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ARTICLES

Minima hopping: An efficient search method for the global minimum
of the potential energy surface of complex molecular systems

Stefan Goedeckera)

Institut für Physik, Universita¨t Basel, Basel, Switzerland

~Received 19 January 2004; accepted 5 March 2004!

A method is presented that can find the global minimum of very complex condensed matter systems.
It is based on the simple principle of exploring the configurational space as fast as possible and of
avoiding revisiting known parts of this space. Even though it is not a genetic algorithm, it is not
based on thermodynamics. The efficiency of the method depends strongly on the type of moves that
are used to hop into new local minima. Moves that find low-barrier escape-paths out of the present
minimum generally lead into low energy minima. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1724816#

I. INTRODUCTION

Finding the global minimum of the potential energy sur-
face of a complex system is a central problem in physics,
chemistry, and biology. For a periodic system the global
minimum gives the crystalline ground state structure of a
solid, for nonperiodic systems it determines the geometric
ground state configuration of molecules. Many complex bio-
molecules exist in nature whose structure is unknown. In the
case of proteins the ground state is called the native state and
the theoretical determination of this native state is considered
to be one of the major challenges of modern biology.

Because the experimental determination of the geometric
ground state of complex systems is very difficult, simulation
is a promising candidate for the theoretical determination of
the structure of such systems. For instance, several unknown
alloy structures were recently found by simulation methods.1

Finding the ground state structure of large systems is com-
putationally very expensive and has only become possible on
the latest generation of computers. The fundamental reason
why finding the global minimum is so expensive is that the
number of local minima increases exponentially with respect
to the number of atoms in the system. Initially, during the
simulation, the system is trapped in one of these local
minima, and in order to reach the global minimum the sys-
tem has to travel through many intermediate local minima
basins and it has to overcome the barriers separating the local
minima. A basin is, by the conventional definition, a certain
part of the configurational space around a minimum of the
potential energy surface. More precisely, a basin contains all
the configurations that will relax into this minimum using
simple small-step downhill relaxations. We will denote as a
super-basin the union of several neighboring basins. If one
can arrive from any point in such a super-basin at the lowest
minimum of this super-basin without crossing barriers that
are very high compared to the average difference in energy

between local minima, it will be called a funnel.2 The large
majority of algorithms for finding the global minimum in
physical systems are based on thermodynamic principles.
Because of the ubiquitous presence of the Boltzmann factor
exp(2DE/kbT) in these algorithms, climbing and crossing
over high barriers that separate for instance different funnels
is a rare event that frequently does not happen during the
available computer time.

II. FINDING THE GLOBAL MINIMUM
WITHOUT THERMODYNAMICS

With the exception of genetic algorithms,3 most standard
algorithms such as simulated annealing,4 basin hopping,19

and multicanonical methods5 are based on thermodynamic
principles. A Markov process based on the Metropolis algo-
rithm with a Boltzmann factor leads finally to a thermody-
namic distribution. At sufficiently low temperature the
ground state configuration will be the dominant configuration
and hence the problem is solved in principle. Unfortunately
thermodynamics does not tell us anything about how fast the
thermodynamic equilibrium distribution is obtained and as a
matter of fact it can be extremely slow. Consequently, global
minimization strategies based on thermodynamics are of
questionable value.

Instead of invoking thermodynamic principles, the basic
principle in global optimization should be that one strives to
explore as fast as possible the low energy part of the con-
figurational space. Revisiting configurations is obviously det-
rimental for finding new configurations. All ordinary Monte
Carlo like algorithms have the tendency to revisit many
times neighboring configurations that are close in energy, if
other configurations can only be reached by crossing high
barriers. As a matter of fact the simulation can just jump
back and forth between two such configurations for a very
long time.

The problem of repeated visits of certain configurations
has already been recognized by many researchers. One rem-a!Electronic mail: stefan.goedecker@unibas.ch
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edy that was proposed is flooding.6 The principle of flooding
is simple. In basins that were already visited during the simu-
lation, the potential is lifted and consequently it is less likely
that a configuration in the same region of the continuous
configuration space will be accepted in a future Monte Carlo
step. The problem with this approach is that it is very diffi-
cult to determine exactly where the potential should be lifted.
Ideally it should be done over the whole basin, but the de-
termination of the basin boundaries would be prohibitively
expensive computationally. Because of this problem flooding
has not found widespread use.

Because it is so difficult to determine the shape of a
basin that has to be flooded, another version of flooding has
been proposed recently. The flooding is not done in the very
high dimensional configurational space, but in a low dimen-
sional space spanned by some suitably defined order param-
eters of the system.7 The difficulties of determining the shape
of the basin to be flooded are not really eliminated in this
method, but are alleviated since the space dimension is much
lower.

There is a second more profound problem with flooding.
For a simple system, where essentially all basins can be vis-
ited during the simulation, energy surface flooding is bound
to succeed. Successively all the basins will be flooded until
the system finds its way into the global minimum. In a more
realistic high dimensional setting with a very large number
of basins, things can be different. Imagine a transition basin
that is a low energy transition region among several funnels.
We postulate that direct transitions between these funnels are
unlikely since they are separated by high barriers from the
other funnels, with the exception of the transition basin. In
order to find the global minimum the simulation has to jump
into all the different funnels and each jump requires a visit of
the transition basin. Flooding the transition basin will make
such jumps more unlikely and will thus slow down the
search for the global minimum.

What is needed is a strategy that limits repeated visits,
but does not penalize crossings through important transition
basins. As will be shown, this can be achieved by doing more
violent escape moves out of the current basin if this basin has
already been visited. This then gives rise to the minima hop-
ping method.

III. MINIMA HOPPING

The minima hopping method consists of an inner part
that performs jumps into the local minimum of another basin
and an outer part that will accept or reject this new local
minimum. The acceptance/rejection is done by simple
thresholding, i.e., the step is accepted if the energy of the
new local minimumEnew rises by less thanEdiff compared to
the current energyEcur. The parameterEdiff is continuously
adjusted during the simulation in such a way that half of the
moves are accepted and half are rejected. This outer part
introduces a preference for steps that go down in energy.
However if the inner part proposes only steps that go up in
energy, such steps will finally also be accepted afterEdiff has
been sufficiently increased after many rejections.

The inner part consists of an escape step away from the
current local minimum followed by a geometry relaxation

into the closest local minimum. In the present implementa-
tion, the geometry relaxation is done by a combination of
standard steepest descent and conjugate gradient methods.
The escape step is done by a short molecular dynamics simu-
lation that starts from the current minimum. The atoms have
a Boltzmann velocity distribution such that their kinetic en-
ergy is equal toEkinetic. The system thus has sufficient en-
ergy to cross over a barrier of height less thanEkinetic mea-
sured relative to the current minimum. IfEkinetic is small, one
will usually fall back into the current minimum, if it is suf-
ficiently big, one will most likely be ejected from the current
basin and end up in a different minimum. The molecular
dynamics simulation is stopped as soon as the potential en-
ergy has crossedmdminmaxima and reached themdmin-th
minimum along the trajectory. At this point the geometry
relaxation starts. Different molecular dynamics simulations
~with different random velocity Boltzmann distributions! are
started until the geometry relaxation will give a new local
minimum.

Three different cases can be distinguished for the out-
come of this inner part. In the first case the geometry relax-
ation will give back the current local minimum that was used
as the starting point for the displacements. The second case
is that the new minimum is one that has already previously
been visited during the simulation~i.e., that has been ac-
cepted in a previous outer acceptance/rejection step!. The
third case is that the minimum is a new one that has not been
visited previously. The third case is the desirable one, since it
will result in the exploration of new configurations.

Since it is desirable to explore new configurations one
might think that it is most advantageous to chooseEkinetic

very large. This would be true if the height of the new local
minimum ‘‘behind’’ the barrier was independent of the bar-
rier height. If the height of the barrier is correlated with the
height of the new local minimum, the situation is entirely
different. Since the density of states of the local minima~i.e.,
the number of local minima per unit energy! grows exponen-
tially with energy, we would have to explore a much larger
number of local minima if we allow high barriers to be
crossed. As described in detail later, we found a very clear
correlation between the barrier height and the height of the
new minimum. For this reason one has to make a compro-
mise in the choice ofEkinetic to obtain the shortest possible
overall simulation time. IfEkinetic is too large, the discrete
space of the local minima that has to be explored becomes
too large; if it is too small, one has to start a very large
number of molecular dynamics simulations until an escape
path is possibly found. In practice, it has turned out that
adjustingEkinetic dynamically during the simulation in such a
way that half of all molecular dynamics simulations will
bring us into new basins is close to optimal. It has to be
stressed that molecular dynamics is very powerful to find
low barrier paths into other basins. Out of several alterna-
tives we examined, it gave by far the lowest barriers. If an-
other method were used, it might be necessary to allow for a
much large fraction of the escape trials to fall back into the
current minimum in order to avoid large values ofEkinetic.

The value ofEkinetic is not only increased if one falls
back into the current minimum, but also if we get into an-
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other minimum that had already been visited. If the simula-
tion starts to ‘‘walk’’ around between minima that were al-
ready visited,Ekinetic will be increased at each molecular
dynamics restart until enough energy is available to cross
into a new unexplored region of the discrete configurational
space. This procedure does not restrict repeated visits to stra-
tegic transition basins between several basins. If such a mini-
mum of a transition basin is revisited after extensively and
repeatedly exploring some funnel, the simulation will arrive
at the transition state with a large value ofEkinetic and it will
therefore go on to other states that are far away from this
transition basin. This is a very desirable effect.

In order to decide whetherEkinetic will be increased or
decreased we have to keep track of all the minima visited
previously. In the context of force field calculations, where
the energy of a configuration can be determined with arbi-
trary accuracy, the configuration can be identified only by
their energy. Introducing a history evidently destroys the
Markovian character of the simulation. However, this is not a
disadvantage since we do not intend to generate any thermo-
dynamic distribution.

A flowchart of the algorithm is shown below. It contains
five parameters.a1 and a2 determine how rapidlyEdiff is
increased or decreased in the case where a new configuration
is rejected or accepted.b1 , b2 , andb3 determine how rap-
idly Ekinetic is modified depending on the outcome of an es-
cape trial.

initialize a current minimum ‘Mcurrent’

MDstart
ESCAPE TRIAL PART

start a MD trajectory with kinetic energy Ekinetic
from current minimum ‘Mcurrent’. Once the
potential reaches the mdmin-th minimum
along the trajectory stop MD and optimize
geometry to find the closest local minimum ‘M’
if (‘M’ equals ‘Mcurrent’) then

Ekinetic=Ekinetic !betal (betal>1)

goto MDstart
else if (‘M’ equals a minimum visited previously)
then

Ekinetic=Ekinetic !beta2 (beta2>1)

goto MDstart
else if (‘M’ equals a new minimum) then

Ekinetic=Ekinetic !beta3 (beta3<1)

endif
DOWNWARD PREFERENCE PART

if (energy(‘M’)–energy(‘Mcurrent’)<Ediff) then

accept new minimum: ‘Mcurrent’=‘M’

add ‘Mcurrent’ to history list

Ediff=Ediff !alpha1 (alpha1<1)

else if rejected

Ediff=Ediff !alpha2 (alpha2>1)

endif
goto MDstart

In the simulations, which will be presented later, the val-
uesb15b251/b351.05 anda151/a251.02 were used. In-
creasingb2 or b3 leads to a less thorough search. With the
above-mentioned values the simulations never failed to find

the minimum. With increased values the global minimum is
found faster in the cases where it is found, but there are also
cases where it can be missed. After the system has explored
the low energy configurations it starts to explore higher en-
ergy regions. This is a consequence of the fact thatEkinetic is
increased whenever a known low energy configuration is re-
visited. This increase is a necessary condition for the success
of the minima hopping method and it is encountered if
b2

a1a2b3>1. Once Ekinetic has increased significantly, the
simulation should be stopped because the global minimum
was most likely found if the search was thorough enough. If
the simulation is not stopped a nonperiodic system will fi-
nally explode.

IV. SIGNIFICANCE OF THE BELL–EVANS–POLANYI
PRINCIPLE FOR GLOBAL OPTIMIZATION

The Bell–Evans–Polanyi principle8 states that highly
exothermic chemical reactions have a low activation energy.
In our language this means that it is more likely to find a low
energy local minimum if one crosses from the current basin
over a low barrier into a new basin than if one overcomes a
high barrier. As a matter of fact, the Bell–Evans–Polanyi
principle is more likely to be well satisfied in the context of
global optimization than in the context of single chemical
reactions. In the context of global optimization it has to hold
only in an average sense and not for each individual barrier
crossing. A difference is that the Bell–Evans–Polanyi prin-
ciple is a statement about the true physical transition state,
i.e., about the lowest barrier separating two basins. In the
context of global optimization one crosses usually not from
one basin to another via the exact transition state but over a
higher energy barrier. Nevertheless the Bell–Evans–Polanyi
principle should hold equally well for reaction paths that are
not going through the exact physical transition state. The
basic assumption of the Bell–Evans–Polanyi principle,
namely that the potential energy landscape along the reaction
path can be approximated by two parabolas centered at the
two minima~Fig. 1!, is valid for any reasonable reaction path
that does not involve enormous barriers.

FIG. 1. Illustration of the Bell–Evans–Polanyi principle. The potential en-
ergy is described by two parabolas. The transition state is the intersection of
both parabolas. Evidently the transition state is raised if the local minima on
the right-hand side is raised~dashed line! and vice versa.
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Numerical results clearly show that the Bell–Evans–
Polanyi principle holds for the reaction paths of ordinary
escape trials. Table I shows results for a system that has been
studied extensively, the 38-atom Lennard-Jones cluster.9

These studies have shown that the system has two funnels.
The funnel containing the ground state contains only a rela-
tively small number of other minima. The second funnel, on
the other hand, contains a lot of minima. Therefore practi-
cally all runs first fall into this broad funnel. For this reason
we have actually chosen the deepest minimum of this funnel,
which is the second deepest overall minimum, as the starting
point of our simulation.

Even though molecular dynamics~MD! gives always
reasonably low barriers, the parametersb1 andmdmincan be
tuned to vary the barrier height. By reducing the value ofb1

the system is permitted to perform more unsuccessful escape
trials and will thus find on average lower barriers. By in-
creasing the value ofmdmin the system can oscillate more
frequently within the basin from which it wants to escape or
even jump over two barriers and is therefore also more likely
to find lower barriers. The last four lines of Table I show
these MD results. The first line of Table I was obtained in a
run where the escape trials were not done by MD, but by
random displacements of the atoms. The step size of the
random displacements was also adjusted such that half of all
escape trials will lead into new basins. Random displace-
ments can lead to some astronomically large barriers. For
this reasonEkinetic is in this case~Fig. 1! not an average
barrier, but a typical low barrier height.

All the results show a clear correlation between the av-
erage valuêEkinetic& and the number of minima that are vis-
ited by the simulation before the global minimum is found.
This confirms the validity of the Bell–Evans–Polanyi prin-
ciple. Lower barriers lead on average into lower new basins.
Hence higher energy regions that contain a very large num-
ber of minima are avoided and the global minimum is found
by traversing a smaller number of local minima. Note that
our test is particularly stringent because we can not only go
down in energy. In order to leave the initial funnel we have
to go up in energy as well, but we do not go higher than
needed.

The number of minima that are traversed before finding
the ground state is subject to large fluctuations. As shown in
Fig. 2 this number has a nearly perfect exponential distribu-
tion. For this reason the values in Table I were averaged over
1000 runs in the case of MD and over 100 runs in the case of
random displacements.

Even lower barriers could be obtained by eigenvector
following methods.10 However, this introduces some pre-
ferred search direction and thus practically excludes certain
transitions into neighboring basins. In agreement with other
studies11 we therefore found that such choices, which greatly
reduce the randomness of the search direction, slow down
the search for the global minimum.

What counts in practice is not so much the number of
minima that are found before the global minimum, but the
overall computing time. Since each step of the minima hop-
ping algorithm becomes more expensive asb1 is decreased
or mdminincreased, one has to find a set of values forb1 and
mdminthat represents a good compromise between the num-
ber of steps and the cost of each step.

V. COMPARING WITH SIMILAR METHODS

A. Basin hopping

Basin hopping19 has turned out to be a powerful Monte
Carlo method for the determination of the global minimum
of complex molecular systems. It has been applied to various
realistic systems such as silicon clusters.12 Basin hopping is a
method that transforms the potential energy surface in an
advantageous way. The value of the potential energy surface
within one basin is replaced by the value of the potential
energy at the associated minimum as shown in Fig. 3. The
common explanation for the success of the basin hopping
method is that it eliminates the barriers between the basins of
different minima. This is true, but nevertheless, it has to be
stressed that the basin hopping method does not eliminate the
barriers between super-basins or funnels. The transformed
piecewise constant potential energy surface of the basin hop-
ping method still exhibits barriers that have to be overcome
by Monte Carlo steps. If the height of these remaining bar-
riers of the transformed surface between super-basins is
small compared to the height of the original barriers of the
untransformed surface between the basins~upper panel of
Fig. 3!, the basin hopping method is expected to offer a
significant advantage, otherwise~lower panel of Fig. 3!, the

TABLE I. Correlation between the average barrier height^Ekinetic& and the
number of minima visited before the global minimum.^Ekinetic& is the aver-
age of the fluctuating quantityEkinetic over the entire simulation.

Method ^Ekinetic&
Number of minima

visited before global minimum

Random displacement >300 34 000
MD, b151.05,mdmin51 4.7 830
MD, b151.02,mdmin51 3.6 510
MD, b151.01,mdmin51 3.2 430
MD, b151.01,mdmin52 .5 410

FIG. 2. Number of runs that found the global minimum after traversing a
certain number of other minima. The results are given both for the case
where the initial configuration is the second deepest minimum and for a high
energy starting configuration.
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advantage will be marginal. As we have seen, the barrier
height encountered in a simulation depends strongly on the
kind of moves. Random displacements lead to particularly
high barriers.

Without introducing a history list of all the previously
visited minima, the basin hopping algorithm and the minima
hopping algorithm have a rather similar behavior, even
though their theoretical principles are different. In contrast to
basin hopping, minima hopping is not a Monte Carlo
method. What makes the significant difference in practice is
the feedback introduced by the history. As a consequence the
minima hopping method can climb out of a ‘‘wrong’’ funnel
much faster than the basin hopping method. It is thus supe-

rior to the basin hopping method for systems that have a
deep ‘‘wrong’’ funnel. Wrong means in this context just that
the funnel does not contain the global minimum.

Being a thermodynamic method, basin hopping also has
the inconvenience that a temperature has to be chosen.
Choosing a nonoptimal value can prevent finding the global
minimum.

B. Activation relaxation technique

The minima hopping method is essentially a sequence of
activation relaxation events followed by an acceptance/
rejection step. Whereas in the ART method13 one tries to find
very low barriers and in the ART nouveau method11 even the
exact transition state, the molecular dynamics scheme that
we have proposed will in general go over higher barriers.
The findings on the validity of the Polyani principle would
suggest that ART is even better suited than MD for minima
hopping. The reason why we have chosen MD instead of
ART is that it is not obvious how to introduce a feedback
parameter such asEkinetic into the ART scheme. The exis-
tence of such a parameter is essential for a history based
scheme. Only such a parameter allows us to make more vio-
lent jumps that explore new regions of the configuration
space when the simulation has the tendency to repeatedly
revisit certain configurations of the space.

C. Temperature accelerated molecular dynamics

Temperature accelerated molecular dynamics14 is a
scheme that also uses molecular dynamics to escape from a
basin. The temperature is chosen sufficiently high, so that the
system will not remain very long in one basin. A modified
version of temperature accelerated molecular dynamics15

also introduces a history that allows for some simplifications
if a basin is revisited during the simulation. However, the
primary purpose of temperature accelerated molecular dy-
namics is not to find the global minimum, but to follow a
system over very long time scales. Therefore temperature
accelerated molecular dynamics does not use the history to
make more violent moves, which would not have a physical
counterpart. Temperature accelerated molecular dynamics

FIG. 4. The history of all the minima visited in the
search for the ground state of a 38 atom Lennard-Jones
cluster. The energy was shifted such that the ground
state has energy 0.

FIG. 3. In the upper part the barriers separating basins are very high com-
pared to the energy differences of the various local minima, in the lower part
both are comparable.
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also does not have an acceptance/rejection step that gives a
preference toward lower energy configurations.

VI. NUMERICAL TESTS

Doye and Wales have studied Lennard-Jones clusters in
great detail and mapped out the structure of their local
minima configurations.9 Their disconnectivity graphs for
these systems allow one to predict very well whether the
global minimum of a system is difficult or easy to find. As a
consequence of these detailed investigations the Lennard-
Jones cluster can be considered as a benchmark system for
any new global minimization algorithm. The minima hop-
ping method was therefore also applied to these clusters and
the putative global minimum found by Doye and co-workers
was easily rediscovered in all cases as shown in Fig. 4 for the
38-atom cluster. On a Pentium based PC the average run
time varied between a few minutes for the 38-atom cluster to
a few hours for the 75-atom cluster. The run time depends of
course sensitively on implementation details and in particular
on the quality of the local minimization algorithm. When
comparing with similar methods, other more objective mea-
sures will therefore be used in the following.

The performance of the minima hopping method was
also compared with the performance of the basin hopping
method using exactly the same type of moves, namely ran-
dom displacements.16 For a simple funnel structure, as in the
19-atom Lennard-Jones cluster, the performance of both
methods is quite similar. For a system with two deep funnels
minima hopping is superior since it climbs out of the wrong
funnel much faster. Averaging again over 100 runs for the
38-atom cluster, basin hopping visited some 75 000 minima
before falling into the global minimum, compared to 34 000

for minima hopping~Table I!. For the basin hopping run we
choose the temperature that gives the fastest success and
which corresponds to 1.2 energy units.

To test our algorithms for more difficult systems with
more atoms we turned to silicon as described by the EDIP
interatomic potential.17 This system has the advantage that
the global minimum is known for any number of atoms. The
ground state is the perfect crystal. The simulations were
started using an entirely wrong simple cubic crystal struc-
ture, where each silicon atom has six nearest neighbors in-
stead of four. With fixed cell size the silicon systems have
wrong funnels that contain a very large number of minima.
Physically the local minimum at the bottom of a wrong fun-
nel corresponds to a perfect silicon crystal that is rotated with
respect to the correct lattice vectors as shown in Fig. 5 for
the case of a 64-atom crystal. Rotating the crystal in the
correct position is not possible with periodic boundary con-
ditions. So the crystal has to become amorphous before it can
it can recrystallize in the correct position. This obviously
requires overcoming very high barriers.

We applied the minima hopping method to 64- and 216-
atom crystals and always found the ground state. These sys-
tem sizes are nearly two orders of magnitude larger than the
crystalline systems for which up to now the global minimum
was found by simulation.18 For the silicon systems it turned
out that it is impossible to find the global ground state with-
out our history feedback mechanism. Both basin hopping as
well as simulated annealing methods fail20 for this system.
They all get stuck in the astronomically large number of
amorphous local minima. Figure 6 illustrates how minima
hopping succeeds in finding the global minimum. The algo-
rithm first goes down fairly smoothly. Since it is not difficult
to find new lower energy minima bothEkinetic and Ediff are
relatively small. Once the algorithm has arrived at the bot-
tom of a wrong funnel~after some 2.2 million minima!, con-
figurations begin to be revisited frequently andEkinetic starts
to increase. Because of the violent moves the new configu-
rations are on average higher in energy andEdiff has to in-
crease as well. This is clearly visible as some broadening of
the energy history curve. At some point the algorithm has
finally climbed out of the wrong funnel and has arrived at the
correct funnel. The system then collapses very rapidly into
the global ground state after having visited some 4 million
minima. Note that this number is very small compared to the

FIG. 5. A crystal that is rotated slightly with respect to the ground state of
a silicon crystal~left panel! together with the true ground state~right panel!.

FIG. 6. The history of all the minima visited in the
search for the ground state of a 216 atom silicon crystal
using the minima hopping method. The energy was
shifted such that the ground state has energy 0.
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total number of minima. Considering only Wooten–Winer–
Weaire processes,21 the estimated number of local minima is
2216'1065.

Many different physical processes can be invoked to
cross from one local minimum into another one.22 The re-
sults show that all these processes are activated by the escape
trials using molecular dynamics.

VII. CONCLUSIONS

To find the global minimum of a potential energy surface
that has multifunnel structure requires an algorithm that can
rapidly climb out of wrong funnels. This feature can only be
obtained by abandoning the standard Markov-based Monte
Carlo methods and by introducing a feedback mechanism
that, based on the whole simulation history, enforces the ex-
ploration of new regions of the configuration space. The
minima hopping method, presented in this article, contains
such a feedback mechanism.

A preference toward low energy configurations is ob-
tained by an acceptance/rejection step. Imposing this prefer-
ence is simpler if the proposed moves already have a ten-
dency to go into other low energy minima. As expected from
the Bell–Evans–Polanyi principle, low energy barriers lead
on average to low energy minima. The molecular dynamics
scheme that we use for the escape part gives reasonably low
barriers and is applicable to any atomistic system.
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