.23 In the
present system, there is no such steric hindrance and the
donor-acceptor oxygens can establish a close contact to make
a hydrogen-bond interface.

In addition to the steric hindrance effects mentioned
above, the exothermicity of PCET reactions may also play a
role in determining the value of KIE. To see this, let us
compare the present ubiquinol/phenoxyl reaction, which is
exothermic as seen in Figs. 2 and 8, with the self-exchange
reaction of a phenol/phenoxyl complex in the gas phase �a
thermo-neutral reaction�.17 In the phenol/phenoxyl case, the
Franck-Condon factor �or the vibronic coupling in the non-
adiabatic ET limit� was shown to be different for H and D
transfer by a factor of 14 at the donor-acceptor separation of
2.4 Å. This is in contrast with the present result in Table I,
which shows that the H /D ratio of the Franck-Condon factor
is on the order of unity for the ubiquinol/phenoxyl complex.
Apart from several approximations made in obtaining Table
I, the smaller ratio of the Franck-Condon factor for the latter
case may be partly due to the strong exothermicity of the
reaction. Specifically, the diabatic proton potentials of the
phenol/phenoxyl system is symmetric with respect to the
proton coordinate and possess a high activation barrier of
about 20 kcal/mol �see Fig. 3 of Ref. 17�. As a result, the
Franck-Condon factor is governed by the small tail of the
proton wave functions. On the other hand, in the present
ubiquinol/phenoxyl system, the zero-point energy level in the
reactant proton potential equals roughly the crossing-point
energy of the two proton potential curves �Fig. 8�, which
implies that the vibrational excited-state wave functions in
the product potential may exhibit a relatively large overlap
with the vibrational ground-state wave function in the reac-
tant potential. To obtain some numerical insight into this ob-
servation, we have recalculated the Dm

‡ factor in Eq. �58� by
artificially shifting the product potential curve �labeled as II
in Fig. 8� vertically upward in energy by 5 and 10 kcal/mol
in order to see the effect of exothermicity. The resulting
value of KIE was found to be 4.9 and 13.6, respectively, thus
increasing with decreasing exothermicity. Hence, in addition
to steric hindrance effects between donor-acceptor groups,
the free energetics of reactant and product diabatic states
may also be important in determining the value of KIE.

IV. CONCLUDING REMARKS

In this paper we have explored the use of solvent elec-
trostatic potentials V as collective solvent variables, and
demonstrated how standard rate expressions for nonadiabatic
electron transfer can be expressed in terms of R and V �here,
R is the solute nuclear geometry�. This approach is based on
the observation that R and V are the only external parameters
that appear in the electronic Schrödinger equation of the sol-

FIG. 9. Arrhenius plot of the relative reaction rate k̃ in Eq. �57� for the
proton �H� and deuteron �D� transfer.

224514-11 Proton-coupled electron transfer rates J. Chem. Phys. 126, 224514 �2007�

Downloaded 30 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



ute. By classifying the Cartesian coordinates of the solvent
according to the value of V, we have naturally arrived at the
definition of V-resolved free energy, F�R ,V�. By construc-
tion, this V-resolved free energy separates neatly into the
solute electronic energy E�R ,V� and the solvent statistical
self-energy S0�R ,V�, as given by Eq. �14�. This neat separa-
tion of F�R ,V� into electronic and statistical contributions
may potentially lead to a computational saving in the number
of necessary quantum-chemical calculations for the solute.
This is because the present method performs in effect only a
single quantum-chemical calculation of the solute for a
group of solvent configurations having the same value of V,
in contrast with a direct QM/MM sampling in Cartesian
space where quantum-chemical calculations of the solute and
statistical-mechanical sampling of the solvent are inherently
entangled.

We have applied the resulting scheme to the PCET reac-
tion of a ubiquinol complex in solution and evaluated the
KIE approximately using a TST-like approximation. This
TST-like approximation, however, was rather crude and also
neglected the important variation in the donor-acceptor dis-
tance. It is thus important to develop a more accurate ap-
proximation that does not require too much computational
effort. A promising way for this direction is to introduce a
reaction path in the �R ,V� space for each diabatic state, and
limit the free-energy calculation on that reaction path, as
commonly performed in gas-phase quantum chemistry. This
approach requires the derivative of F�R ,V� with respect to R
and V, and in that respect an analytical derivative algorithm
is most desirable. Free-energy derivatives are also useful in
directly locating the minimum free-energy crossing point
with fewer intermediate points �recall that we have used a
very costly, grid-based method for the transition-state
search�. Future study will focus on those technical issues for
more direct calculations.
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APPENDIX A: APPROXIMATE CALCULATION
OF V-RESOLVED FREE ENERGY

1. Uncharged reference

The V-resolved free energy F�Ru ,V�� can be separated
into the solute electronic energy E and the solvent self-
energy S0, where calculating the former is a task of quantum
chemistry while that of the latter is a purely classical,
statistical-mechanical problem for the solvent. Here, we con-
sider a simple computational scheme for the latter based on
the Gaussian fluctuation model for the solvent.1 First, we
rewrite Eq. �13� as

e−�S0�Ru,V�� = e−���0P0�V�� , �A1�

where ��0=��0�Ru� is the solvation free energy of a ficti-
tious uncharged solute,56

e−���0 =
1

Zv
� dRve−�U0�R� , �A2�

while P0�V�� is the probability for the solvent to produce the
electrostatic potential V�,

P0�V�� = ���V� − V�R���0, �A3�

where the average �¯�0 is defined by

�¯�0 =
�dRve−�U0�R��¯�

�dRve−�U0�R� . �A4�

The calculation of P0�V�� is somewhat tricky because
V� is a multidimensional quantity and the usual histogram
method may fail to ensure sufficient statistics. To avoid this,
we invoke a Gaussian fluctuation model for V� given by1

P0�V�� � �det C0
−1

�2��N �1/2

	exp	− 1
2�V� − �V�0� · C0

−1 · �V� − �V�0�
 ,

�A5�

where �V�0 and C0 are the mean and the covariance matrix
of V�R�,

�V�0 = �V�R��0, �A6�

C0 = ��V�R� − �V�0��V�R� − �V�0�T�0 �A7�

�the superscript T denotes a vector transpose�. Inserting the
above expressions into Eq. �A1�, one obtains the following
expression for F�Ru ,V�� �with an additional approximation
that �V�0�0�:57

F�Ru,V�� = ���V���Ĥ0���V��� + Q���V��� · V�

+
1

2�
V� · C0

−1 · V� + ��0 + �F�C0� , �A8�

with

�F�C� = − �−1 ln�det C−1

�2��N �1/2

. �A9�

It is interesting to note the similarity of Eq. �A8� with a
nonequilibrium free-energy functional used in dielectric con-
tinuum theory,9–13

F��,P� = ���Ĥ0��� + �
�

Q����� dx
− � · P�x�
�Ru,� − x�

+
1

2�
� dxP�x�2 +

1

2
� dx� dx�

	
�− � · P�x���− �� · P�x���

�x − x��
, �A10�

where P�x� is the �inertial� polarization field of the dielectric
and � is an appropriate constant. The last two terms in Eq.
�A10� represent the solvent self-energy, which are physically
equivalent to the quadratic term in V� in Eq. �A8� because
they both represent the free-energy cost for thermal fluctua-
tions in the solvent around an uncharged solute.
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2. Self-consistent-field reference

While in the above scheme one samples the solvent
around a fictitious uncharged solute, one can also develop a
scheme that samples the solvent around an arbitrarily
charged solute. To this end, we rewrite Eq. �13� as

e−�S0�Ru,V�� = e�Q�·V� 1

Zv
� dRve−��U0�R�+Q�·V�R��

	��V� − V�R�� = e�Q�·V�e−�S��Ru,V�� ,

�A11�

where we have attached arbitrary reference charges Q�

=Q��Ru� to the solute sites, and also defined a charged �or
shifted� self-energy of the solvent S��Ru ,V�� by the second
equality. Combining the above expression with E�Ru ,V��
gives

F�Ru,V�� = E�Ru,V�� − Q� · V� + S��Ru,V�� , �A12�

where a certain amount of solute-solvent electrostatic cou-
pling is represented by the shifted self-energy. Following the
previous section, one may invoke a Gaussian fluctuation
model for S��Ru ,V�� to have

S��Ru,V�� �
1

2�
�V� − �V��� · C�

−1 · �V� − �V��� + ���

+ �F�C�� , �A13�

where

�V�� = �V�R���, �A14�

C� = ��V�R� − �V����V�R� − �V���T��, �A15�

with the average �¯�� defined by

�¯�� =
�dRve−��U0�R�+Q�·V�R���¯�

�dRve−��U0�R�+Q�·V�R�� , �A16�

and ��� in Eq. �A13� is the solvation free energy of the
charged solute defined by

e−���� =
1

Zv
� dRve−��U0�R�+Q�·V�R�� . �A17�

Now that S��Ru ,V�� is approximated quadratically as in
Eq. �A13�, it is appealing to expand E�Ru ,V�� in Eq. �A12�
also up to second order in V� so that one obtains an overall
quadratic expansion of F�Ru ,V�� with respect to V�. To do
so, let us assume that the reference charge Q� is derived
from a reference external potential V� such that Q�


Q���V���; i.e., the independent variables are now V�

rather than Q�. Expanding E�Ru ,V�� with respect to V�
about V� gives33,53

E�Ru,V�� � E�Ru,V*� + Q* · �V� − V*�
+ 1

2�V� − V*� · K�V*� · �V� − V*� , �A18�

where we have used the relation

�E�Ru,V��
�V�

= Q���V��� , �A19�

which is obtained by applying the Hellmann-Feynman theo-
rem to Eq. �6�, and

K�V�� 

�2E�Ru,V��

�V� � V�
=

�Q���V���
�V�

, �A20�

which is a type of polarizability matrix called the charge
response kernel �CRK�.31–33 Inserting the quadratic expan-
sions in Eqs. �A13� and �A18� and into Eq. �A12� and rear-
ranging terms, we have

F�Ru,V�� � ���V*��Ĥ0���V*�� + ��� + �F�C��

+ 1
2�V� − V�� · K�V�� · �V� − V��

+
1

2�
�V� − �V��� · C�

−1 · �V� − �V��� .

�A21�

Although F�Ru ,V�� has been expanded quadratically in V�,
the stationary point of this function is neither V� nor �V��

because V� �i.e., the input parameter� is not guaranteed to be
identical to �V�� �the response field� . This in turn suggests
that one may choose V� so that

V� = �V��, �A22�

is satisfied, which results in the so-called self-consistent re-
action field. We will denote such a reaction field as Veq�Ru�,
since it gives the equilibrium point of F�Ru ,V�� at a given
Ru. Now letting V�=Veq�Ru�, one obtains the following
second-order expansion of F�Ru ,V��:

F�Ru,V�� = F̃eq�Ru� + 1
2�V� − Veq�

· �Keq +
1

�
Ceq

−1� · �V� − Veq� , �A23�

where F̃eq�Ru� is defined by

F̃eq�Ru� = ��eq�Ĥ0��eq� + ��eq + �F�Ceq� , �A24�

while other quantities having the suffix “eq” are those evalu-
ated at V�=Veq �e.g., �eq=��Veq��. We note that Feq�Ru� in
Eq. �A24� can be written equivalently �within the quadratic
approximation� as

e−�F̃eq�Ru� =
1

Zv
� dRve−�U�R;�eq���Veq�Ru� − V�R�� ,

�A25�

where the solvent distribution is constrained with the condi-
tion V�R�=Veq�Ru�, while the solute wave function is fixed
at �eq=��Veq�Ru��. One can also define an alternative form
of equilibrium free energy,
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e−�Feq�Ru� =
1

Zv
� dRve−�U�R;�eq� , �A26�

where the constraint on V�R� has been eliminated from Eq.
�A25�. Within the quadratic approximation, the two defini-
tions are related simply by

F̃eq�Ru� = Feq�Ru� + �F�Ceq� . �A27�

Thus, it is a matter of convenience which of Eqs. �A25� and
�A26� to use in practice. Furthermore, it is probably a good
approximation to regard �F�Ceq� as constant since it origi-
nates from the pre-exponential factor of a Gaussian distribu-
tion function and is likely to be a more slowly varying func-

tion of Ru than Feq�Ru� or F̃eq�Ru�.
It is now interesting to see how the solvation free energy

defined in the QM/MM sense,

e−�FQM/MM�Ru� 

1

Zv
� dRve−�U�R;��V�R���

=� dV�e−�F�Ru,V�� , �A28�

relates to Feq�Ru� in Eq. �A26�, where the second equality
follows from Eq. �10�. Note that in FQM/MM�Ru� the solute
wave function is allowed to fluctuate according to the instan-
taneous value of the external potential, while in Feq�Ru� the
wave function is fixed at �eq. The effect of the electronic
distortion of ��V�R�� from �eq can be quantified by insert-
ing the second-order expansion in Eq. �A23� into the above
equation and integrating over V� to give

FQM/MM�Ru� = Feq�Ru� − �−1 ln� det Ceq
−1

det�Ceq
−1 + �Keq�

�1/2

.

�A29�

Setting Keq=0 �i.e., neglecting the electronic distortion from
�eq or assuming that the eigenvalues of �Keq are much
smaller than those of Ceq

−1� results in a simple relation
FQM/MM�Ru�=Feq�Ru�, as expected from the definitions in
Eqs. �A26� and �A28�.

APPENDIX B: INTERPOLATION OF EXTERNAL
POTENTIAL

While the probe-point approximation is quite simple, its
accuracy may not be sufficient when the proton is delocal-
ized, e.g., over a double-well potential. An idea for improv-
ing the accuracy is to calculate the external potential acting
on the proton via interpolation of the external field acting on
nearby solute atoms. In the simplest case one may perform a
linear interpolation as

V�rp;Rv� �
R�HO��V�O� + R�OH�V�O��

R�OH� + R�HO�� , �B1�

where O, H, and O� are atoms that constitute a hydrogen-
bond interface, while V�O� and V�O�� are external potentials
acting on O and O�, respectively. Note that V�H� is not used
explicitly but the proton coordinate rp does appear in Eq.
�B1�, so the nature of the approximation is somewhat differ-

ent from the probe-point approximation. With any interpola-
tion schemes like Eq. �B1�, the external-potential vector
V�R� becomes a function only of the solute coordinates Ru

and the external potential acting on the solute sites except for

the proton, Ṽ�R̃�, which is denoted here as

V�R� � VIP�Ru,Ṽ�R̃�� . �B2�

Now, making the above approximation to V�R� and in-

serting the resolution of unity 1=�dṼ���Ṽ�− Ṽ�R̃�� into Eq.
�28�, one obtains the following rate expression:

kET = �
1

ZI/Zv
�
m

�
n
� dR̃u� dṼ�e−���Im�R̃u,Ṽ��+S̃0�R̃u,Ṽ���

	 �Tmn�R̃u,Ṽ���2���Im�R̃u,Ṽ�� − �IIn�R̃u,Ṽ��� , �B3�

where �Kl and 
Kl are defined via

ĥK�VIP�Ru,Ṽ���
Kl�rp;R̃u,Ṽ��
= �Kl�R̃u,Ṽ��
Kl�rp;R̃u,Ṽ�� , �B4�

while S̃0 is given by

e−�S̃0�R̃u,Ṽ�� =
1

Zv
� dRve−�U0�R̃���Ṽ� − Ṽ�R̃�� . �B5�

The above interpolation scheme is as simple as the probe-
point approximation but can be more accurate by including
the spatial variation in the electrostatic potential around the
transferring proton.
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