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Cluster distribution kinetics is adopted to explore the kinetics of polymer crystallization. Population
balance equations based on crystal size distribution and concentration of amorphous polymer
segments are solved numerically and the related dynamic moment equations are also solved. The
model accounts for heterogeneous or homogeneous nucleation and crystal growth. Homogeneous
nucleation rates follow the classical surface-energy nucleation theory. Different mass dependences
of growth and dissociation rate coefficients are proposed to investigate the fundamental features of
nucleation and crystal growth. A comparison of moment solutions with numerical solutions
examines the validity of the model. The proposed distribution kinetics model provides a different
interpretation of the familiar Avrami equation.
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I. INTRODUCTION

Since the discovery of crystallization of thin lame
polymer crystals in solution,1 the study of polymer crystall
zation has received considerable attention. Polymer cry
lization controls the macroscopic structure of the mate
and thereby determines the properties of final poly
products.2,3 The morphology of polymer crystals is differe
from that of crystals consisting of simple molecules, ma
due to the difference between the chain connectivity in p
mers and the assemblies of simple molecules.4 This not only
affects the equilibrium crystal structures but also the kine
of crystal growth. When the system is cooled from the e
librium melting temperatureTm to a lower crystallizatio
temperature, the polymer crystals can form two-dimensi
s2Dd lamellar structures in both melt and solution5 via the
stages: nucleation, lamellae growth, and spherulite agg
tive growth.6 The formation of three-dimensional crys
structure from a disordered state begins with nucleation
involves the creation of a stable nucleus from the disord
polymer melt or solution.7 Depending on whether any seco
phase, such as a foreign particle or surface from an
polymer, is present in the system, the nucleation is class
as homogenous nucleationsprimary nucleationd or heteroge
neous nucleationssecondary nucleationd.8 In primary nucle
ation, creation of the stable nucleus by intermolecular fo
orders the chains in a parallel array. As the temperature
below the melting temperatureTm, the molecules tend
move toward their lowest energy conformation, a st
chain segment, and this will favor the formation of orde
chains and thus nuclei. Facilitating the formation of sta
nuclei, secondary nucleation is also involved at the be
ning of crystallization through heterogeneous nuclea
agents, such as dust particles. Following nucleation, cry
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grow by the deposition of chain segments on the nuc
surface. This growth is controlled by a small diffusion co
ficient at low temperature and by thermal redispersio
chains at the crystal/melt interface at high temperature.9 Thus
crystallization can occur only in a range of temperatures
tween the glass transition temperatureTg and the meltin
point Tm, which is always higher thanTg.

As a consequence of their long-chain nature, subse
entanglements, and particular crystal structure, poly
crystallized in the bulk state are never totally crystalline
a fraction of the polymer is amorphous. Polymers fai
achieve complete crystallinity because polymer chains
not completely disentangle and align properly during a fi
period of cooling. Lamellar structures can be formed, b
single polymer chain may pass through several lamellae
the result that some segments of the polymer chain are
tallized into the lamellae and some parts of the poly
chain are in the amorphous state between adjacent lam

A well-known description of crystallization kinetics
the heuristic Avrami phase transition theory. Based on w
of Avrami,10 who adapted the formulations intended for m
allurgy to the needs of polymer crystallization, the orig
derivations were simplified by Evans11 and rearranged fo
polymer crystallization by Meares12 and Hay.13 For the bulk
crystallization of polymers, the crystallization kinetics can
represented as

1 − X = e−Vt, s1.1d

whereX is the degree of crystallization andVt is the volume
of crystallization material, which should be determined
considering the following two cases:sad the nuclei are pre
determined, that is, they all develop at once on cooling
polymer, andsbd the crystals nucleate sporadically. Fo0-

spherical crystal in casesad,

http://dx.doi.org/10.1063/1.1844373
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rystal
dVt = 4pr2Ldr, s1.2d

wherer represents the radius of the spherical crystal at
t andL is the number of nuclei. Assuming the radius gro
linearly with time, r =kt, upon integration of Eq.s1.2d and
substitution into Eq.s1.1d, one obtains

1 − X = e−Kt3, s1.3d

whereK=s4/3dpk3L is the growth rate. For sporadic nuc
ation, casesbd, the above argument is followed, but the nu
ber of spherical nuclei is allowed to increase linearly w
time at rateu. Then nucleation from timeti to time t will
create a volume increase of

dVt = s4/3dpk3st − tid3udti . s1.4d

Upon integration of Eq.s1.4d betweenti =0 andt, and sub
stitution into Eq.s1.1d, one obtains

1 − X = e−Kt4, s1.5d

whereK=s1/3dpk3u. The equations can be generalized
replacing the power oft with the Avrami exponentn,

1 − X = e−Ktn. s1.6d

Thus, according to these arguments, the Avrami exponn
depends not only on the structure of the crystal but als
the nature of nucleation.14

Though numerous models of crystal growth kine
have been developed,15 the Avrami equation with its basis
rather empirical ideas is still applied to polymer crystall
tion. Our aim is to investigate if the Avrami equation can
established by a more fundamental approach to crysta
tion that incorporates homogeneous and heterogen
nucleation, uneven growth of crystals into a particle size
tribution, and final Ostwald ripening of the crystal size d
tribution. The distribution kinetics model16,17 of nucleation
growth, and aggregation results in anS-shape curve of crys
tallinity versus time. Considering the deposition of polym
chain on a crystal surface is similar to monomer attachm
on a cluster, we adapt this kinetics model to explore poly
crystallization. An advantage of this model is the represe
tion by rate coefficients of the microscopic polymer crys
lization kinetics, making the model straightforward to und
stand, yet based on modern molecular concepts. To exa
the validity of this model, we will compare the results w
the Avrami equation18 and also relate the parameters of
two models.

II. DISTRIBUTION KINETICS
OF POLYMER CRYSTALLIZATION

Homogenous nucleation can occur when the solutio
supersaturated and thus metastable. Because of the gr
crease of the colliding probability among solute molecule
supersaturated solution, density fluctuations increase i
tensity and frequency allowing nuclei to form sporadica
Classical homogeneous nucleation in the capilla
approximation19 is based on the sum of surface energy

formation free energy for a spherical cluster of radiusr,
-
s

t
r
-

e

in-

-

Wsrd = 4pr2s − s4/3dpr3sr/xmdkBT ln S. s2.1d

Here,s is the crystal interfacial energy andDG=−kBT ln S is
the chemical potential difference between the two ph
sthe polymer solution or melt and crystal phased in terms of
supersaturationS. The typical structure of polymer crystal
thin lamellae and because of the equal probability of d
sition in the two lateral directions, an equilateral lame
structure is proposed. The total energy of such a 2D lam
crystal is presented as

Wsad = 4aLs − a2Lsr/xmdkBT ln S, s2.2d

where a is the lateral length andL is the thickness of th
lamellae. Obviously, the energyWsad of a crystal increase
with a and then decreases from the maximum valueW* at
the critical lamellar length,

a* = 2sxm/srkBT ln Sd. s2.3d

Thus the maximum energy of the crystal, by replacingSwith
ms0d /m`

s0d according to the definition of supersaturation
represented as

W* = 4xmLs2/frkBT ln sms0d/m`
s0ddg. s2.4d

Here the local-equilibrium concentration ismeq
s0d and the solu

bility of a flat surface ism`
s0d. The expression for the nuc

ation rate20 is derived from the flux over the energy barrie
the critical nucleus size,

I = kn exps− W* /kBTd s2.5d

with prefactor

kn = sms0dd2s2sxm/pd1/2r−1 s2.6d

written in terms of monomer concentrationms0d and crysta
densityr.

For a crystal with curved surface, the local-equilibri
interfacial concentration at the crystal surfacemeq

s0d is related
to the solubility of a flat surfacem`

s0d by the Gibbs–Thomso
equation,

meq
s0d = m`

s0d expsVd, s2.7d

whereV=2sxm/ rrkBT in terms of monomer molecular ma
xm, surface energys, radius of curvaturer, Boltzmann con
stant kB, and absolute temperatureT. For a 2D crysta
lamella, however, the growth front is a flat surface and
radius of curvaturer is infinite. Thus, consistent with E
s2.7d, the difference between local-equilibrium concentra
meq

s0d and the solubility of a flat surfacem`
s0d is negligible

becauseV vanishes asr approaches infinity.
The crystal mass distribution is defined so thatcsx,tddx

represents the molar concentration of crystals having v
of massx in the range ofx to x+dx at time t. Integral forms
of the rate expressions in the population balance equ
lead to moment calculations of the crystals and monom
The general moments are defined as integrals of the c

distribution overx,
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csndstd =E
0

`

csx,tdxndx. s2.8d

The zeroth momentsn=0d is the total numbersor concentra
tiond of crystals; the first moment stands for the mass
centration of the crystals. The average crystal mass i
ratio of first moment over zeroth moment,cavgstd
=cs1dstd /cs0dstd. The monomers are assumed monodisp
with momentsmsndstd=xm

n ms0dstd.
Similar to cluster growth in the distribution kineti

model,20 crystallization is the gradual building up of mon
mer on the nucleus surface in a melt or solution. A gen
representation of chain deposition on the crystal surface

Csxd + Msxmd

kd

kg

Csx + xmd. s2.9d

The rate coefficientskg andkd are for growth and dissoci
tion, respectively. Different from general cluster distribut
theory, crystal breakage and aggregation are usually not
sidered in polymer crystallization.

The population balance equations21 that govern the dis
tributions of crystals and monomer are

]csx,td/]t = − kdcsx,td + kdE
x

`

csx8,tddfx − sx8 − xmdgdx8

− kgcsx,tdE
0

`

ms0ddsx8 − xmddx8

+ kgm
s0dE

0

x

csx8,tddsx − xmddx8 + Idsx − x*d

s2.10d

and

]msx,td/]t = − kgm
s0dE

0

`

csx8,tddx8 + kdE
x

`

csx8,td

3dsx − xmddx8 − Idsx − x*dx* /xm, s2.11d

where the homogeneous nucleation rate for crystals of
cal nucleus massx* is I dsx−x*d. The distribution of the
crystals changes according to Eq.s2.10d, which becomes
when the integrations over the Dirac distributions are
formed, the finite-difference differential equation,

]csx,td/]t = − kdcsx,td + kdcsx + xmd − kgcsxdms0d

+ kgcsx − xmdms0d + I dsx − x*d. s2.10ad

A. Moment methods

The general moment equations are determined by a
ing the operatione0

`f gxndx to Eqs.s2.10d and s2.11d, which
yields

dcsnd/dt = − skd + kgm
s0ddcsnd + o

j=0

n

s j
nd

3cs jdxm
n−jfs− 1dn−jkd + kgm

s0dg + Ix*n s2.12d
and
e

l

-

-

-

dms0d/dt = skd − kgm
s0ddcs0d − Ix* /xm. s2.13d

For n=0 and 1 the first two moment equations for crys
are

dcs0d/dt = I , s2.14d

dcs1d/dt = − xmskd − kgm
s0ddcs0d + Ix* . s2.15d

Multiplying dms0d /dt by xm gives monomer mass, and th
Eqs. s2.13d and s2.15d satisfy the mass balance,xmdms0d /dt
=−dcs1d /dt. As time approaches infinity, the nucleation r
will vanish as the supersaturation approaches unity, a
thermodynamic equilibrium condition will finally b
achieved. At equilibrium or steady state the derivative
respect to time equals zero, and by Eq.s2.13d or s2.15d, the
total concentration of polymer chains in solution becom

meq
s0d = kd/kg. s2.16d

We define the dimensionless quantities,

S= ms0d/meq
s0d, Csnd = csnd/meq

s0dxm
n , u = tkgmeq

s0d,

s2.17d
J = I/smeq

s0dd2kg.

The moment equations can be written in dimensionless f

dS/du = s1 − SdCs0d − sx* /xmdJ, s2.18d

dCs0d/du = J, s2.19d

dCs1d/du = − s1 − SdCs0d + sx* /xmdJ. s2.20d

Microscopic reversibility provides the thermodynamic e
librium, Seq=1, in Eq. s2.18d, as dS/du=0 andJ=0 at the
end of crystallization. For homogeneous nucleation, the
tial conditions areSsu=0d=S0, Cs0dsu=0d=0, Cs1dsu=0d=0,
meaning that no preexisting nuclei are involved. The so
term J represents the nucleation rate of crystals of masx*.

The mass of a critical nucleus relative to the mono
mass depends solely on the interfacial energy and
supersaturation,20

x * /xm = sv/ln Sdd, s2.21d

whered represents the dimension of the crystal structure
v presents the ratio of interfacial energy to thermal ene
written as

v = s4pr/3xmd1/32sxm/rkBT s2.22d

for 3D spherical structures and

v = 2ssxmL/rd1/2/kBT s2.23d

for 2D lamellar systems. The critical nucleus mass incre
with time as supersaturationS decreases. The scaled m
balance equation in a closed system follows from Eqs.s2.18d
and s2.20d,

Cs1dsud + Ssud = C0
s1d + S0, s2.24d

whereC0
s1d is the initial mass of crystals in polymer solut

or melt, representing heterogeneous nucleation nucl
s1d
seeds. For homogeneous nucleation,C0 =0. Based on Eq.
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s2.5d, the homogeneous nucleation rate is written in dim
sionless form as

J = aS2 expf− sd − 1d−1vd/sln Sdd−1g s2.25d

with a=s2sxm/pd1/2/rkg. By Eq. s2.21d, the number o
monomers included in the critical nucleus,x* / xm, is written
in terms of supersaturationS, for the specific lamellar stru
ture,

x* /xm = v2/sln Sd2. s2.26d

The substitution of the scaled nucleation rate yields the
dimensionless equations for 2D lamellae system,

dS/du = s1 − SdCs0d − av2S2 exps− v2/ln Sd/sln Sd2,

s2.27d

dCs0d/du = aS2 exps− v2/ln Sd, s2.28d

and

dCs1d/du = − s1 − SdCs0d + av2S2 exps− v2/ln Sd/sln Sd2.

s2.29d

For 3D spherical crystal growth, however, the differe
between the local-equilibrium interfacial concentration at
curved crystal surface,meq

s0d, and the solubility of a flat su
face,m`

s0d, cannot be neglected. The Gibbs–Thomson fa
V in Eq. s2.7d is written in term of crystal sizex/xm,

V = v/sx/xmd1/d, s2.30d

whered is the dimension of the crystal structure andv is the
interfacial energy. Instead of being scaled bymeq

s0d as in 2D
systems, the dimensionless quantities are redefined as

S= ms0d/m`
s0d, Csnd = csnd/sm`

s0dxm
n d, u = tkgm`

s0d,

s2.31d
J = I/sm`

s0dd2kg.

Equations2.13d–s2.15d are moment equations, so the sin
crystal sizex/xm is approximated by average size of cry
Cavg. Thus Eqs.s2.13d–s2.15d are scaled in the form

dS/du = s− S+ eVadCs0d − av3S2

3expf− v3/2sln Sd2g/sln Sd3, s2.32d

dCs0d/du = aS2 expf− v3/2sln Sd2g, s2.33d

and

dCs1d/du = − s− S+ eVadCs0d + av3S2

3expf− v3/2sln Sd2g/sln Sd3, s2.34d

where Va=v / sCavgd1/3 represents the average Gibb
Thomson effect.

The crystallinity is defined as the ratio of the mass c
tallized at timet divided by the total mass crystallized,

X = sCs1d − C0
s1dd/sCeq

s1d − C0
s1dd. s2.35d

The ordinary differential moment equations are rea

solved by standard software.
B. Numerical methods

The growth and dissociation rate coefficients are
sumed constant in the above moment method, but more
erally, the rate coefficients are power law expressions fo
mass dependence.20 For crystal growth, the rate coefficie
may be written as

kgsxd = kgx
l, s2.36d

wherekg is a prefactor whose units are determined by
power l. The dissociation rate is determined by apply
microscopic reversibility for the growth process,

kdsxd = meq
s0dkgsxd. s2.37d

The exponentl equal to 0, 1/3, and 2/3 represents surf
independent, diffusion-controlled, and surface-contro
deposition rates, respectively.20

We define dimensionless quantities21 consistent with
Eq. s2.17d,

j = x/xm, u = tkgm`
s0dxm

l , S= ms0d/m`
s0d,

s2.38d
C = cxm/m`

s0d, Csnd = csnd/m`
s0dxm

n , J = I/kgm`
s0dxm

l ,

and note thatj is the number of monomers in a crystal. T
time u, crystal size distributionCsj ,ud, and monomer con
centrationSsud are scaled by the equilibrium monomer c
centrationm`

s0d. Substitution of Eq.s2.38d into Eqs. s2.10d
ands2.11d yields population balance equations in dimens
less form,

dSsud/du = f− Ssud + eVagCsld + Jj* s2.39d

and

]Csj,ud/]u = Ssudf− jlCsj,ud + sj − 1dlCsj − 1,udg

− expfVsjdgjlCsj,ud + expfVsj + 1dg

3sj + 1dlCsj + 1,ud − Jdsj − j*d, s2.40d

whereVsjd is related to the crystal dimensiond,20

Vsjd = v/j1/d. s2.41d

Since Eq.s2.39d is a moment equation,Va is related to th
average number of monomers in the crystalCavg,

Va = v/sCavgd1/d. s2.42d

We note that moment equations cannot be derived beca
j in the exponential term. Thus, moment methods are
applicable forl.0 and numerical schemes have to be
ployed to solve the equations.

C. Heterogeneous nucleation

To promote nucleation in supersaturated liquid or g
small impurity ssecond phased particles are often introduc
deliberately. These impurity particles, acting as nuclea
seeds, grow by depositing monomer on their surface.
activation energy for homogeneous nucleation presents
nificant barrier for stable nuclei to be formed, whereas
erogeneous nucleation is limited only by monomer diffu
to the solid surfaces. For these ideal conditions, hom

neous nucleation would be negligible and heterogeneous
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nucleation dominant, the case we now consider. For he
geneous nucleation, we setI =0, thus the growth rate of th
number of crystals,dCs0d /du, equals zero, and the populat
balance equations reduce to a single ordinary differe
equation. For the case ofV=0 sflat surfaced,

dS/du = s1 − SdC0
s0d, s2.43d

where C0
s0d is the number of nucleation agents. The ex

solution, given the initial conditionSsu=0d=S0, is written as

S= 1 + sS0 − 1dexps− C0
s0dud. s2.44d

Consistent with the crystallinity definition, Eq.s2.35d, and

FIG. 1. Time evolution ofS, Cs0d, Cavg, andX asa varies among 10−1, 10−2,
10−3, and 10−4 with v=5, l=0.
mass conservation, Eq.s2.24d, the crystallinity for heteroge-
-

l

neous nucleation is expressed in terms of supersaturaS
and scaled timeu,

X = fS0 − Ssudg/sS0 − Seqd. s2.45d

Substitution of Eq.s2.44d into Eq. s2.45d results directly in
the crystallinity versus time evolution equation,

X = 1 − exps− C0
s0dud, s2.46d

which is the Avrami equation with growth rateK=c0
s0dkg and

Avrami exponentn=1.

III. RESULTS AND DISCUSSION

The flat growth surface of lamellar crystal simplifi
polymer nucleation and growth into readily solved mom
equations by reducing the Gibbs–Thomson effects. T
moment differential equations, Eqs.s2.27d–s2.29d, are solved
by NDSOLVE in Mathematica® for various values of the p
rameters. The parameterv represents the ratio of interfac
energy to thermal energysEq. s2.22dd and, based on pu
lished values for the interfacial energy,22 is chosen to spa
two orders of magnitude, 0.1–10. The nucleation rate pr
tor a, chosen to span widely from 0.0001 to 100, depend
the combination of the liquid-solid interfacial energys,
monomer molecular massxm, solid phase densityr, and
growth rate coefficientkg. For homogeneous nucleation,
initial source termC0

s0d is set to zero. An initial condition o
S0=50 is chosen to minimize the effects of denucleatio
the computation.

Figure 1 presents the time dependence of the key
ables in polymer crystallization, as computed via distribu
kinetics. The time evolutions of supersaturationS fFig. 1sadg,
number of crystalsCs0d fFig. 1sbdg, the average number
crystallized monomersCavg fFig. 1scdg, and the degree
crystallinity X fFig. 1sddg are shown at various values ofa
for the 2D system. A typicalS-shape curve of polymer cry
tallization is confirmed in Fig. 1sad. As the prefactora in-
creases, the overall crystallization rate increases, whi
shown by the time needed to reach the steady state. A laa
also leads to a large number of crystals at equilibriumfFig.
1sbdg. The average number of monomers in the crysta
equilibrium Cavg decreases asa risesfFig. 1scdg, since large
a means a greater nucleation rate and results in a l
number of crystals at equilibrium. The prefactora also has
negative influence on the induction time of crystalliza
because a large initial nucleation rate will shorten the in
tion time. The crystallinity time dependencefFig. 1sddg is a
mirror image of the supersaturation time evolutionfFig.

TABLE I. Effect of a on Avrami exponentn for l=0, v=5, S0=50, and
C0

s0d=0.

a n s2Dd n s3Dd

10−4 2.20 1.00
10−2 2.17 1.23
10−1 2.10 1.46
100 1.44 1.00
102 1.00 1.00



eri-
tion

tion
d to
gin

ifi-
ing

in

red

rate
n

of
i

0.
ictly
rys-
on.
ime
tion
oor
use

ving
, by
pre-

the
t is

e in
,
t
lots

n
r
lots
d all
n-

fects

r
e the
s. 3
1sadg. Following a S-shape curve, as observed in exp
ments, the crystallinity evolves to unity as supersatura
decreases to the equilibrium state.

Because the plotted experimental data and simula
are not strictly straight lines, a defined method is neede
determine the slopes. The straight part of most plots be
at X=0.1 and ends atX=0.9, and includes the most sign
cant range of data. We therefore used points correspond
this interval in the measurement of slopes reported
Tables I–III.

The effects ofa on the Avrami exponent are compa
for 2D and 3D systems in Fig. 2. The interfacial energyv is
set to 5, a surface-independent growth and dissociation
is proposedsl=0d, and the prefactora is chosen to spa
widely from 10−4 to 102. According to Eq.s1.6d, the Avrami
exponentn is the slope of the double logarithm plot
−lns1−Xd versus scaled timeu. Figure 2 presents the Avram
plots for 2D and 3D systems asa varies from 0.0001 to 10
In contrast to the Avrami equation, these plots are not str
straight lines, but curve slightly up at the beginning of c
tallization and down at the final stage of crystallizati
Curving up at the beginning is caused by the induction t
and the final curving down shows the approach to satura
Hay13 reported that the Avrami equation provided a p
approximation at the final stage of crystallization beca
experimental data deviated from the straight line by cur
down. We conclude that the distribution kinetics model
accurately predicting this behavior, more realistically re
sents the curve.

In the 2D system, an apparent slope difference of
Avrami plots is observed. The slope value for each plo
measured and tabulated in Table I. We note the slop
creases from 1.00 ata=102 to 2.20 ata=10−4. However
when a is less than 10−4, the lines move horizontally righ
and the slope variation is too small to be measured. All p
collapse into one straight line whena is greater than 102. In
3D a smaller slope difference is observedfFig. 2sbdg. The

TABLE II. Effect of v on Avrami exponentn for a=0.1,l=0, S0=50, and
C0

s0d=0.

v n s2Dd n s3Dd

0.1 1.97 1.9
4.0 1.80 1.48
5.0 1.77 1.46
6.0 1.76 1.35
7.0 1.75 1.12

10 1.75 ¯

TABLE III. Effect of l on Avrami exponentn for a=0.1, v=5, S0=50,
C0

s0d=0.0001, andC0
s1d=0.

l n s2Dd n s3Dd

0 1.70 1.44
1/3 2.00 1.64
2/3 3.09 2.57
0.93 5.27 4.29
0.98 5.32 4.50
s

s

to

s

,
.

-

slope increases asa varies from 10−4 to 0.1, and drops dow
to 1.00 asa increases to 1. Whena is greater than unity o
less than 10−4, no measurable slope change. All the p
with a greater than 1.0 collapse into one straight line an
the plots witha less than 10−4 are only transposed horizo
tally.

The ratio of interfacial to thermal energy,v influences
nucleation and growth. By moment computations, the ef
of v are investigated for the 2D and 3D systemssFig. 3d.
Figure 4 shows results of numerical computations fov
equal to 4, 5, and 6. The dotted lines represent 2D whil
solid lines represent the 3D solution. The slopes for Fig

FIG. 2. The effects ofa on sad 2D and sbd 3D crystallinity plots withv

=5, l=0, S0=50, andC0
s0d=0.

FIG. 3. The effects ofv on sad 2D and sbd 3D crystallinity plots by a
s0d
moment solution witha=0.1, l=0, S0=50, andC0 =0.
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2D
and 4 are reported in Table II. The slope variation av
changes is quite small in both 2D and 3D, and a larger s
is observed in the 2D case. According to Eq.s2.26d, a smal
value ofv leads to a small critical size of crystal at cons
supersaturation, and finally leads to a large nucleation
Increasingv delays nucleation and the decrease of su
saturation. Figure 3sad presents the double logarithm plots
v varies among 0.1, 4, 7, and 10 for the 2D system. Diffe
slopes, ranging from 1.75 atv=10 to 1.97 atv=0.1, are
observedsTable IId. Similar to the effect of the nucleatio
prefactor a, the influence of interfacial energy is nota
only if v is small. The slope difference disappears whenv is
large, e.g., the slope atv=7 is almost same as atv=10. A
reasonable explanation is that the crystal growth become
dominant term ifv is large, since the nucleation term ex
nentially decreases withv2 as shown in Eq.s2.25d. In the 3D
system, a more noticeable slope variation is observed a
ferent v. The slope varies from 1.90 to 1.12 asv change
from 0.1 to 7. The explanation for the greater influence ov
in the 3D system, according to Eq.s2.25d, is that the nucle
ation rate is a function ofv3 in 3D and ofv2 in 2D. Com-
paring the numerical and the moment resultssFigs. 3 and 4
respectivelyd reveals that the numerical result of crystallin
reaches an asymptotic value at large time while the mo
result continues to increase. This is the influence of den
ation, which is ignored in the moment computations.

Different values ofa andv have the expected effects
shown in Fig. 5, larger values ofa shift the curves to smalle
times, whereas larger values ofv give smaller times. Thes
findings for 2D are similar to 3D results. Figure 6 shows
the effect of increasing the initial supersaturation is to s

FIG. 4. The comparison of crystallinity plots by numerical solution for
sdotted lined and 3Dssolid lined with l=0, a=0.1, andS0=50.

FIG. 5. The effects of different values ofa andv on 2D crystallinity with
l=0, S0=50, andC0

s0d=0; I—a=100, v=0.001; II—a=0.001,v=0.001;

III— a=100,v=10; IV—a=0.001,v=10.
e

.
-

t

e

-

t
-

the Avrami curves to smaller times. ChangingS0 has little
influence on the slope, which increases from 1.69 to
whenS0 increases from 5 to 100.

The exponent of growth and dissociation ratesl is 0,
1/3, and 2/3, for surface-independent, diffusion-contro
and surface-controlled deposition rate, respectivelysFig. 7d.
To explore more thoroughly the effect ofl, we includedl
=0.93 and 0.98 in Table III. A possible explanation for
largerl s.2/3d is the increasing mass dependence of d
sition rate caused by shear force during fluid moveme
by microscopic structural changes.23 Equationss2.39d and
s2.40d were solved at the different values ofl by a numerica
procedure described previously.20 According to Eqs.s2.39d
ands2.42d, a nonzero initial condition ofC0

s0d should be cho
sen to avoid singularities neart=0 in the numerical compu
tation. In our simulation,S0=50, C0

s0d=0.0001, andC0
s1d=0

are the initial conditions. Figures 7sad and 7sbd present th
effects ofl on 2D and 3D systems, respectively. Differ

FIG. 6. The effect of initial supersaturationS0 on 2D crystallinity witha
=0.1, v=5, l=0, andC0

s0d=0.

FIG. 7. The effects ofl with a=0.1, v=5, S0=50, C0
s0d=0.01, andC0

s1d=1

for sad 2D andsbd 3D.
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slopes are confirmed asl varies in both 2D and 3D cases,
shown in Table III. The range of slope values is consis
with reported experimental measurements24 for the Avrami
exponentn in Eq. s1.6d, 1ønø4. Avrami exponents great
than 4 are occasionally reported; for example, slopes of
5.0 for syndiotactic polystyrene crystallization were fou
by Yoshioka and Tashiro,23 who suggested conelike sphe
lite growth as a potential explanation for the large value on.

The influence of geometry dimension is also confirm
by comparing the slopes for 2D and 3D systems. Sm
slopes are found in the 3D system, as shown by Tables
The parametric effects are also different for 2D and 3D
tems. We note thatv has less effect on the Avrami expon
in the 2D system, whereasa has a larger effect. Compar
with the effects of the other parameters,l has a substanti
influence on the Avrami exponent.

A comparison of moment methods and numerical m
ods is made for the 2D system to investigate the effec
denucleationsFig. 8d. Figure 8sad presents the comparison
moment and numerical solutions asa varies. Figure 8sbd
shows the comparison of these two solutions, both for
growth surfaces, at differentv. The dotted line presents t
moment simulation and the solid line is the numerical s
tion. Although the two solutions are consistent at the be
ning of crystallization, an increasing discrepancy is obse
near the end of crystallization, where crystallinityX is abou
0.99. This discrepancy caused by the increasing effe
denucleation that can only be computed numerically.
nucleation, the reverse process of nucleation, results from
stability shift of formed crystals from stable to unstable.
reduction of supersaturation during crystallization, accor
to Eq. s2.26d, increases the nucleus critical size. As the

FIG. 8. The comparison of moment methodsdashed lined with numerica
methodssolid lined for: sad a equal to 0.1, 0.01, and 0.001 withv=5, l

=0, S0=50, andC0
s0d=0; sbd v equal to 4, 5, and 6 witha=0.1, l=0, S0

=50, andC0
s0d=0.
persaturation decreases, nuclei smaller than the critical siz
t

o

r
.

f

t

f

e

become unstable and dissolve instantaneously,20 while nuclei
larger than the critical size keep growing. At the beginnin
crystallization when the supersaturation is large, the den
ation rate, compared with nucleation rate, is too sma
have a noticeable effect on the time evolution of degre
crystallinity.20 As the crystal keeps growing, however, m
and more nuclei become unstable and tend to dissolv
cause of the increasing critical size of nucleus. At the en
crystallization, the effect of denucleation, compared with
nucleation rate, can become substantial, and is manifes
Ostwald ripening.

The validity of the distribution kinetics model is a
examined by comparison with experimental datasFig. 9d.
The points are experimental data25 for nylon-6 based on re
time t smind at T=188, 190, and 192 °C. The initial sup
saturationS0 has not been reported for the experiments a
assumed to be 50 in the computations. To compare wit
model based on dimensionless timeu= tkgmeq

s0d, a transpos
tion of the simulation results is applied. According to
definition of dimensionless time, Eq.s2.17d, a distance o
lnskgmeq

s0dd units is transposed horizontally to the left to c
vert the simulation results into plots based on real
tsmind. A zero horizontal distance is transposed to fit
experimental data atT=188 °C, thuskgmeq

s0d=1.00 min−1.
Similarly, the values ofkgmeq

s0d at T=190 and 192 °C ar
readily determined by the measurements of the horiz
transposition distance to be 0.80 and 0.68 min−1, respec
tively. The experimental measurements atT=190 and
192 °C are horizontal transpositions of the simulation re
at T=188 °C, and there is no slope variation. This is con
tent with the understanding thatkgmeq

s0d depends on temper
ture.

Figure 10 presents an Avrami plot for experimental p
propylenesPPd data at 110 °C.7 The scattered points are t
measurements, the solid line is a fit of the distribution ki
ics model, and the dashed line is the Avrami equation
n=3.0.7 Figure 10sad shows the evolution of crystallinityX
versus real time. The Avrami equation withn=3.0 fits the
data fairly well except where the data curve down and d
ate from the Avrami equation at the end of crystalliza
fFig. 10sbdg. The solid line is our model prediction forl
=2/3, a=0.1, andv=5. The predicted slope is 3.09, as
ported in Table III, and is close to the value 3.0 repo

7 s0d l

FIG. 9. The comparison of experimental data of nylon-6 and moment
tion: sjd, T=188 °C;smd, T=190 °C;sPd, T=192 °C.
eby Ryan. The scaling factor for time iskgm` xm=6.76
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310−3 min−1. It is interesting that the curving down at t
end of crystallization is predicted in the crystal size distr
tion model and fits the experimental data quite well.
Avrami equation, by contrast, provides a constant slope
thus fits only the intermediate data.

We also compared the Avrami exponent determine
our theory with published experimental measurements.
cording to Tables I–III, forlø2/3, the model shows a ran
of 1–5 for the Avrami exponent, consistent with most p
lished values.26–28

For heterogeneous nucleation, the distribution kine
directly results in an Avrami equation with growth rateK
=c0

s0dkg and Avrami exponentn=1, as suggested in E
s2.46d. The double logarithm plots are made to investig
the effect ofC0

s0d. It is confirmed that the crystallization ra
increases with the number of nucleation agents, as sho
Fig. 11. The Avrami exponent, which is the slope of
double logarithm plot, always equals unity forl=0. It is
possible, however, that homogeneous and heteroge
nucleation occur simultaneously, yieldingn.1.

FIG. 10. The fit of the model to experimental data of polypropylenesRef.
7d; the solid line is a fit of the model and the dashed line is the Av
equation withn=3.0.

FIG. 11. The Avrami plot asC0
s0d varies from 0.01 to 0.03 in steps of 0.01
heterogeneous nucleation withl=0 andS0=50.
d

-

n

us

The effect ofl on the Avrami exponent is also inves
gated for heterogeneous nucleation, as shown in Fig. 12
observed that the overall crystallization rate increasesl.
The equilibrium crystallinity is reached atu=10, 100, an
1000 atl=2/3, 1/3, and 0,respectively. The Avrami exp
nent n also increases withl, predicting values 1.76 atl
=2/3,1.31 atl=1/3, and1.00 atl=0. Compared withn for
homogeneous nucleation in Table III, then values for het
erogeneous nucleation are small. This is explained by
additional kinetics contribution caused by the increase o
number of nuclei in homogeneous nucleation, which d
not arise in heterogeneous nucleation because the num
nuclei is constant. We also note that the slope variatio
smaller than in homogeneous nucleation, because the
tional kinetics contribution in homogeneous nucleation
creases asl.

IV. CONCLUSION

Nucleation and crystal growth are essential phenom
in quantitatively describing the evolution of a crystalliz
polymer solution or melt. A kinetics model based on clu
distribution dynamics incorporates these processes and
istically represents the time evolution of crystallinity. T
model includes rate coefficients for crystal growthkg and
crystal dissociationkd. Based on widely accepted notions
2D lamellar structure for the polymer crystal nucleus is
posed, and thus the Gibbs–Thomson effect is exclude
the 2D lamellar structure system. A 3D spherical structu
also investigated to demonstrate the influence of Gi
Thomson effects. Population balance equations base
crystal and amorphous polymer segments lead to the
namic moment equations for the molar concentrations
mass independent monomer deposition rate coefficients
merical solution is required if the deposition rate is diffus
or surface controlled and the rate coefficients are co
quently size-dependent power expressions.

Although it is widely agreed that the Gibbs–Thom
effect is critical for understanding nucleation and cry
growth, less acknowledged is that the Gibbs–Thomso
fects can be neglected for the flat growth surface of a sp
lamellar structure. Our proposal is that the combined
cesses of nucleation and crystal growth can be describ
moment equations developed from distribution kinetics,
population dynamics theory. The validity of moment me

FIG. 12. The effect ofl for heterogeneous nucleation atC0
s0d=0.01, C0

avg

=75, S0=50, andv=5.
ods is examined by comparison with the numerical methods.
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Consistency is confirmed between these two methods e
for the discrepancy at the end of crystallization cause
denucleation.

Another goal of our current work has been to recon
distribution kinetics and the empirical Avrami equation
examining the detailed, fundamental features of nucle
mechanism and crystal growth. The comparison with gen
experimental observations suggests that distribution kin
is a more realistic approximation at the end of crystalliza
than the Avrami transition theory. The investigation of mo
parameters offers a quantitative way to determine Av
parameters, which can only be determined empirically
Avrami transition theory.
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