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calculations of enzyme catalysis: methyl transfer 

catalyzed by catechol O-methyltransferase
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S-22100 Lund, Sweden.
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Abstract

We compare free energy calculations for the methyl transfer reaction catalyzed by 

catechol O-methyltransferase models using the quantum mechanical/molecular 

mechanical free energy (QM/MM-FE) method with implicit and explicit solvent. An 

analogous methylation reaction in solution is also studied. For the explicit solvent model, 

we use the transferable intermolecular potential three-point (TIP3P) model, and for the 

implicit model, we use the molecular volume generalized Born model as implemented in 

CHARMM. We find that activation and reaction free energies calculated with the two 

models are very similar, despite that some structural differences exist. A significant 

change in the polarization of the environment occurs as the reaction proceeds, which is 

more pronounced for the reaction in solution than for the enzymatic reaction. For the 
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enzymatic reaction, most of the change takes place in the protein rather than the solvent, 

and, hence, the benefit of having instantaneous  relaxation of the solvent degrees of 

freedom is less pronounced for the enzymatic reaction than for the reaction in solution. 

This is a likely reason why energies of the enzyme reaction are less sensitive to the 

choice of Born radii than are energies of the reaction in solution. 
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Introduction

Solvent has a crucial effect on many biochemical processes, and both structure and 

activity of enzymes should be understood in the context of the solvent. Without a solvent,

many enzymes would be unstable in their active form. Therefore, it is important to 

properly model the solvent in theoretical studies of biochemical processes such as protein

folding and enzyme catalysis. In atomic-scale simulations, explicit modeling of solvent 

molecules causes several complications. Not only does the number of atoms increase 

significantly, but the extra degrees of freedom also make it more difficult to obtain 

converged thermodynamic properties from simulations. 

Implicit solvent models encompass an alternative way to model the effect of the solvent. 

The basic idea is to model the solute as a region with a low dielectric constant embedded 

in a solvent with a different and typically higher dielectric constant (about 80 for water). 

In this model, the solvation energy is decomposed into an electrostatic term elecDGand a non-

polar term cavDG. Hence, the solvation energy reads:

ΔGsolv=Δ Gelec+Δ Gnp (1)

The electrostatic component contains electrostatic interactions between solute-solvent 

charges as well as the energy required to polarize the solvent. The term can be computed 

by solving the Poisson equation:

∇[ϵ(r)∇ ϕ(r)]=−4πρ(r) (2)

where ρ(r ) is the charge density, which is zero outside the solute, and ϕ(r) is the 

corresponding electrostatic potential. ϵ(r) is the dielectric constant, which has one 

constant value inside the solute and another constant value outside the solute. The 
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Poisson equation is only valid for zero salt concentration, but it can be extended to the 

more general Poisson-Boltzmann equation, which also covers nonzero salt 

concentrations. 

The non-polar solvation term comes from the the combined effect of two types of 

interactions: the unfavorable energy required to create a cavity in the solvent with the 

same shape as the solute, and the favorable van der Waals interaction between the solute 

and solvent molecules. The solvent-accessible-surface approximation (SASA) is often 

used to compute this term. In this approximation, the non-polar term is computed by:

ΔG np=∑
i

σi Ai (3)

where σ i is an empirical parameter and Ai is the solvent accessible surface area of 

atom i.

Solving Poisson's equation provides the solvation free energy for a single configuration 

of the solute. The equation can be solved numerically and today many efficient 

algorithms and programs are developed for that purpose,1 but despite these efforts, it is 

still too costly to solve the Poisson equation for many configurations as would be 

necessary for efficient sampling of the solute degrees of freedom. For these reasons, 

schemes based on solving the Poisson equation typically consider only a single or few 

configurations of the solute. 

A more approximate, but also cheaper approach is to use the generalized Born (GB) 

model. In the GB model, the free energy obtained from solving the Poisson equation is 

approximated by a sum over pseudo pair potentials:

ΔGelec=
1
2
(1−1

ϵ )∑
i , j

qi q j

√r i , j
2 +αiα j exp(−r i , j / F αiα j)

(4)
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where ϵ is the dielectric constant of the solvent, qi and q j are the charges of atom i 

and j, and ri , j is the distance between the two atoms. F is an empirical constant, 

originally proposed to be 4.2 The individual terms in the above equation are not true pair 

potentials, since the so-called Born radii αi and α j depend on the shape of the solute, 

and therefore on the positions of all other atoms encompassing the solute. The Born 

radius of an atom can be computed exactly by solving the Poisson equation with the 

charges of all atoms set to zero except the one under consideration. In that case, it has 

been shown that the GB equation gives results in close agreement with those obtained 

from solving the Poisson equation.3 Although this validates the GB equation, it is of little 

practical usage, since it demands solving the Poisson equation once for each atom of the 

solute in order to employ an approximation to a single Poisson equation. Instead, more 

approximate schemes are used to obtain the Born radii and the success of GB depends on 

the efficiency of these schemes to obtain accurate Born radii. Much effort has been put 

into this, resulting in several different implementations of GB with varying degrees of 

performance in terms of speed and accuracy.1,4,5,6,7,8 

Relatively few studies have compared implicit solvent calculations with  corresponding 

ones using an explicit solvent model and these have mostly considered protein folding. 

The comparative studies have been somewhat discouraging since the GB simulations 

often predict the wrong native structure compared to simulations in explicit solvent, as 

well as to experiment. In contrast, the predictions based on simulations in explicit solvent

generally agree well with experiments.7,8,9,10,11 It is possible that different and more 

accurate GB models would perform better than the ones employed in those studies. 

Indeed, a general problem in the above GB simulations seems to be either the lack of or 
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unwanted formation of salt bridges. Case and coworkers6 found that a salt bridge, which 

was formed in the explicit solvent simulations, was not formed in simulations based on 

the GB/ACE variant,12 whereas it was formed in simulations based on the GB/OGB 

variant developed by Onufriev, Bashford, and Case.13

Perhaps the greatest benefit of using implicit solvent is that the solvent relaxes 

instantaneously to a modification of the solute. This can be utilized with advantage in 

pKa calculations, in particular those where the response of the solute to a proton can be 

neglected. In the simplest approximation, pKa calculations can then be performed on a 

single structure of either the protonated or deprotonated complex. At a next level of 

approximation, it can be used in free energy perturbation calculations.14,15 The immediate 

relaxation of the solvent is also exploited in the so-called MM/PBSA method,16 and in 

constant pH simulations.17,18,19,20

Besides the simulations of protein folding, there are relatively few studies that compare 

implicit and explicit solvent simulations. One such study is the calculation of pKa values 

for different Asp residues in thioredoxin and ribonuclease6. In that study, it was found that

GB/OBC gave results in better agreement with experiment than calculations based on 

explicit solvent simulations.

We are specifically interested in free energy calculations related to enzyme catalysis. In 

this article, we investigate the possibility of using GB to model solvent in a methyl-

transfer reaction catalyzed by catechol O-methyltransferase (COMT) studied by the 

quantum mechanical/molecular mechanical free energy method (QM/MM-FE) used 

previously by Yang and coworkers,15,21,22 Ishida and Kato,23,24 as well as by us.25 The 

COMT reaction has previously been used in our laboratory to compare various free-
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energy methods.25,26,27 We have shown that the QM/MM-FE method give results in close 

agreement with the more elaborate quantum-mechanical thermodynamic cycle 

perturbation (QTCP) method.25 In the QM/MM-FE method, a reaction pathway is 

obtained by means of QM/MM optimization. In a subsequent step, simulations are 

performed for points along the reaction pathway, in which the QM region is fixed and is 

represented by point charges obtained from QM/MM calculations. These simulations are 

then used to compute the MM-QM interaction free energy, which is added to the QM 

energy obtained from the QM/MM calculations.21,25 Since the MM-QM interaction energy

is computed by simple Coulomb interactions between two sets of point charges, it is 

straightforward to use implicit solvent models in these calculations instead of solvent 

described explicitly. 

Here, we make a comparative study of the generalized Born model, represented by the 

molecular volume generalized Born (GBMV) model28,29 and the three-point transferable 

intermolecular potential (TIP3P) explicit solvent model.30 The GBMV model has been 

found to reproduce solutions to the Poisson equation most accurately among different GB

implementations and at the same time being faster than direct solvers of the Poisson 

equation.1 Hence, GBMV is an excellent model for testing the ability of implicit solvent 

models to reproduce results based on explicit solvent, which currently is considered to be 

the most accurate solvent description. 

GBMV differs from most GB methods in a number of ways. The Born radii, αi , are 

computed by:

1
αi

= 1
Ri

− 1
4π∫

1

r 4 d V +( 1

4 Ri
4−

1
4 π∫

1

r 7 dV )
1/4

(5)
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where R i  is the atomic radius of atom i. The above equation differs from the more 

commonly used Coulomb approximation, which corresponds to the first two terms on the 

right hand side in the above equation. The GBMV method also incorporates the non-polar

solvation term (3) based on an approximation to the molecular surface.29 

We compare free energy barriers for the reaction catalyzed by COMT as well as for a 

corresponding methyl transfer reaction in solution. We find that structural properties, 

such as hydrogen bonds, are somewhat different in the explicit and implicit solvent 

simulations. Despite these problems, the GBMV model reproduces the free energy barrier

based on explicit solvent models very well, and the free energy calculations are robust 

towards changes in the atomic radii for the enzyme-catalyzed reaction. In contrast, the 

free energy barrier for the reaction in solution is more sensitive to the choice of the Born 

radii.

Method

Model system 

Catechol O-methyltransferase (COMT) catalyzes the transfer of a methyl group from S-

adenosylmethionine to the oxygen of a catechol group. The natural substrates of COMT 

are catecholamine neurotransmitters, like dopamine and (nor)adrenaline, which are 

deactivated by the methyl transfer. The crystal structure of the enzyme shows that the 

substrate binds directly to a Mg2+ ion with both its catechol oxygen atoms.31 We have 

modeled the active site by a Mg2+ ion, a catecholate group with a single negative charge,

a water, one formamide, and two formate groups, as models of the three Mg ligands from 

the protein, Asn-170, Asp-141, and Asp-169. In addition, S(CH3)3+ was used as a model 

of S-adenosylmethionine. This quantum system is illustrated in Figure 1a. The 
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surrounding enzyme was modeled by the Amber-94 force field, with coordinates taken 

from the crystal structure.31 The five junctions between the QM and MM systems were 

treated by the standard hydrogen link-atom method.32 In the MM calculations, it was 

assumed that all Asp and Glu residues are negatively charged, and that the Lys and Arg 

residues are positively charged. Based on the hydrogen-bond network around the two His

residues, we decided to let His-139 to be protonated on the Ne2 atom, whereas His-190 

was protonated on both nitrogen atoms and therefore was positively charged. 

In the corresponding reaction in solution, we used the same reaction path, but only the 

catecholate and S(CH3)3+ molecules were considered (Figure 1b).

QM/MM-FE method

In the QM/MM-FE method, free energy changes are calculated between points along a 

reaction pathway, which is spanned by atoms in the QM region. A free energy change is 

computed as the sum of a QM energy change and a change in an interaction free energy 

between the MM and QM regions. The electrostatic contribution to the interaction free 

energy is approximated with interactions between point charges. Hence, in practice a 

QM/MM-FE calculation consists of a calculation of a reaction pathway by means of 

QM/MM. These calculations also result in a set of point charges of the QM region for 

each point along the reaction pathway, as well as an energy. In a subsequent step, an MD 

simulation is performed, in which the atoms in the QM region are fixed and described by 

the computed point charges. These simulations are finally used to compute MM-QM 

interaction free energy changes in steps along the reaction pathway by means of free 

energy perturbation. Thus,
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Δ A(i→ j )={EQM(RQM
( j) )−E QM(RQM

(i) )}
+k BT ln ⟨exp [−(U (RQM

( j ) )−U (RQM
(i) ))/k BT ] ⟩RQM

(i )

(6)

In the QM/MM-FE approach, the QM energy terms enclosed by curled brackets are the 

energy of the QM region only, but polarized by the MM atoms. Hence, this term can be 

computed from a self-consistent QM/MM calculation, followed by a non-self-consistent 

calculation without external point charges. Alternatively, the term can be computed 

approximately by subtracting the MM-QM electrostatic interaction energy computed 

classically from the QM/MM energy.25 Here, we make use of the former procedure.

QM calculations

The reaction pathway was obtained from QM/MM calculations, in which the QM region 

was relaxed orthogonal to the reaction coordinate, while the MM region was fixed at the 

crystal structure.27 The distance between the acceptor oxygen atom of the catecholate and 

the carbon atom of the transferred methyl group ( dC−O ) was used as reaction 

coordinate, and optimizations of the QM region was performed at dC−O = 1.47, 1.80, 

1.95, 2.00, 2.05, 2.10, 2.13, 2.30, 2.55, and 2.84 Å, altogether 10 points. The calculations 

were performed with the QM/MM software ComQum,33,34 which in turn is based on the 

molecular mechanics software Amber35 and the quantum mechanics software 

Turbomole.36 Density functional theory with the PBE exchange-correlation functional37 

and the 6-31G* basis set, extended with diffuse basis functions on nitrogen, oxygen, and 

sulfur, was used to describe the QM region, whereas the MM region was described by the

Amber94 force field.38 

For each point on the reaction pathway, restrained electrostatic potential (RESP) point 
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charges were calculated with Amber.39 These calculations were in turn based on 

calculations of the electrostatic potential on a grid using the Merz-Kollman scheme40 

using the Gaussian98 software package.41 

The single-point quantum mechanical energies in curled brackets in Eq. 6 were calculated

using the hybrid density functional Becke-3-Lee-Yang-Parr (B3LYP) functional as 

implemented in Turbomole42 and the 6-311++G(2d,2p) basis set. Strictly speaking, we 

should use the same level of methodology as employed to compute the point charges, but 

we have previously shown that extrapolation to another set of exchange-correlation 

functional and basis set is possible to a high degree of accuracy.25,26 

Simulations

For each point along the reaction pathway, a simulation was performed for 600 ps using 

either explicit or implicit solvent. The last 400 ps were used to collect data for the 

subsequent free energy calculations. In all simulations, a time step of 2 ps was employed 

and the SHAKE algorithm43 was used to constrain the lengths of bonds containing 

hydrogen bonds. Moreover, all atoms in the QM region were fixed and described by point

charges obtained from the QM/MM calculations. 

The explicit solvent simulations have been reported previously25,26 and we refer to those 

articles for more details than given here. The simulations were performed with periodic 

boundary conditions using an octahedral box and a constant volume. The temperature 

was kept constant by reassigning the velocities if the temperature   deviated by more than 

5 K from 298 K. About 7800 water molecules described by the TIP3P model were used in

the simulation of the enzyme-catalyzed reaction, whereas about 8800 molecules were 
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used for the reaction in solution. Electrostatic interactions were calculated with the 

particle mesh Ewald method.44

In the implicit solvent simulations, the generalized Born molecular volume (GBMV) 

method was used to describe the solvent. The atomic radii are parameters in the equation 

for the Born radii, but they also define the volume and surface of the solute. However, 

despite the importance of the atomic radii, they cannot be unambiguously defined and 

different sets of radii have been suggested. The calculations were made for 4 different 

atomic radii, namely the radii proposed by Roux and coworkers45,46 (Set I), the van der 

Waals radii defined by the Amber94 force field39 (Set II). Set I scaled by a factor 0.9847 

(Set III), and Set II scaled by 0.87 (Set IV).  For all sets of radii, we used an angular 

integration grid with N ϕ=8, but for Set II we also tested a coarser integration grid with

N ϕ=5. A surface tension of 0.005 kcal/(mol Å2) was used for the non-polar term. 

The implicit solvent simulations were started from structures that were minimized  by 

500 steps using the adopted-basis Newton-Raphson methodology. The temperature was 

kept constant at 298 K by employing Langevin dynamics using a friction coefficient of 5 

ps-1 applied to all heavy atoms. 

Because the routine that fix atoms in CHARMM, modifies the non-bonded list, it is not 

straightforward to fix atoms in combination with GBMV. Under the kind guidance from 

Michael S. Lee, we modified the CHARMM code, so that we can fix atoms without 

eliminating any electrostatic terms. Unfortunately, this works only if we use no cutoff, 

and, hence, the implicit solvent simulations were performed with an infinite cutoff. 

Consequently, the simulations were very slow and it does not make sense to compare 

timings of the explicit and implicit simulations.
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For the reaction in solution, all atoms of the QM region were fixed so the implicit solvent

simulations reduce to single-point calculations. In order to avoid inaccuracies owing to 

the integration grid, we used a very fine grid ( N ϕ=12 ) and report the average of 9 

different calculations, which differ in the orientation of the solute molecule with respect 

to the grid.

Analysis 

The simulations were analyzed with respect to root-mean-square deviations (RMSD) 

from the crystal structure. Moreover, the number of hydrogen bonds and salt bridges were

calculated for each simulation. We define a hydrogen bond as a contact between a 

hydrogen atom and a different atom for which the inter-atomic distance is less than 2.4 Å 

at least 66% of the time during the last 400 ps of the simulation. A salt bridge is defined 

as a hydrogen bond where the involved hydrogen atom is one of the hydrogen atoms in 

the charged groups of Arg, Lys, or in a doubly protonated His, and where the heavy atom 

is one of the oxygen atoms in the side chains of Asp or Glu.

Free energy calculations

To perform the free energy calculations, 400 configurations evenly spaced in time and 

taken from the last 400 ps of simulation were stored. For each of the configurations, the 

non-perturbed and perturbed energies were calculated. These energies were used to 

compute the free energy change between the non-perturbed and perturbed state by means 

of free energy perturbation. Recent studies have shown that Bennet’s acceptance ratio 

method48 is more reliable than free energy perturbation,49,50 but test calculations showed 
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that the effect is insignificant for the free energy changes studied here.

Results

The methyl transfer reaction

Before we consider the different solvent models, we will discuss results based on the 

explicit solvent models and compare the methyl transfer in solution with the 

corresponding enzyme-catalyzed reaction. In the left panel of Figure 2, the free energy is 

decomposed into contributions from the B3LYP/6-311++G(2d,2p)  calculations of the 

QM region and the classical interaction free energy between the QM and MM region, cf. 

Eq. 6. The QM energies show that the product complex (i.e. neutral methylcathecol and 

S(CH3)2 at dC−O = 1.47) is strongly favored in a vacuum. This is because the reaction 

neutralizes the charges of the reactants (catecholate and S(CH3)3+). However, in the 

enzyme, this stabilization is less pronounced, because the Mg2+ ion and its ligands 

destabilize the product complex relative to the reactant complex (note that the 

configurations of atoms common for the QM systems used to model the reaction in 

solution and catalyzed by the enzyme are identical, cf. Figure 1). This is partly because 

some of the charge of the catecholate is transferred to the Mg2+ ion (and its ligands; 

~0.06 e), and partly because a sizable dipole moment is preserved after the reaction in the

presence of the Mg2+ ion. The dipole moment of the QM region changes from 22 to 3 

Debye for the reaction in solution, whereas it changes from 24 to 16 Debye when the 

Mg2+ complex is included in the QM region.

For each of the two reactions, results are given for the MM-QM interaction free energies 

14/40



based on forward as well as reverse free energy perturbation calculations. The hysteresis 

amounts to less that 2 kJ/mol in both cases. The interaction free energies show that the 

environment modeled by the MM atoms destabilizes the product complex relatively to 

the reactant complex. This can again be understood in terms of the charge neutralization 

reaction, because a medium with a higher dielectric constant favors the polarized reactant

complex more than the less polarized product complex. For the same reason, it is 

expected that the MM environment inhibits the reaction in solution more than the 

enzyme-catalyzed reaction.

In the right panel, the total energy (sum of QM energy and MM-QM interaction free 

energy) are plotted. The barrier for the enzyme-catalyzed reaction is 68 kJ/mol and that of

the reaction in solution along the same reaction pathway is slightly lower,  namely 55 

kJ/mol. We note that the minimum free energy path for the reaction in solution probably 

differs from the barrier computed here, partly because the reaction pathway will be 

different and partly because the end points utilized here are not minima. Moreover, for a 

full comparison between the reaction in solution and the enzyme-catalyzed reaction, the 

binding affinity of the reactant molecules should also be considered. It is also possible to 

have a higher barrier for the enzyme-catalyzed reaction than for the corresponding 

reaction in solution, because the methyl transfer presumably is preceded by a 

deprotonation step, which is unfavorable in solution, owing to the high pKa value of the 

catechol (9.5).51 In the enzyme, the pKa value is reduced, owing to interactions with the 

positively charged Mg2+ ion. This is probably one of the most important mechanisms by 

which COMT catalyzes this reaction. For a discussion of catalytic factors, see also Roca 

et al.52
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Reaction in solution

We start by reporting results for the calculations for the small system defined in Figure 

1b. In the left panel of Figure 3, the free energy for the reaction in solution are plotted for 

the explicit TIP3P solvent simulations and GB calculations based on four different sets of

Born radii, as explained in the Methods section. 

It can be seen that the Amber van der Waals radii (set II) give energies that are more 

similar to those obtained by an explicit solvent than the Born radii suggested by Roux 

and coworkers (set I). The scaling of 0.98 has only a minor influence on the results (set 

III). Not surprisingly, the radii of the atoms that are directly involved in the reaction 

affect the results significantly, and by tuning the radii of those atoms, an almost perfect 

match between the explicit solvent and the implicit solvent results can be obtained, as 

observed with Set IV. The same agreement cannot be obtained by tuning the radii of the 

central atoms in Set I, because the radii of the methyl hydrogen atoms in that set are zero.

The deviation between the implicit and explicit solvent is most noticeable at and around 

the transition state, whereas the curves match quite well at the end points. This can also 

be seen from Table 1 where the activation and reaction free energies are listed for the 

different solvent models. This is not surprising, because the atoms change their physical 

properties along the reaction, and in a force field, it therefore makes sense to let the 

parameters for the central atoms change along the reaction pathway. Such a procedure is 

shown in the right panel of Figure 3, in which a curve with the radii of central atoms 

scaled by 0.71 is compared to two other curves which are based on calculations with the 

radii of the central atoms scaled by 0.90. Individual offsets are added to the curves, so 
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that they match the one based on explicit solvent simulations at 2.05 Å, and at each of the

two end points, respectively. As can be seen, all the curves follows the curve based on 

explicit solvent simulations almost perfectly around the point where the implicit and 

explicit solvent curves have been matched. 

 

Enzyme reaction

The protein turns is stable in all simulations performed, with fairly small deviations from 

the crystal structure. However, the root-mean-square-deviations from the crystal structure

are in general larger in the implicit solvent simulations than in the explicit simulations. A 

typical example is shown in Figure 4 for a simulation of the transition state complex, and 

a summary is listed in Table 2. The average deviations are normally between 0.6 and 0.8 

Å for the Cα atoms in the explicit solvent simulations and between 0.8 and 1.1 Å in the 

implicit solvent simulations if Set III is used as Born radii, whereas they are between 1.0 

and 1.5 if Set II is used. Hence, Set II performs better in comparison with the crystal 

structure and explicit solvent.

Another descriptor that deviates between the implicit and explicit solvent simulations is 

the number of hydrogen bonds, cf. Table 3. Based on the definition of hydrogen bonds 

given in the Method section, 80% of the hydrogen bonds in the explicit solvent 

simulations are preserved in a corresponding implicit solvent simulation. Nonetheless, the

total number of hydrogen bonds is 5-20% higher in the implicit solvent simulations than 

in the corresponding explicit solvent simulation.

Problems with salt bridges have been reported previously and here we find a similar trend

for salt bridges as we found for the hydrogen bonds: There are more salt bridges in the 
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implicit solvent simulations, but not all salt bridges in the explicit solvent simulations are 

preserved in the corresponding implicit solvent simulation.

In conclusion, we find that the implicit solvent simulations are robust and stable, but that 

there also are some structural changes between the implicit and explicit solvent 

simulations. Related to this study is a comparative study of different GB models by Fan 

et al.53 They found deviations between number of hydrogen bonds and radius of gyration 

between different GB models and between GB models and experimentally determined 

structures.

Free Energy Calculations

We compare free energy barriers based on explicit and implicit solvent models and 

combination thereof. Again we compare different sets of atomic radii, namely Set II and 

Set III as defined in the previous section. For both sets, we have made simulations for 

each point along the reaction pathway followed by free energy perturbations. We have 

also used a procedure where we reprocess the explicit solvent simulations with an 

implicit solvent model using either Set II or III as described in the Method section. We 

refer to these calculations as TIP3P/GBMV(II) or TIP3P/GBMV(III). In general, we use 

a fine integration grid ( N ϕ=8 ; see Method section) but for Set II we also investigate a

coarser integration grid (N ϕ=5)  and the possibility of performing free energy 

perturbation calculations by reprocessing simulations based on the coarser integration 

grid with the finer integration grid, referred to as GBMV(II,5/8).

Computed reaction and activation free energies are listed in Table 4 and some of the free 

energy curves are plotted in Figure 5. In Figure 6, the percentage deviation of the MM-

QM interaction free energy from that of the explicit solvent simulations are plotted for 
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the forward and reverse activation energies as well as for the reaction energy. It can be 

seen that the results based on the coarser integration grid perform poorly compared to 

results based on the finer integration grid. Overall, GBMV(III,8) gives results closest to 

those with explicit solvent, but the deviation between the results based on Sets II and III 

are small, less than 1 kJ/mole for the three free energy changes listed in Table 4. The 

same trend is observed for the TIP3P/GBMV results, cf. Table 4. Hence, as opposed to 

the reaction in solution, the free energies for the enzyme-catalyzed reaction are fairly 

robust towards the choice of atomic radii. For the same reason, we assume that using the 

unscaled Set I rather than Set III would not change the results significantly.

On the other hand, we find that the results are not converged with respect to the 

integration grid if N ϕ=5  is used. In Figure 5, the free energy curves based on the 

explicit solvent simulations are compared to results based on the implicit solvent 

simulations using Set III but with different integration grids. It is seen that the coarser 

grid gives a higher barrier for the forward reaction and a lower barrier for the reverse 

reaction than obtained with any of the other methods. Reprocessing the simulations with 

the finer integration grid does not correct the errors and therefore does not seem to be a 

valid strategy. Moreover, the energies evaluated with the two integration grids differ too 

much to make a free energy perturbation correction possible.

Despite the agreement between results based on Set II and Set III, hysteresis effects are 

larger with Set II. Barriers computed stepwise and forwardly or reversely, deviate at most

by 3 kJ/mol when using TIP3P/GBMV(III,8) or GBMV(III), but they may deviate as 

much as 8 kJ/mol when using Set II, i.e., the Amber van der Waals radii. The effect of 8 

kJ/mol is comparable to the hysteresis effect of using Set III with a course integration 
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grid. On top of that, Set II is more expensive to employ than Set III, because Born radii 

need to be computed for all atoms with a non-zero van der Waals radius, whereas the 

atomic radius is set to zero for all hydrogen atoms in Set III. Moreover, as previous seen, 

the RMSD from the crystal structure is larger for Set II than III.

To conclude this section, we find that the implicit solvent methods perform reasonably 

well when compared to results based on explicit solvent simulations, particularly if a 

proper integration grid is used.

Single-stage free energy calculations for large perturbations 

Since the implicit solvent relaxes instantaneously to a modification of the solute, it is 

possible that the implicit solvent performs better than the explicit solvent if free energy 

calculations are to be performed over large perturbations in a single step. This is 

investigated in Figure 7, where deviations of free energy curves based on single 

simulations of the product or reactant complex are plotted. The deviations are with 

respect to corresponding ones based on multi-stage free energy calculations, cf. Figure 5. 

Not surprisingly, it is seen that the deviations increase with larger steps. As expected,  the 

deviations observed when using explicit solvent diminish if the energies are reprocessed 

with implicit solvent (TIP3P/GBMV(III,8)). The results based on implicit solvent 

simulations (GBMV(III,8)) are a bit surprising because free energy calculations based on 

a simulation of the product complex is capable to reproduce the entire free energy barrier 

within 2 kJ/mol (blue dashed line with diamonds) and thus performs best among the three

methods under consideration. In contrast, an implicit solvent simulation of the reactant 

complex is the poorest way to generate the entire free energy curve (red solid line with 
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diamonds).

For the current reaction, there is a limit of how much the implicit solvent model can 

account for the polarization of the MM environment, since most of the change in 

polarization occurs in the protein matrix rather than in the solvent. This can be seen from 

Figure 8, where the electrostatic potential on the methyl donor and acceptor atoms caused

by the solvent and the MM protein environment are plotted and compared with the 

reaction in solution. As can be seen, there is a gap between the distributions of the 

product and reactant complex for the part originating from the protein, whereas there is a 

significant overlap between the distributions of the solvent. Hence, the protein is 

polarized differently in the product and reactant complexes, whereas that is less 

pronounced for the solvent. In contrast, there is a significant gap between the 

distributions for the reaction in solution. 

A gap between the distributions of the (explicit) solvent degrees of freedom does not pose

a problem for an implicit solvent model, because it will be solved by the instantaneous 

relaxation. However, this is not the case for the protein degrees of freedom, and the 

insignificant overlap between the distributions originating from the protein therefore pose

a problem in both the implicit and the explicit solvent simulations, although the effect of 

a wrongly polarized protein will be somewhat dampened by an implicit solvent model. 

Therefore, we cannot expect a good agreement between the multi-stage and the single-

stage free energy calculations over the entire reaction pathway for the enzymatic reaction.

Conclusions

In this paper, we have considered the methyl transfer reaction between S-
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adenosylmethionine and catechol, catalyzed by the COMT enzyme. We have seen that in 

vacuum, the products are strongly favored, because they are neutral. However, both the 

Mg2+ ion and solvation effects instead favors the charged reactants. As a result, the 

activation energy of the reaction in the enzyme and in solution is quite similar, 68 and 55 

kJ/mole, respectively (but the reaction is more exothermic in solution). However, this 

disregards the role of deprotonating the catechol molecule, and possible differences in 

reaction path between the enzyme and solution.

However, the main goal of this article has been to compare the performance of the 

implicit GBMV model with explicit solvent models for the calculation of free energies. 

We have seen that for the COMT reaction in solution, the resulting free energies are quite

sensitive to the parameters of the method (e.g. the atomic radii). In this case, the Amber 

van der Waals atomic radii (Set II) performed better than those suggested by Roux et al. 

(Set I). Moreover, results very close to those with explicit solvent could be obtained by 

simply scaling the parameters, especially for the atoms involved in the chemical reaction.

In the enzyme, structural parameters (e.g. the RMSD from the crystal structure, or the 

formation of hydrogen bonds and salt bridges) are still quite sensitive to the atomic radii. 

Moreover, there are pronounced differences between the calculations with implicit and 

explicit solvent. In this case, the (scaled) Roux atomic radii (Set III) gave results closer to

those of the explicit solvent simulations. 

However, these structural differences have little effect on the activation and reaction 

energies: The GBMV calculations reproduce the activation and reaction energies in the 

explicit solvent simulations within 5 kJ/mole and there is little difference between the 

two sets of atomic radii (set II and III). 
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We have also examined if it possible to calculate the activation and reaction energies 

from a single MD simulation, employing the instantaneous relaxation of the solvent 

degrees of freedom in the implicit methods. This does not seem to be possible, because 

the main difference in the polarization of the environment takes place in the protein, 

rather than in the solvent, and there is little overlap in the protein polarization between 

the reactant and product complexes (cf. Figure 8).

Thus, the studies of COMT suggest that the GBMV model performs well in free energy 

calculations if detailed solute-solvent interactions are not important. Therefore, it works 

better for enzymatic reactions than for reactions in solution. On the other hand, there is 

less gain from the GB method in studying enzyme catalysis, because the major 

polarization of the environment takes place in the protein and not in the solvent. Free 

energy calculations based on explicit solvent and for large fluctuations can be improved 

by reprocessing trajectories with implicit solvent. Such a procedure has  previously been 

employed by Rod & Brooks.14 The more solvent exposed the reaction is, the more is 

gained by such a procedure.

Finally, our results suggest that the atomic radii of Roux et al. work best for enzymatic 

reactions, whereas the Amber radii works better in solution. However, it is even more 

important to use a proper integration grid.
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Tables

Method Δ Areac Δ Afwd
≠ Δ Arev

≠ dTS (Å)

TIP3P -88(0.) 55(0.) 143(0.) 2.10

GBMV(I) -112(18) 46(19) 158(16) 2.13

GBMV(II) -98(8) 53(11) 152(0) 2.13

GBMV(III) -110(17) 47(18) 157(13) 2.13

GBMV(IV) -87(1) 58(5) 145(15) 2.13

QM(vac) -221(100) 0(100) 221(100) 2.84

Table 1.Reaction and activation free energies for forward and reverse methylation reaction in aqueous 

solution. Percentage deviations of the MM-QM interaction free energies from those of corresponding 

explicit solvent (TIP3P) simulations are given in parentheses.  

ρi (
Å)

TIP3P GBMV(II,8) GBMV(III,5) GBMV(III,8)

1.47 0.7 1.4 1.0 0.9

1.80 0.7 1.2 1.0 0.9

1.95 0.7 1.3 1.1 1.0

2.00 0.7 1.5 0.8 0.9

2.05 0.6 1.3 0.9 0.9

2.10 0.7 1.3 0.9 1.1

2.13 0.7 1.2 1.0 0.9

2.30 0.7 1.5 1.1 1.0

2.55 0.7 1.0 1.1 1.0

2.84 0.7 1.6 1.1 1.0

Table 2. Average root-mean-square-deviations of Cα atoms from crystal structure.
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ρi (Å) TIP3P GBMV(III,5) GBMV(III,8) GBMV(II,8)

1.47 106 112/95 109/97 109/90

1.80 106 113/94 120/99 107/94

1.95 107 112/92 118/101 107/89

2.00 109 112/96 110/93 106/92

2.05 101 112/88 113/94 112/90

2.10 107 115/97 117/99 105/93

2.13 108 115/99 119/102 109/97

2.30 108 111/93 123/100 104/91

2.55 108 113/92 112/97 112/94

2.84 108 112/95 114/99 106/97

Preserved 87 84/71 93/78 86/74

Table 3. Number of hydrogen bonds between backbone atoms (O and N) in simulations of the different 

configurations of the QM region. The numbers after the slashes indicate the number of hydrogen bonds 

common with the corresponding explicit solvent (TIP3P) simulation. The number of hydrogen bonds that 

are preserved in all simulations in a column, are listed in the last row.
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Method Δ Areac Δ Afwd
≠ Δ Arev

≠ dTS (Å)

TIP3P -25(0.) 68(0.) 92(0.) 2.05

TIP3P/GBMV(II,8) -17(10) 71(7) 87(15) 2.05

TIP3P/GBMV(III,8) -19(7) 70(4) 89(11) 2.05

TIP3P/GBMV(IV,8) -17(10) 71(7) 88(15) 2.05

GBMV(II,8) -30(7) 65(6) 95(9) 2.05

GBMV(III,8) -29(6) 65(7) 94(5) 2.05

GBMV(III,5) -12(16) 74(15) 86(19) 2.05

GBMV(III,5/8) -35(14) 61(25) 96(2) 2.10

QM/MM -7(18) 68(0) 75(45) 2.05

QM(vac) -98(100.) 27(100.) 125(100.) 2.13

Table 4.Reaction and activation free energies for the methyl transfer reaction catalyzed by COMT. The 

values in parentheses are percentage deviation of the MM-QM interaction free energy from that of the 

corresponding explicit solvent (TIP3P) simulations.
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Figure Captions

Figure 1.Atoms in the quantum system in the calculations with (a) or without (b) the 

enzyme (SAM=S-adenosylmethionine). 

Figure 2. The left panel shows the contributions to the total QM/MM free energy from 

the QM region and the MM-QM interaction free energy for the enzyme-catalyzed 

reaction (E) and the reaction in solution (S). Right panel shows the total QM/MM free 

energy for the two reactions. 

Figure 3. Free energy barriers computed for the methylation reaction in aqueous solution. 

In the left panel, barriers computed with explicit (TIP3P) and implicit. (GBMV) solvent 

using different Born radii (I-IV) are compared. In the right panel, barriers computed with 

the implicit solvent model and usingthe set II radii scaled by either 0.7 or 0.9 are shown. 

The barriers are matched to either the reactant complex (RC), transition state complex 

(TSC), or the product complex (PC). 

Figure 4.Root-mean-square-deviations (RMSD) for Cα atoms for a simulation of the 

transition state complex. Only the last 400 ps are shown..

Figure 5.Computed free energy barriers for the enzyme-catalyzed methylation reaction.  

Different GB implicit solvent models are compared with explicit solvent (TIP3P). 

Figure 6.Relative deviation of MM-QM interaction free energy changes from those 
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computed with an explicit solvent model (TIP3P). Red (left most) bars show deviations 

for the reaction energy, whereas green (center) and blue (right most) bars show deviations

for the activation energy of the forward and reverse reactions, respectively. 

Figure 7. Deviations of free energy barriers, which are computed by single step free 

energy perturbation, from the corresponding ones, that are computed by a multi-stage free

energy perturbation calculations, cf. Figure 5. Red solid lines are for calculations based 

on simulations of the reactant complex, whereas the blue dashed lines are based on 

simulations of the product complex. Three different solvent models are employed, 

namely explicit TIP3P solvent (TP, boxes), implicit GBMV(III,8) solvent (GB, circles), 

and explicit solvent reprocessed with GBMV(III,8) (TP+GB, diamonds).

Figure 8.Contributions from protein and solvent to the electrostatic potential on the 

acceptor oxygen atom (O2) versus the  potential on the donor sulfur (SD) atom for the 

reactant complex (RC) and the protein complex (PC). The two broad distributions are for 

the reaction in the solution, whereas the two pairs of narrower distributions are for the 

enzymatic reaction separated in to contributions from the protein (lower left) and from 

solvent (lower right).
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Thomas H. Rod et. al. Figure 1.
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Thomas H. Rod et. al. Figure 2.
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Thomas H. Rod et. al. Figure 3.
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Thomas H. Rod et. al. Figure 4.
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Thomas H. Rod et. al. Figure 5.
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Thomas H. Rod et. al. Figure 6
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Thomas H. Rod et. al. Figure 7
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Thomas H. Rod et. al. Figure 8
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