Distribution kinetics of polymer crystallization and the Avrami equation
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Cluster distribution kinetics is adopted to explore the kinetics of polymer crystallization. Population
balance equations based on crystal size distribution and concentration of amorphous polymer
segments are solved numerically and the related dynamic moment equations are also solved. The
model accounts for heterogeneous or homogeneous nucleation and crystal growth. Homogeneous
nucleation rates follow the classical surface-energy nucleation theory. Different mass dependences
of growth and dissociation rate coefficients are proposed to investigate the fundamental features of
nucleation and crystal growth. A comparison of moment solutions with numerical solutions
examines the validity of the model. The proposed distribution kinetics model provides a different
interpretation of the familiar Avrami equation.

I. INTRODUCTION grow by the deposition of chain segments on the nucleus
, ) o ) surface. This growth is controlled by a small diffusion coef-
Since the discovery of crystallization of thin lamellar giont at jow temperature and by thermal redispersion of
polymer crystals in solutiohthe study of polymer crystalli- ¢ oinc af the crystal/melt interface at high temperatdieus
zation has received considerable attention. Polymer CryStal:'rystallization can occur only in a range of temperatures be-

lization controls the macroscopic strugture of _the materlal,fWeen the glass transition temperatdfg and the melting
and thereby determines the properties of final polymer

2.3 e point Ty, which is always higher thaiy.
products. The morphology of polymer crystals is different As a consequence of their long-chain nature, subsequent

from that of crystals consisting of simple molecules, mainlyganglements, and particular crystal structure, polymers
due to the difference b_etween_ the chain C(znne_ctlwty n IO()Iy'crystallized in the bulk state are never totally crystalline and
mers and the qs_se_mbhes of simple moleclehis not or_1|y __a fraction of the polymer is amorphous. Polymers fail to
affects the equilibrium crystal structqres but also the k'”et'qsachieve complete crystallinity because polymer chains can-
qf (;rystal grgwth. When the system is cooled from.the. €qUl ot completely disentangle and align properly during a finite
librium melting temperaturely, to a lower crystal_llzauo_n eriod of cooling. Lamellar structures can be formed, but a
temptlaratulrle, the polymer crystﬁls c?n form tvlvoﬁ-dl'meT]smnaiing'e polymer chain may pass through several lamellae with
(2D) a.me ar st'ructures in both melt and solu ona the " the result that some segments of the polymer chain are crys-
stages: nucleation, lamellae growth, and spherulite aggreggs|jized into the lamellae and some parts of the polymer

tive growth.” The formation of three-dimensional crystal .pain are in the amorphous state between adjacent lamellae.
structure from a disordered state begins with nucleation and A well-known description of crystallization kinetics is

involves the creation of a stable nucleus from the disordere
polymer melt or solutioﬁ.Depending on whether any second
phase, such as a foreign particle or surface from anoth
polymer, is present in the system, the nucleation is classifie

as homogenous nucleatigprimary nucleatiopor heteroge- polymer crystallization by Mear&sand Ha¢3 For the bulk

neous nuclgatlomsecondary nucleatior I.n primary nucle- crystallization of polymers, the crystallization kinetics can be
ation, creation of the stable nucleus by intermolecular force?epresented as

orders the chains in a parallel array. As the temperature goes

below the melting temperaturg,, the molecules tend to

move toward their lowest energy conformation, a stiffer 1-X=eV, (1.1)

chain segment, and this will favor the formation of ordered

chains and thus nuclei. Facilitating the formation of stable

nuclei, secondary nucleation is also involved at the beginwhereX is the degree of crystallization an is the volume

ning of crystallization through heterogeneous nucleatiorof crystallization material, which should be determined by

agents, such as dust particles. Following nucleation, crystalsonsidering the following two case&) the nuclei are pre-
determined, that is, they all develop at once on cooling the

JAuthor to whom correspondence should be addressed. Fax: 91-080-2369—0|ym_eru and(b) _the crystals nucleate sporadically. For a
0683. Electronic mail: giridhar@chemeng.iisc.ernet.in spherical crystal in cas@),

gne heuristic Avrami phase transition theory. Based on work

of Avrami,*® who adapted the formulations intended for met-
llurgy to the needs of polymer crystallization, the original
erivations were simplified by Evatlsand rearranged for
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dV, = 4mr2Ldr, (1.2 W(r) = 4mr?0 — (413)r3(plX ks T In' S. (2.2

wherer represents the radius of the spherical crystal at tim%ere,a is the crystal interfacial energy adds=-kgT In Sis
tandL is the number of nuclei. Assuming the radius growsihe chemical potential difference between the two phases
linearly with time, r=«t, upon integration of Eq(1.2) and  (the polymer solution or melt and crystal phageterms of
substitution into Eq(1.1), one obtains supersaturatios. The typical structure of polymer crystal is

1 _x=e—Kt3, (1.3 thin lamellae and because of the equal probability of depo-

sition in the two lateral directions, an equilateral lamellar

whereK=(4/3)m«3L is the growth rate. For sporadic nucle- structure is proposed. The total energy of such a 2D lamellar
ation, caseb), the above argument is followed, but the num- crystal is presented as
ber of spherical nuclei is allowed to increase linearly with
time at rateu. Then nucleation from time to time t will W(a) = 4aLo - a?L(p/x)ksTIn S, (2.2

create a volume increase of ) ) )
3 3 wherea is the lateral length and is the thickness of the
dV; = (4/3)mr(t - ;) uds,. (1.4 lamellae. Obviously, the energi(a) of a crystal increases
Upon integration of Eq(1.4) betweent;=0 andt, and sub- With a and then decreases from the maximum valteat

stitution into Eq.(1.1), one obtains the critical lamellar length,
1-X=egK" (1.5 a' = 20%,/(pkaTIN ). (2.3
where.K:(1/3)m<3u. The equations can be generalized by Thys the maximum energy of the crystal, by replacgith
replacing the power of with the Avrami exponen, m®/m? according to the definition of supersaturation, is
1-X=eK" (1.6) represented as
Thus, according to these arguments, the Avrami exponent W' = 4x,Lo?[pkgT In (m©@/m(®)7]. (2.4
depends not only on the structure of the crystal but also on 0
the nature of nucleatiolf. Here the local-equilibrium concentrationr?éq) and the solu-

Though numerous models of crystal growth kineticsbility of a flat surface ismﬁ?). The expression for the nucle-
have been developéa,the Avrami equation with its basis in ation raté® is derived from the flux over the energy barrier at
rather empirical ideas is still applied to polymer crystalliza-the critical nucleus size,
tion. Our aim is to investigate if the Avrami equation can be
established by a more fundamental approach to crystalliza- | = ky exp(— W /kgT) (2.5
tion that incorporates homogeneous and heterogeneous
nucleation, uneven growth of crystals into a particle size dis? ith prefactor
tribution, and final Ostwald ripening of the crystal size dis- — (N2 12 -1
tribution. The distribution kinetics mod&l*” of nucleation, ko= (M) A20%w/ ) 2.6
growth, and aggregation results in &shape curve of crys- written in terms of monomer concentration® and crystal
tallinity versus time. Considering the deposition of polymer gensityp.
chain on a crystal surface is similar to monomer attachment  por a crystal with curved surface, the local-equilibrium
on a cluster, we adapt this kinetics model to explore polymefnterfacial concentration at the crystal surfaol is related

crystallization. An advantage of this model is the representag, ine solubility of a flat surfacmf) by the Gibbs—Thomson
tion by rate coefficients of the microscopic polymer crystal—eqwmon

lization kinetics, making the model straightforward to under-

stand, yet based on modern molecular concepts. To examine mgg =m? expQ), (2.7

the validity of this model, we will compare the results with

the Avrami equatiotf and also relate the parameters of thewhereQ =20x,,/r pkgT in terms of monomer molecular mass

two models. Xm, Surface energyr, radius of curvature, Boltzmann con-
stant kg, and absolute temperaturé. For a 2D crystal
lamella, however, the growth front is a flat surface and the

Il. DISTRIBUTION KINETICS radius of curvature is infinite. Thus, consistent with Eq.
O'F POLYMER CRYSTALLIZATION (2.7), the difference between local-equilibrium concentration
méo) and the solubility of a flat surfacmﬁf’) is negligible

Homogenous nucleation can occur when the solution idbecause) vanishes as approaches infinity.

supersaturated and thus metastable. Because of the great in- The crystal mass distribution is defined so that,t)dx
crease of the colliding probability among solute molecules inrepresents the molar concentration of crystals having values
supersaturated solution, density fluctuations increase in imf massx in the range ok to x+dx at timet. Integral forms
tensity and frequency allowing nuclei to form sporadically. of the rate expressions in the population balance equation
Classical homogeneous nucleation in the capillaritylead to moment calculations of the crystals and monomers.
approximatioﬁ9 is based on the sum of surface energy andThe general moments are defined as integrals of the crystal
formation free energy for a spherical cluster of radius distribution overx,



o 0)/dt = - (0))c(0) _ [y*
¢ty = f S DX, 2.9 dm/dt = (kg = kgm@)c@ — IX"/x. (2.13

0 For n=0 and 1 the first two moment equations for crystals
The zeroth momenin=0) is the total numbefor concentra- are
tion) of crystals; the first moment stands for the mass con-  dcQ/dt=1, (2.14
centration of the crystals. The average crystal mass is the
ratio of first moment over zeroth momentc®'Yt) dcD/dt= - x.(ky— kgm(°>)c(°) FIx (2.15
=c®(t)/c9(t). The monomers are assumed monodisperse
with momentsm®™(t)=x"m(t). Multiplying dm®/dt by x,, gives monomer mass, and then

Similar to cluster growth in the distribution kinetics EGs-(2.13 and(2.19 satisfy the mass balance,dm®/dt
model?° crystallization is the gradual building up of mono- =—dc®/dt. As time approaches infinity, the nucleation rate
mer on the nucleus surface in a melt or solution. A generafVill vanish as the supersaturation approaches unity, and a
representation of chain deposition on the crystal surface is thermodynamic  equilibrium  condition will finally be

K achieved. At equilibrium or steady state the derivative with

C(x) + M(xm):gC(x+xm). (2.9 respect to time equals zero, and by E213 or (2.15, the

kg total concentration of polymer chains in solution becomes

The rate coefficientk, andky are for growth and dissocia- My = ky/kg. (2.16)

tion, respectively. Different from general cluster distribution

theory, crystal breakage and aggregation are usually not con-

sidered in polymer crystalllzat|0n._ _ S= m(o)/mgg, c :c(”)/mg;)x”m, G:tkgm(eoq),
The population balance equatih¢hat govern the dis-

We define the dimensionless quantities,

I (2.17)
tributions of crystals and monomer are J= I/(mg%))zkg.
Jc(x, 1)/ ot = — kge(x,t) + kdj c(x',t) g x— (x' = x)]dx’ The moment equations can be written in dimensionless form,
7 dSdo=(1-9C - (X /x)J, (2.18
- t O 5(x" = x)dx’
kool )fo M3 = Xm)dX dCo/do=1, (2.19
X *
+kgm© f G 1) (X = Xp)dX' +18(x = X) dC/do =~ (1-9CO + (X /xy)J. (2.20
0

Microscopic reversibility provides the thermodynamic equi-
(2.10° Jibrium, S,¢=1, in Eq.(2.18, asdS/d6=0 andJ=0 at the
and end of crystallization. For homogeneous nucleation, the ini-
B B tial conditions areS(9=0)=S,, C%(#=0)=0, CV(=0)=0,
- L.mo / / / meaning that no preexisting nuclei are involved. The source
MO/ = = kg f 0 o', D’ + kdfx cx9 term J represents the nucleation rate of crystals of mess
The mass of a critical nucleus relative to the monomer
mass depends solely on the interfacial energy and the

. 20
where the homogeneous nucleation rate for crystals of critisupersaturatiof
cal nucleus masg’ is | §(x—x*). The distripution of the X* x5 = (0/ln 9)°, (2.21)
crystals changes according to E@.10, which becomes,
when the integrations over the Dirac distributions are perwhered represents the dimension of the crystal structure and

X 8(X = Xr)dX = 18X = X)X Xy (2.12)

formed, the finite-difference differential equation, w presents the ratio of interfacial energy to thermal energy,
JIC(X, 1)/t = = kyC(X, 1) + KgC(X + X) = kc(x)m(© written as
- 1/3
Fkgo(x X MO +1 S(x—x). (2.103 ® = (41pl 3%y) 20X pKg T (2.22

for 3D spherical structures and

A. Moment methods @ = 20(XyL/p) kg T (2.23

The general moment equations are determined by applyfor 2D lamellar systems. The critical nucleus mass increases
ing the operation/j[ ]x"dx to Egs.(2.10 and(2.11), which with time as supersaturatioB decreases. The scaled mass

yields balance equation in a closed system follows from E24.8
n and(2.20,
de/dt= = (kg + kgm®)c™ + X () CH() +S(0)=CP + S, (2.24
j=0

0 nei i « hereCY is the initial mass of crystals in polymer solution
X X[ (= 1)MIky + kym©@ + Ix™" 2.1 w 0 ; : :

O L= D kg + g™ (212 or melt, representing heterogeneous nucleation nuclei or
and seeds. For homogeneous nucleati@@l,)zo. Based on Eq.



(2.5), the homogeneous nucleation rate is written in dimenB. Numerical methods

sionless form as The growth and dissociation rate coefficients are as-

J=aSexg- (d- 1)t (In 941] (2.25  sumed constant in the above moment method, but more gen-
erally, the rate coefficients are power law expressions for the

with a=(20xy/ m)?/pky. By Eq. (2.2, the number of mass dependené®For crystal growth, the rate coefficient
monomers included in the critical nucleus;,/ Xy, is written  may be written as

in terms of supersaturatio® for the specific lamellar struc-
ture, kg(X) = kX", (2.36
= w2(In 92 22 where k4 is a pr.efact.or_whose u.nits are d_etermined by .the
X = &H(In 9 (2.28 power A. The dissociation rate is determined by applying
The substitution of the scaled nucleation rate yields the fullymicroscopic reversibility for the growth process,
dimensionless equations for 2D lamellae system, ky(X) = nﬁgkg(x). (2.37
=(1 - 0 — )2 —_ .2 2
dSdg=(1-9C aw’S exp- ?In 9/(In 97, The exponenk equal to 0, 1/3, and 2/3 represents surface-
(2.27 independent, diffusion-controlled, and surface-controlled
deposition rates, respectively.

dC9dg= oS exp- ?In S), (2.29 We define dimensionless quantifitsconsistent with
Eq. (2.17,
and
E=X/%y,  O=tkgm %, S=m/m?,
dC/dg= - (1 -9C? + 0w’ exp(— w¥/In )/(In S)2. (2.38
(2.29 C=cxy/m?, CV=cWmOx}, J=1/km?x,

For 3D spherical crystal growth, however, the differenceand note that is the number of monomers in a crystal. The
between the local-equilibrium interfacial concentration at thetime 6, crystal size distributiorC(¢, 6), and monomer con-
curved crystal surfacefngg, and the solubility of a flat sur- centrationS(6) are scaled by the equilibrium monomer con-
face,mf), cannot be neglected. The Gibbs—Thomson factocentrationmﬁf’). Substitution of Eq.(2.39 into Egs.(2.10

Q in Eq. (2.7) is written in term of crystal size/x, and(2.11) yields population balance equations in dimension-
Q.= ol (X% 2, (2.39 'essform
dS6)/do=[-S(6) +e™¥]C™ + J¢ (2.39

whered is the dimension of the crystal structure ands the
interfacial energy. Instead of being scaled rh&?q) asin2p and

systems, the dimensionless quantities are redefined as JIC(&,0)/00=SO)[- £'C(&,0) + (6- DMC(£-1,6)]
S=mOm?, c®=c/(mP), 6=tkym?, - exg Q(§)]8'C(£,0) + ex{ Q¢+ 1)]
2. *
I= 1Ok, (2.39 X(E+DMC(E+1,0)-IE-E), (240

where (&) is related to the crystal dimensiay®
Equation(2.13—2.15 are moment equations, so the single

— el
crystal sizex/x,, is approximated by average size of crystal Q9 = Wl (2.49)
C?9, Thus Egs(2.13—(2.19 are scaled in the form Since Eq.(2.39 is a moment equatiorf), is related to the
i 9
d9de= (- S+e™)CO - @3S average number of monomers in the cry<taye,
— avg) 1/d
xexd— w¥2(In 92/(In 97, (2.32 = wl(CT97E. (2.42
We note that moment equations cannot be derived because of
dC9/do = oS exd - w%2(In 97, (2.33 £ in the exponential term. Thus, moment methods are not
applicable forh>0 and numerical schemes have to be em-
and ployed to solve the equations.
dC/dg=- (- S+e")CO + 0o’
xexd- ¥2(In 92)/(In S, (2.34 C. Heterogeneous nucleation

B v 1/3 ] To promote nucleation in supersaturated liquid or glass,
where Q,=w/(C*)™= represents the average Gibbs—gma| impurity(second phaseparticles are often introduced
Thomson effect. . _ deliberately. These impurity particles, acting as nucleation
.The crystallm!ty is defined as the ratio of the mass CryS-seeds, grow by depositing monomer on their surface. The
tallized at timet divided by the total mass crystallized, activation energy for homogeneous nucleation presents a sig-
X=(CW - Cgl))/(cgl) _ Cgl)). (2.35 nificant barrier for s_tablg n_uc_lei to be formed, where_as het—
erogeneous nucleation is limited only by monomer diffusion
The ordinary differential moment equations are readilyto the solid surfaces. For these ideal conditions, homoge-

solved by standard software. neous nucleation would be negligible and heterogeneous
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FIG. 1. Time evolution o5, C©, C&9 andX as« varies among 10, 1072,
1078, and 10* with w=5, A=0.

geneous nucleation, we setO0, thus the growth rate of the
number of crystalsiC'?/dé, equals zero, and the population

neous nucleation is expressed in terms of supersatur&tion
and scaled time),

X=[S-S0)(S-S9- (2.45

Substitution of Eq(2.44) into Eq. (2.45 results directly in
the crystallinity versus time evolution equation,

X=1-exg-CL0), (2.49

which is the Avrami equation with growth rake= cg’)kg and
Avrami exponenn=1.

IIl. RESULTS AND DISCUSSION

The flat growth surface of lamellar crystal simplifies
polymer nucleation and growth into readily solved moment
equations by reducing the Gibbs—-Thomson effects. These
moment differential equations, Eq&.27—2.29, are solved
by NDSOLVE in Mathematic& for various values of the pa-
rameters. The parameterrepresents the ratio of interfacial
energy to thermal energgEq. (2.22) and, based on pub-
lished values for the interfacial enerﬁfyis chosen to span
two orders of magnitude, 0.1-10. The nucleation rate prefac-
tor a, chosen to span widely from 0.0001 to 100, depends on
the combination of the liquid-solid interfacial energy,
monomer molecular mass,, solid phase density, and
growth rate coefficienk,. For homogeneous nucleation, the
initial source terrrcgo) is set to zero. An initial condition of
$=50 is chosen to minimize the effects of denucleation in
the computation.

Figure 1 presents the time dependence of the key vari-
ables in polymer crystallization, as computed via distribution
kinetics. The time evolutions of supersaturati®Fig. 1(a)],
number of crystal<C® [Fig. 1(b)], the average number of
crystallized monomer€?9 [Fig. 1(c)], and the degree of
crystallinity X [Fig. 1(d)] are shown at various values af
for the 2D system. A typicab-shape curve of polymer crys-
tallization is confirmed in Fig. (B). As the prefactorx in-
creases, the overall crystallization rate increases, which is
shown by the time needed to reach the steady state. Atarge
also leads to a large number of crystals at equilibriifig.
1(b)]. The average number of monomers in the crystal at
equilibrium C39 decreases aa rises[Fig. 1(c)], since large
a means a greater nucleation rate and results in a larger
number of crystals at equilibrium. The prefactoalso has a
negative influence on the induction time of crystallization
because a large initial nucleation rate will shorten the induc-

Yon time. The crystallinity time dependenfig. 1(d)] is a

mirror image of the supersaturation time evolutipfig.

balance equations reduce to a single ordinary differential

equation. For the case 6I=0 (flat surface,

dSde=(1-9C, (2.43

TABLE |. Effect of @ on Avrami exponenn for A\=0, =5, =50, and
cP¥=o.

where Cf)o) is the number of nucleation agents. The exact

solution, given the initial conditios(6=0)=S,, is written as
S=1+(S- Dexp- CP0). (2.44)

Consistent with the crystallinity definition, E¢2.35, and
mass conservation, EQR.24), the crystallinity for heteroge-

a n (2D) n (3D)
10 2.20 1.00
1072 2.17 1.23
101 2.10 1.46
1° 1.44 1.00
107 1.00 1.00




—ln (1 -X)

TABLE Il. Effect of @ on Avrami exponenh for «=0.1,A=0, =50, and 10
c¥=o.
1
® n (2D) n (3D)
0.1 1.97 1.9 01
4.0 1.80 1.48
5.0 1.77 1.46 0.01 a=1 1077 107
6.0 1.76 1.35
0.001
0.1 10

7.0 1.75 1.12
... 0.001

1000
10 1.75
(@) 0

1(a)]. Following a Sshape curve, as observed in experi-
ments, the crystallinity evolves to unity as supersaturation 2
decreases to the equilibrium state. <
Because the plotted experimental data and simulations =
are not strictly straight lines, a defined method is needed to 0.01
determine the slopes. The straight part of most plots begins
at X=0.1 and ends aX=0.9, and includes the most signifi- )
cant range of data. We therefore used points corresponding to 0.0001 0.001 0.01 0.1 1 10 100
this interval in the measurement of slopes reported in (b) 6
Tables I-1Il. FIG. 2. The effects ofx on (a) 2D and(b) 3D crystallinity plots withw
The effects ofa on the Avrami exponent are compared =5, \=0, =50, andC{”=0.
for 2D and 3D systems in Fig. 2. The interfacial enesgis
set to 5, a surface-independent growth and dissociation rat
is proposed(A=0), and the prefactor is chosen to span
widely from 10 to 1C7. According to Eq.(1.6), the Avrami
exponentn is the slope of the double logarithm plot of
-In(1-X) versus scaled timé. Figure 2 presents the Avrami
plots for 2D and 3D systems asvaries from 0.0001 to 100.
In contrast to the Avrami equation, these plots are not strictly

St{?igh.t Iines,dblét curve S“r?htlfy UFI) at the b?ginning”pf €YS"hucleation and growth. By moment computations, the effects
ta |z§1t|on and down 'at.t € fina stage o c_;rysta_lzatllon.of o are investigated for the 2D and 3D systeff&g. 3).
Curving up at the beginning is caused by the induction tlmeFigure 4 shows results of numerical computations dor

ancillghe fma{ C(;";ﬂn? SPSW:\ ShOV_VS the ?_pproach_'([jo Zaturat'orbqual to 4, 5, and 6. The dotted lines represent 2D while the
ay - reported that the Avrami equation provided a poor, iy jines represent the 3D solution. The slopes for Figs. 3
approximation at the final stage of crystallization because

experimental data deviated from the straight line by curving

%?ope increases asvaries from 10% to 0.1, and drops down
to 1.00 asa increases to 1. Whea is greater than unity or
less than 10%, no measurable slope change. All the plots
with « greater than 1.0 collapse into one straight line and all
the plots witha less than 10" are only transposed horizon-

The ratio of interfacial to thermal energy, influences

down. We conclude that the distribution kinetics model, by ”5’
accurately predicting this behavior, more realistically repre-
sents the curve. g1
In the 2D system, an apparent slope difference of the o 03
Avrami plots is observed. The slope value for each plot is =
. . 0.1 =0 s 7
measured and tabulated in Table 1. We note the slope in- 0.05
creases from 1.00 a¥=10 to 2.20 ata=10"* However,
when « is less than 10, the lines move horizontally right 0.01
and the slope variation is too small to be measured. All plots (@) 0.001 0.01 0.1 (; 101001000
collapse into one straight line whenis greater than 70 In 10
3D a smaller slope difference is observigedg. 2(b)]. The 5
TABLE IlIl. Effect of N on Avrami exponenn for «=0.1, 0=5, §=50, 5? 0: @-0.1
C¥=0.0001, andcy’=0. = -
T 01
N n (2D) n (3D) 0.05
0 1.70 1.44 0.01
1/3 2.00 1.64 0.01 0.1 1 10 100 1000
2/3 3.09 2.57 (b) 0
0.93 5.27 4.29
0.98 5.32 4.50 FIG. 3. The effects ofw on (a) 2D and (b) 3D crystallinity plots by a

moment solution withw=0.1,\=0, =50, andCEJO):O.
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FIG. 4. The comparison of crystallinity plots by numerical solution for 2D
(dotted ling and 3D(solid line) with A=0, a=0.1, and$,=50. FIG. 6. The effect of initial supersaturatic on 2D crystallinity witha
=0.1, w=5,\=0, andC\”=0.

and 4 are reported in Table Il. The slope variation aas
changes is quite small in both 2D and 3D, and a larger slopghe Avrami curves to smaller times. Changifg has little
is observed in the 2D case. According to E2,.26), a small  influence on the slope, which increases from 1.69 to 1.78
value of w leads to a small critical size of crystal at constantwhen S, increases from 5 to 100.
supersaturation, and finally leads to a large nucleation rate. The exponent of growth and dissociation ratess 0,
Increasingw delays nucleation and the decrease of superd/3, and 2/3, for surface-independent, diffusion-controlled,
saturation. Figure (8) presents the double logarithm plots as and surface-controlled deposition rate, respectivelg. 7).
o varies among 0.1, 4, 7, and 10 for the 2D system. Differenffo explore more thoroughly the effect af we included\
slopes, ranging from 1.75 at=10 to 1.97 atw=0.1, are =0.93 and 0.98 in Table Ill. A possible explanation for the
observed(Table ). Similar to the effect of the nucleation largern (>2/3) is the increasing mass dependence of depo-
prefactor , the influence of interfacial energy is notable sition rate caused by shear force during fluid movement or
only if w is small. The slope difference disappears wheis by microscopic structural chang%%Equations(z.sg and
large, e.g., the slope ai=7 is almost same as at=10. A  (2.40 were solved at the different valuesoby a numerical
reasonable explanation is that the crystal growth becomes thgocedure described previou§E/According to Egs.(2.39
dominant term ifw is large, since the nucleation term expo- and(2.42), a nonzero initial condition otgo) should be cho-
nentially decreases with? as shown in Eq(2.25. Inthe 3D sen to avoid singularities ne&r0 in the numerical compu-
system, a more noticeable slope variation is observed at ditation. In our simulation$,=50, CE,O):O.OOOL and:él):O
ferent w. The slope varies from 1.90 to 1.12 aschanges are the initial conditions. Figures(@ and 7b) present the
from 0.1 to 7. The explanation for the greater influencewof effects of A on 2D and 3D systems, respectively. Different
in the 3D system, according to E(.25), is that the nucle-
ation rate is a function o&® in 3D and ofw? in 2D. Com-
paring the numerical and the moment res(Rigs. 3 and 4,
respectively reveals that the numerical result of crystallinity
reaches an asymptotic value at large time while the moment
result continues to increase. This is the influence of denucle-
ation, which is ignored in the moment computations.
Different values ofo andw have the expected effects as
shown in Fig. 5, larger values of shift the curves to smaller
times, whereas larger values @fgive smaller times. These
findings for 2D are similar to 3D results. Figure 6 shows that
the effect of increasing the initial supersaturation is to shift
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T 0
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<
T 0.1
0.01 / 0.05
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—
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FIG. 5. The effects of different values af andw on 2D crystallinity with
A=0, $=50, andC{”=0; I—=100, ®=0.001; Il—a=0.001,w=0.001;  FIG. 7. The effects ok with @=0.1, w=5, $=50, C"=0.01, andC{"’'=1
lll— @=100, w=10; IV—a=0.001,0=10. for (@) 2D and(b) 3D.
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FIG. 9. The comparison of experimental data of nylon-6 and moment solu-
1 tion: (M), T=188 °C;(A), T=190 °C;(®), T=192 °C.
%
= ol “’7 ? 6 become unstable and dissolve instantaneddsigile nuclei
! larger than the critical size keep growing. At the beginning of
.0 /// crystallization when the supersaturation is large, the denucle-
R / ation rate, compared with nucleation rate, is too small to
0.001 : . . .
0.001 001 0.1 1 w100 have a noticeable effect on the time evolution of degree of
(b) 0 crystallinity?® As the crystal keeps growing, however, more

and more nuclei become unstable and tend to dissolve be-
FIG. 8. The comparison of moment methaished ling with numerical  case of the increasing critical size of nucleus. At the end of
method(solid line) for: (a) « equal to 0.1, 0.01, and 0.001 with=5, \ . . . .
=0, $=50, andC®=0; (b) w equal to 4, 5, and 6 withe=0.1,\=0, S, crystalll-zatlon, the effect of denucleatlpn, compared ywth the
=50, andc®=0. nucleation rate, can become substantial, and is manifested as
Ostwald ripening.
The validity of the distribution kinetics model is also
xamined by comparison with experimental dé&fag. 9.
he points are experimental datdor nylon-6 based on real
time t (min) at T=188, 190, and 192 °C. The initial super-
gaturatiorso has not been reported for the experiments and is
assumed to be 50 in the computations. To compare with the
model based on dimensionless tirﬁetkgmgg, a transposi-
tion of the simulation results is applied. According to the
qdefinition of dimensionless time, E@2.17), a distance of

slopes are confirmed asvaries in both 2D and 3D cases, as
shown in Table Ill. The range of slope values is consisten
with reported experimental measureméhter the Avrami
exponent in Eq. (1.6), 1<n<4. Avrami exponents greater
than 4 are occasionally reported; for example, slopes of up t
5.0 for syndiotactic polystyrene crystallization were found
by Yoshioka and Tashire who suggested conelike spheru-
lite growth as a potential explanation for the large value.of

The influence of geometry dimension is also confirme ©) e '
by comparing the slopes for 2D and 3D systems. Smalletn(kgmeq) u.nlts IS transposed_horlzontally to the left to con-
slopes are found in the 3D system, as shown by Tables |I|[Vert the simulation results into plots based on real time
The parametric effects are also different for 2D and 3D sys{(Min). A zero horizontal distance is trar(105)posed to fit the
tems. We note thab has less effect on the Avrami exponent xperimental data ar=188 *C, thuskgm,, =1.00 min™,
in the 2D system, whereas has a larger effect. Compared Similarly, the values O'kgméq) at T=190 and 192 °C are
with the effects of the other parametekshas a substantial readily determined by the measurements of the horizontal
influence on the Avrami exponent. transposition distance to be 0.80 and 0.68 thimespec-

A comparison of moment methods and numerical methiively. The experimental measurements &t190 and
ods is made for the 2D system to investigate the effects 0¥92 °C are horizontal transpositions of the simulation results
denucleatior(Fig. 8). Figure §a) presents the comparison of atT=188 °C, and there is no slope variation. This is consis-
moment and numerical solutions asvaries. Figure )  tent with the understanding thbgmé‘f} depends on tempera-
shows the comparison of these two solutions, both for flature.
growth surfaces, at differen. The dotted line presents the Figure 10 presents an Avrami plot for experimental poly-
moment simulation and the solid line is the numerical soluropylene(PP data at 110 °C.The scattered points are the
tion. Although the two solutions are consistent at the beginimeasurements, the solid line is a fit of the distribution kinet-
ning of crystallization, an increasing discrepancy is observedcs model, and the dashed line is the Avrami equation with
near the end of crystallization, where crystallinkyis about n=3.0." Figure 1Qa) shows the evolution of crystallinitiX
0.99. This discrepancy caused by the increasing effect ofersus real time. The Avrami equation with=3.0 fits the
denucleation that can only be computed numerically. Dedata fairly well except where the data curve down and devi-
nucleation, the reverse process of nucleation, results from thate from the Avrami equation at the end of crystallization
stability shift of formed crystals from stable to unstable. The[Fig. 1ab)]. The solid line is our model prediction fox
reduction of supersaturation during crystallization, according=2/3, «=0.1, andw=>5. The predicted slope is 3.09, as re-
to Eq. (2.26), increases the nucleus critical size. As the su-ported in Table Ill, and is close to the value 3.0 reported
persaturation decreases, nuclei smaller than the critical siz®y Ryan’ The scaling factor for time i&gmf)xﬁ]:&m
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0 / The effect of\ on the Avrami exponent is also investi-
T 0.1 i gated for heterogeneous nucleation, as shown in Fig. 12. It is
! A observed that the overall crystallization rate increases. as
0.01 The equilibrium crystallinity is reached #=10, 100, and
1000 atA=2/3, 1/3, and Orespectively. The Avrami expo-
0-006 o1 0(‘)501 05 1 s 10 nent n also increases with, predicting values 1.76 at
b R 0 | =2/3,1.31 atA=1/3, and1.00 at\=0. Compared witm for

homogeneous nucleation in Table 1ll, thevalues for het-
FIG. 10. The fit of the model to experimental data of polypropyléRef.  erogeneous nucleation are small. This is explained by the
7); the solid line is a fit of the model and the dashed line is the Avrami 5qgitional kinetics contribution caused by the increase of the
equation withn=3.0. .. . .

number of nuclei in homogeneous nucleation, which does

not arise in heterogeneous nucleation because the number of
X 1073 min™L. It is interesting that the curving down at the nuclei is constant. We also note that the slope variation is
end of crystallization is predicted in the crystal size distribu-smaller than in homogeneous nucleation, because the addi-
tion model and fits the experimental data quite well. Thetional kinetics contribution in homogeneous nucleation in-
Avrami equation, by contrast, provides a constant slope, andreases as.
thus fits only the intermediate data.

We also _compar_ed the Avram exponent determined Ny, CONCLUSION
our theory with published experimental measurements. Ac-
cording to Tables I-lll, fon <2/3, the model shows a range Nucleation and crystal growth are essential phenomena
of 1-5 for the Avrami exponent, consistent with most pub-in quantitatively describing the evolution of a crystallizing
lished valueg®~28 polymer solution or melt. A kinetics model based on cluster
For heterogeneous nucleation, the distribution kineticdlistribution dynamics incorporates these processes and real-

directly results in an Avrami equation with growth rate istically represents the time evolution of crystallinity. The
:cg’)kg and Avrami exponenin=1, as suggested in Eq. model includes rate coefficients for crystal grovkhand
(2.46). The double logarithm plots are made to investigatecrystal dissociatiorky. Based on widely accepted notions, a
the effect ofC". It is confirmed that the crystallization rate 2D lamellar structure for the polymer crystal nucleus is pro-
increases with the number of nucleation agents, as shown iposed, and thus the Gibbs—-Thomson effect is excluded for
Fig. 11. The Avrami exponent, which is the slope of thethe 2D lamellar structure system. A 3D spherical structure is
double logarithm plot, always equals unity far=0. It is  also investigated to demonstrate the influence of Gibbs—
possible, however, that homogeneous and heterogeneolifomson effects. Population balance equations based on

nucleation occur simultaneously, yieldimg> 1. crystal and amorphous polymer segments lead to the dy-
namic moment equations for the molar concentrations for

mass independent monomer deposition rate coefficients. Nu-
merical solution is required if the deposition rate is diffusion
or surface controlled and the rate coefficients are conse-
guently size-dependent power expressions.

Although it is widely agreed that the Gibbs—Thomson
effect is critical for understanding nucleation and crystal
growth, less acknowledged is that the Gibbs—Thomson ef-
fects can be neglected for the flat growth surface of a specific
lamellar structure. Our proposal is that the combined pro-
2 51020 50 100 cesses of nucleation and crystal growth can be described by

8 moment equations developed from distribution kinetics, i.e.,

FIG. 11. The Avrami plot a€{ varies from 0.01 to 0.03 in steps of 0.01 for p0pl~_'|ati0n d_ynamics theorY- The Ya"dity of moment meth-
heterogeneous nucleation with=0 and$,=50. ods is examined by comparison with the numerical methods.
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