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Abstract

Large scale molecular dynamics and grand canonical Monte Carlo simulation techniques are

used to study the behavior of the interdiffusion of a solvent into an entangled polymer matrix

as the state of the polymer changes from a melt to a glass. The weight gain by the polymer

increases with time t as t1/2 in agreement with Fickian diffusion for all cases studied, although

the diffusivity is found to be strongly concentration dependent especially as one approaches the

glass transition temperature of the polymer. The diffusivity as a function of solvent concentration

determined using the one-dimensional Fick’s model of the diffusion equation is compared to the

diffusivity calculated using the Darken equation from simulations of equilibrated solvent-polymer

solutions. The diffusivity calculated using these two different approaches are in good agreement.

The behavior of the diffusivity strongly depends on the state of the polymer and is related to the

shape of the solvent concentration profile.
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I. INTRODUCTION

Understanding the interdiffusion of solvent into a polymer is crucial for a variety of ap-

plications, such as food storage, controlled drug release and membrane separations.1,2,3,4,5

The mechanisms controlling the interdiffusion process are reasonably well understood6,7,8,9

but predicting accurately the nature of the diffusion has been a challenging problem. It

is now widely accepted that the interdiffusion of solvent into a polymer depends on sol-

vent concentration gradient within the system as well as the rate of polymer segmental

relaxation.10,11,12,13,14 Whether the polymer is a melt above its glass transition temperature

Tg or an amorphous solid below Tg strongly affects the diffusion behavior.10

In general, three categories of diffusion behavior of solvents into polymers have been

distinguished.9,15,16 These are, Fickian or Case I, Case II or Class II, and anomalous dif-

fusion: in which the rate of diffusion of solvent is much less than, much greater than, or

comparable to the rate of polymer segmental relaxation, respectively. A simple descriptive

way of quantifying these is based on the power law dependence of the mass uptake of the

solvent by the polymer or the distance covered by the solvent as a function of time t (∼ tn).

For Fickian diffusion n = 1/2, for Class II diffusion n = 1, and for anomalous diffusion

1/2 < n < 1. Fickian diffusion usually applies for all solvent concentration when the solvent

interdiffuses into a polymer melt, while for glassy polymers it usually applies only for low

solvent concentration. Non-Fickian kinetics is expected when the viscoelastic properties of

the system becomes the determining factor.10,11 In addition to linear kinetics, Case II diffu-

sion is characterized by a sharp concentration front that propagates at constant speed11,17,18

with a Fickian type precursor foot8,15,18,19 preceding the front.

When a solvent film is placed in contact with one surface of a polymer melt, the diffusion

is one-dimensional and can often be described by Fick’s one-dimensional diffusion equation20

∂c

∂t
=

∂

∂z
(D(c)

∂c

∂z
), (1)

where c is the solvent concentration in units of mass per unit volume and D(c) is the

diffusivity. This equation assumes that the volume of the medium is not changed by the in-

terdiffusion of the solvent. If D(c) is a function of c only, then the Boltzmann transformation

of Eq. 1 gives
∂z

∂t
= f(D, c)t1/2 (2)
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where f(D, c) is a function of D and c only. This equation reflects the square root time de-

pendence of Fickian diffusion irrespective of the functional form ofD(c). It can be integrated

to yield the diffusion coefficient at concentration c′20

D(c′) = −1

2

[(

dc

dη

)]−1

c′

∫ c′

0

ηdc (3)

where η = z/t1/2. Thus from the scaled concentration profile one can directly obtain the

diffusivity D(c). Note that only in a few special cases, like D(c) constant, can Eq. 1 be

solved analytically.20 For the case in which D(c) is a constant, c(η) is an error function.

However, it is important to remember that Fickian diffusion, i.e. uptake increasing as t1/2,

is true provided that the diffusivity depends only on c as shown above.

The diffusivity can also be approximately obtained from the following Darken equation

applied to solvent diffusing in an equilibrated polymer solution

D(c) = Dc(c)

(

∂ ln f

∂ ln c

)

T

(4)

where Dc(c) is the corrected diffusion constant and f is the fugacity of the solvent, both are

defined in the next section.

Molecular dynamics (MD) simulation technique is proven to be a useful tool for determin-

ing the diffusion coefficients of penetrant molecules in polymers. This technique is specially

important when detailed microscopic information of the mechanism of transport is required.

Most of the previous studies have focused on the penetrant transport of small molecules in a

polymer melt.3,5,21,22,23,24,25,26,27,28,29,30,31 With recent advances in parallel molecular dynam-

ics algorithms and the increased computational power, progress has primarily occurred for

studying the diffusion of large molecules (phenol molecules) in a polymeric matrix at atom-

istic level.31,32 However, equivalent development is lacking for interdiffusion of solvent into

polymer or polymer-polymer interdiffusion. In the previous study, which will be referred to

hereafter as paper I,33 we investigated the interdiffusion of a solvent into a homopolymer

melt. The solvent concentration profile and weight gain by the polymer was measured as a

function of time. The weight gain was found to scale as t1/2 and the concentration profiles

were found to fit very well assuming Ficks’s second law with constant diffusivity. The study,

however, focused only on homopolymers that are far above the glass transition temperature.

In this paper we extend our previous study on interdiffusion of solvent into homopolymers

that are close to the glass transition temperature of the homopolymer. Case II diffusion has
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been inaccessible to computer simulation due to the extensive computational effort required.

In this paper we study the conditions that may lead to Case II type diffusion behavior. The

main purpose of the present study is two-fold: first, to understand how the dependence

of the diffusivity D(c) on concentration changes as the state of the polymer changes and

also its relation to the form of the concentration profile curve; second, to test the Darken

approach under general conditions where Dc(c) is not a constant. As in paper I, we are

also interested in the relationship between the self-diffusion constant of the solvent and the

corrected diffusion and the diffusivity.

The outline of this paper is as follows. In Sec. II a brief review of the molecular dynamics

simulation and the model used is given. In Sec. III the interdiffusion results for different

polymer-polymer and solvent-polymer interaction parameters are presented and discussed.

The diffusivity D(c) calculated from solvent concentration profiles and from the Darken

equation are presented in Sec. IV. The self- and corrected diffusion constants as a function

of solvent concentration are also presented and discussed. The main results of the present

study are summarized in Sec. V.

II. SIMULATION DETAILS

A. System

The basic model of the polymer-solvent system is the same as used in paper I. The

polymer is treated as freely jointed bead-spring chain of length N monomers of mass m

and the solvent is modeled as single monomer of mass m. All monomers of type α and β

interacts through the standard Lennard-Jones 6-12 potential

ULJ(r) =







4ǫαβ

{

(σαβ

r

)12 −
(σαβ

r

)6
}

+ ǫLJ , r ≤ rc

0, r > rc
(5)

where r is the distance between monomers and ǫLJ is a constant added so that the potential

is continuous at r = rc. Here α = p stands for the polymer monomer and α = s for a solvent

monomer. ǫss = ǫ and σ define the units of energy and length, respectively. Here we take

σ = σαβ and rc = 2.5σ. For our model, the freezing temperature of the solvent is higher than

the glass transition temperature of a long fully flexible polymer melt, Tg = 0.5− 0.6ǫ/kB.
34

Thus, temperature is not a good variable to change the state of the polymer without changing
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the state of the solvent. Instead, we vary ǫpp from ǫpp = ǫ (melt) to 2ǫ (glassy). Berthelot

rule ǫsp =
√
ǫssǫpp is used for the cross term in some cases but we also study other cross

terms. This is because (ǫpp, ǫsp) = (2ǫ,
√
2ǫ) is found to be immiscible except in the dilute

limit. As in paper I, for bonded monomers an additional anharmonic potential known as

FENE potential with R0 = 1.5σ and k = 30ǫ is applied.35,36

For the interdiffusion of solvent monomers into a polymeric matrix, the system consist of

entangled polymer chains in a rectangular box which is periodic in x and y but not in z, the

diffusion direction. This initial configuration was generated following the procedure given

in paper I. The polymer consisted of 600 chains of length N = 500 monomers. The solvent

consisted of 230,000 monomers. For the self- and corrected diffusion studies as a function

of concentration, the system consist of an equilibrated polymer solvent mixture in a cubic

box which is periodic in all directions. The polymer in the system consisted of M chains

of length N = 500 monomers, where M = 100 for solvent concentration c < 0.45σ−3 and

M = 50 for c ≥ 0.45σ−3. The mole fraction of solvent xs in the mixture was varied from

0.01 (dilute case) to 0.75. A pure solvent system of 50,000 monomers was also simulated.

In paper I we compared results from Langevin thermostat simulations which screens the

hydrodynamic interactions with results from dissipative particle dynamics (DPD) thermo-

stat simulations, which does not. The results from the two thermostats agreed when the

dissipation from the thermostats become much smaller than from particle collisions. In the

present study, to conserve hydrodynamic interactions, we use DPD thermostat through out

the simulation. For details see paper I. The equations of motion were integrated with a

velocity verlet algorithm with a time step of ∆t = 0.012τ for the interdiffusion study and

∆t = 0.009τ for the bulk equilibrium measurement of the self- and corrected diffusion con-

stants, where τ = m(σ/ǫ)1/2. All the simulations were run using the massively parallel code

LAMMPS37 at a temperature of T = ǫ/kB and pressure P ≃ 0 without tail corrections to

be comparable to interdiffusion – same as paper I.

B. Diffusion Coefficients

We have calculated the self-and corrected diffusion coefficients and diffusivity D(c) of

solvents in an equilibrated solvent polymer mixture as a function of solvent concentration,

c. The self-diffusion constant Ds(c) of the solvent in the polymer was calculated from the
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slope of the solvent mean square displacement

Ds(c) = lim
t→∞

〈[r(t)− r(0)]2〉
6t

. (6)

Here 〈...〉 denote an ensemble average and is obtained by averaging over all solvents and

many initial time origins, and r(t) is the position of a solvent in the polymer at time t.

The corrected diffusion coefficient Dc(c) of the solvent in the polymer is calculated using

the Einstein form equation33

Dc(c) = NTxsxp lim
t→∞

1

6t
〈{[rcm,s(t)− rcm,s(0)]

− [rcm,p(t)− rcm,p(0)]}2〉 (7)

where xi and rcm,i(t) are mole fraction and center of mass of all monomers of species i at

time t, respectively, and NT = Ns +Np is the total number of monomers.

To determine the fugacity f the particle insertion method38 is applied using the grand

canonical MD code LADERA.39 During the course of an equilibrium molecular dynamics

simulation at the appropriate solvent concentration, the energy, E, of inserting a solvent par-

ticle at random locations was sampled. The excess chemical potential energy µe is computed

using

µe = −kBT ln〈exp(−E/kBT )〉, (8)

where kB is the Boltzmann constant, T is the temperature and 〈...〉 is an ensemble average.

Then, the activity coefficient, γ, is computed via γ = exp(µe/kBT ). The thermodynamic

factor in eq. 4 can be expressed in terms of the activity coefficient γ of the solvent as

∂ ln f

∂ ln c
= 1 +

∂ ln γ

∂ ln c
. (9)

The thermodynamic factor goes to 1 as c → 0.

The computing time depends on the state of the polymer where much longer run are

required as the effective temperature of the polymer melt is reduced towards its glass tran-

sition temperature. At the lowest temperature studied and for a given solvent concentration

c a run of about half a million MD time steps are required to calculate the self-diffusion

constant Ds(c) while a run of more than four million MD time steps is required for the

corrected diffusion constant Dc(c). The fugacity calculation at each solvent concentration

requires more than four million MC insertion attempts. For the interdiffusion simulations,
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one run was made for each set of parameters specified. Each system is run until the solvent

reaches the lower substrate and on the average requires a run of about five million MD time

steps.

III. INTERDIFFUSION

Interdiffusion studies of a solvent into an equilibrated polymer has been conducted for

different cases of polymer-polymer and solvent-polymer interactions. The initial setup for

the interdiffusion study is the same as Fig. 1 of paper I. The density profile of both polymer

and solvent as a function of time for kBT/ǫpp = 1.0, 0.75 and 0.5 with Berthelot’s rule for the

cross-term ǫsp is shown in Fig. 1. The solvent diffuses into the polymer from the right side.

As the state of the polymer changes from melt (kBT/ǫpp = 1.0) to glass (kBT/ǫpp = 0.5)

the solvent density profile changes to a sharp front. The solvent diffusion is Fickian in all

the three cases as confirmed by the linearity of the weight gain by the polymer versus t1/2

curve shown in Fig. 2. This indicates that the precursor of the front for kBT/ǫpp = 0.5

is Fickian. This is in agreement with recent experimental observations that characterize

Case II diffusion by a sharp concentration front with a Fickian type precursor.8,15,18,19 For

the front to move the solvent mobility should be much greater than the rate of polymer

segmental relaxation.10 But, for this case the front does not move in the time scale of our

simulation. In fact, simulation of an equilibrated solvent-polymer solution, discussed in the

next section, shows that only a small amount of solvent is soluble for this case suggesting

that the front may not move at all.

In order to facilitate the interdiffusion of solvent into the glassy polymer (kBT/ǫpp = 0.5),

the interaction between polymer and solvent is increased to ǫsp = 1.55ǫ, 1.7ǫ, and 2.0ǫ.

Similarly ǫsp is increased to 1.33ǫ for kBT/ǫpp = 0.75. The corresponding density profiles of

both polymer and solvent as a function of time is shown in Fig. 3. We clearly see that as

ǫsp is increased the solubility is enhanced for both ǫpp = 1.33ǫ and 2.0ǫ and the density front

observed for (ǫpp, ǫsp) = (2.0ǫ,
√
2.0ǫ) disappears. The ǫsp = 1.7ǫ case shows a cross-over.

There is no change in the diffusion process due to the change in ǫsp as the weight gain by

the polymer system for all four cases increases as t1/2, see Fig. 2, in agreement with Fickian

diffusion.
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FIG. 1: Solvent and polymer concentration profiles as a function of time for (a) kBT/ǫpp = 1.0,

plotted every 2400τ , (b) kBT/ǫpp = 0.75, plotted every 4800τ , and (c) kBT/ǫpp = 0.5, plotted

every12000τ , with Berthelot’s rule ǫsp =
√
ǫppǫss for the cross-term. The solvent diffusing into the

polymer from the right side.

IV. DIFFUSION COEFFICIENTS

The diffusivity of the solvent can be calculated from the solvent concentration profile using

Eq. 3. It can be also calculated from simulation of equilibrated solvent-polymer solution

using the Darken equation (Eq. 4). In this section we compare diffusivity results from the

two different approaches.

A. Diffusivity from concentration profile

Using the change of variable η = zt−1/2 the solvent density profiles corresponding to

different times superimpose as shown in Fig. 4. This indicates that the solvent diffusivity

is independent of position as expected for Fickian diffusion. It also means that the solvent
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FIG. 2: Weight gain in terms of the number of solvent monomers diffused into the polymer at a

given time t, for (ǫpp, ǫsp)= (ǫ, ǫ) (circles), (1.33ǫ,
√
1.33ǫ) (squares), (2.0ǫ,

√
2.0ǫ) (down triangles),

(2.0ǫ, 1.55ǫ) (stars), (2.0ǫ, 1.7ǫ) (diamond), and (2.0ǫ, 2.0ǫ) (up triangles), T = ǫ/kB .

diffusivity for absorption can be determined as a function of concentration by integrating

Eq. 3 with respect to η.

To calculate D(c) analytically using Eq. 3, the average of the transformed solvent density

profiles c(η) of each case shown in Fig. 4 was fit to a polynomial function of at least order 5.

This higher order polynomial was chosen to get an optimal fit to the concentration profiles.

The data is integrated analytically up to the target concentration using the transformation
∫ c′

0
ηdc =

∫ η

η0
η dc
dη
dη. This procedure is repeated for different values of solvent concentration

and the diffusivity D(c) calculated for the different cases is shown in Fig. 5.

In general, the behavior of D(c) strongly depends on the state of the polymer. The diffu-

sivity is approximately a constant when the homopolymer is far above the glass transition,

Tg, that is for kBT/ǫpp = 1.0, and then becomes concentration dependent as the effective

temperature of the polymer melt kBT/ǫpp is reduced towards its glass transition tempera-

ture. For (ǫpp, ǫsp) = (1.33ǫ,
√
1.33ǫ), (2.0ǫ,

√
2.0ǫ) and (2.0ǫ, 1.7ǫ) the calculated diffusivity

for concentrations in the steep part of the concentration profile (not included in Fig. 5) re-

sulted in large scatter of the data. This is because little variation of the slope in this region

introduces large error in the diffusivity.

For ǫpp = 1.33ǫ, the diffusivity is approximately a constant for ǫsp =
√
1.33ǫ, but increases

linearly with concentration for ǫsp = 1.33ǫ. Note that in the dilute limit (c → 0) the

diffusivity is independent of ǫsp. For ǫpp = 2.0ǫ, the diffusivity is independent of ǫsp within the
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FIG. 3: Solvent ρs and polymer ρp concentration profiles as a function of time, plotted every

2400τ for (ǫpp, ǫsp) = (a) (1.33ǫ,1.33ǫ), (b) (2.0ǫ,1.55ǫ), (c) (2.0ǫ,1.7ǫ), and (d) (2.0ǫ,2.0ǫ).

error of the simulation. For this case the diffusivity can be approximated by an exponential

function of the form D(c) = D0 exp(αc), where D0 and α are constants that may depend on

the state of the polymer, and is represented by a line in Fig. 5(b). The empirical expression

found from fitting the diffusivity curve of a given system was in turn used to solve Eq. 1

and the calculated concentration profiles are shown in Fig. 4 as solid lines. In all cases, the

calculated concentration profiles give an adequate description of the simulated concentration

profiles in the region of interest.

The behavior of D(c) is directly related to the form of the concentration profile

curve. When the solvent concentration profile is concave (i.e. for (ǫpp, ǫsp) = (ǫ, ǫ) and

(1.33ǫ,
√
1.33ǫ)) the diffusivity is approximately a constant. However, when the diffusivity

shows exponential dependence on solvent concentration (for ǫpp = 2.0ǫ) then the solvent

concentration profile curve becomes convex. For the case in which the concentration is ap-

proximately linear (ǫpp = ǫsp = 1.33ǫ), the diffusivity increases linearly with concentration.
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FIG. 4: [Color online] Solvent concentration profiles are plotted as a function of the scaling

variable zt−1/2 for (ǫpp, ǫsp) = (a) (ǫ, ǫ), (b) (1.33ǫ,
√
1.33ǫ), (c) (1.33ǫ, 1.33ǫ), (d) (2.0ǫ,1.7ǫ), and

(e) (2.0ǫ,2.0ǫ). The red (light dark) solid lines represent the theoretical curve based on the solution

of Eq. 3.

Numerical solution of Eq. 1 for a given functional form of diffusivity on concentration has

shown a similar relation between the shape of the concentration profile and the dependence

of diffusivity on concentration.20

B. Diffusion Coefficients from Equilibrated Polymer solution simulations

Self- and corrected diffusion coefficients. The self-diffusion, Ds(c), and corrected

diffusion, Dc(c), coefficients are calculated from Eq. 6 and Eq. 7, respectively. Ds(c) and

Dc(c) as a function of solvent concentration for different polymer-polymer and solvent-
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FIG. 5: Diffusivity D(c) as a function of solvent concentration calculated from the solvent concen-

tration profile using Eq. 3. The different symbols are for (ǫpp, ǫsp) = (ǫ, ǫ) (closed circles), (1.33ǫ,
√
1.33ǫ) (closed squares), (1.33ǫ, 1.33ǫ) (closed triangles), (2.0ǫ, 1.55ǫ) (open circles), (2.0ǫ, 1.7ǫ)

(open squares), and (2.0ǫ, 2.0ǫ) (open triangles). The solid line in (b) is an exponential fit to the

data.

polymer interactions are shown in Fig. 6(a) and (b), respectively. Note that the diffusion

coefficients calculated for (ǫpp, ǫsp) = (1.33ǫ,
√
1.33ǫ) and (2.0ǫ,

√
2.0ǫ) is limited to low sol-

vent concentration since the systems phase separate for large c. The critical value of solvent

concentration above which the system phase separates can be approximately determined

directly from the behavior of the solvent concentration profile shown in Fig. 1 and 3. We

have observed that for (ǫpp, ǫsp) = (1.33ǫ,
√
1.33ǫ), (2.0ǫ,

√
2.0ǫ), and (2.0ǫ, 1.7ǫ) the system

phase separates for concentration values corresponding to the steep part of the concentra-

tion profile. The critical solvent concentration value is approximately the concentration

value corresponding to the inflection point of the concentration curve. The critical solvent

concentration value for (ǫpp, ǫsp) = (2.0ǫ,
√
2.0ǫ) is basically the dilute limit.

In general, the self and corrected diffusion coefficients shown in Fig. 6 show an expo-

nential dependence on concentration. However, for (ǫpp, ǫsp) = (ǫ, ǫ) and (1.33ǫ,
√
1.33ǫ) the

dependence of the corrected diffusion on concentration is weak at low solvent concentration.

For a given value of concentration, as expected, both Ds(c) and Dc(c) decrease as the state

of the polymer changes from melt to glassy. Note that Ds(0) ≃ Dc(0) in all cases.
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FIG. 6: Dependence of diffusion constants on solvent concentration, (a) Ds(c) and (b) Dc(c).

Symbols are for (ǫpp, ǫsp) = (ǫ, ǫ) (circles), (1.33ǫ,
√
1.33ǫ) (squares), (2.0ǫ, 1.7ǫ) (triangles), and

(2.0ǫ, 2.0ǫ) (stars).

Diffusivity. To calculate the diffusivity D(c) using Eq. 4, the thermodynamic factor

given by Eq. 9 has to be first determined. Using the GCMD simulation method, the activity

coefficient of the solvent is determined as a function of solvent concentration and is shown

in Fig. 7 on a ln-ln plot. Note that the concentration at which all the activity coefficients

converge is the pure solvent case. As expected, the activity coefficient is constant for low

solvent concentration and thus D(0) ≈ Dc(0) = Ds(0) for all cases. As the solvent concen-

tration increases the activity coefficient for (ǫpp, ǫsp) = (ǫ, ǫ) and (1.33ǫ,
√
1.33ǫ) decreases

with solvent concentration and increases for ǫpp = ǫsp = 1.33ǫ and 2.0ǫ. This results in the

diffusivity for the former two cases to be lower while for the latter two cases to be higher

than the corrected diffusion constant. However, the curves in Fig. 7 are not smooth, mak-

ing it difficult to determine the thermodynamic factor and thus the diffusivity with high

precession.

Instead of numerically differentiating the activity curves as we did in paper I, the activity

curve for each case was fit to a cubic function and the thermodynamic factor was determined

analytically. The diffusivity calculated following this procedure is shown in Fig. 8. For

comparison, the diffusivity calculated from the solvent concentration profile reported in Sec.

IVA is also shown as closed symbols. In general, the diffusivity calculated from the two
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FIG. 7: Activity coefficient of solvent as a function of solvent concentration. Symbols are for (ǫpp,

ǫsp) = (ǫ, ǫ) (circles), (1.33ǫ,
√
1.33ǫ) (squares), (2.0ǫ, 2.0ǫ) (triangles), and (1.33ǫ, 1.33ǫ) (stars)

different approaches show good agreement. The diffusivity calculated using the Darken

equation shows the expected behavior discussed above, the diffusivity is constant for ǫpp = ǫ

and increases exponentially for ǫpp = ǫsp = 2.0ǫ. However, there is more scatter due to the

uncertainty in the thermodynamic factor.

0 0.2 0.4
c

10
-3

10
-2

D
 (

σ2 /τ
)

FIG. 8: Diffusivity D(c) as a function of solvent concentration and open symbols are from Darken

equation Eq. 4 and closed symbols are from the concentration profile using Eq. 3. Circles and

triangles are for ǫpp = ǫsp = ǫ, and 2.0ǫ, respectively.

In the interdiffusion study the behavior of D(c) is related to the shape of the solvent

concentration profile. Similarly, in the present approach the behavior of D(c) can be directly

related to the functional form of the activity coefficient. In general, for a constant diffusivity
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the activity coefficient decreases with concentration, and increases with concentration for a

diffusivity that increases with concentration.

V. SUMMARY

The effect of polymer-polymer and solvent-polymer interactions on the behavior of the

interdiffusion of a solvent in to an entangled polymer matrix have been studied using large

scale molecular dynamics and grand canonical Monte Carlo simulation techniques. By vary-

ing the polymer-polymer interaction the state of the polymer is changed from melt to glassy.

Correspondingly the solvent density profile changed from error function like to a sharp front,

characteristic of Case II type transport, when Berthelot’s rule is applied for the solvent-

polymer interaction. The weight gain by the polymer matrix increased as t1/2 in agreement

with Fickian diffusion, even for the case of a glassy polymer. This suggests that the precursor

of the front is Fickian in agreement with recent experimental observations that characterize

Case II diffusion by a sharp concentration front with Fickian type precursor.8,15,18,19 The

front, however, does not move in the time scale of our simulation. From simulation of

equilibrated solvent-polymer solution it was found that the glassy system with Berthelot’s

rule applied for the cross term is immiscible except in the dilute limit suggesting that the

front may not move in to the polymer matrix. Increasing the solvent-polymer interaction

enhanced the solubility of the system without changing the nature of the diffusion process.

The solvent concentration profiles have been fitted using the one-dimensional Fick’s model

of the diffusion process. The diffusivity, D(c), shows strong dependence on the state of the

polymer. Far above the glass transition D(c) is approximately constant and then becomes

concentration dependent as the polymer becomes glassy. The shape of the concentration

profile and the behavior of D(c) is found to be directly related. The diffusivity is constant

when the solvent concentration profile is concave, shows exponential dependence on solvent

concentration when the solvent concentration profile is convex.

The diffusivity as a function of solvent concentration was also determined using the

Darken equation for simulations of equilibrated solvent-polymer solution. The diffusivity

calculated using this approach is in good agreement with the diffusivity calculated from the

solvent concentration profile.

The advantage of the Darken approach for determining D(c) is that it requires much

15



smaller system sizes than for the direct simulation of the interdiffusion process. However,

each solvent concentration c has to be determined separately and the simulation time re-

quired to determine theDc(c) and the fugacity f are quite long compared to the interdiffusion

studies. This is because the scaled concentration profiles superimpose even after relatively

short times.
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