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Current-voltage relation for thin tunnel barriers: Parabolic barrier model
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We derive a simple analytic result for the current-voltage curve for tunneling of electrons through
a thin uniform insulating layer modeled by a parabolic barrier. Our model, which goes beyond the
Wentzel–Kramers–Brillouin approximation, is applicable also in the limit of highly transparant
barriers subject to high voltages, and thus provides a more realistic description for this situation
compared to the widely used rectangular barrier model. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1650896#

I. INTRODUCTION

Tunneling in metal-vacuum-metal or metal-insulator-
metal contacts is a very old and well-studied subject.1–3 Vari-
ous formulas for the current-voltage characteristics were de-
rived in a series of classical papers in the early 1960’s for
free electron electrodes.4–6 These treatments were mainly in-
tended for calculating the current-voltage curves through
fairly thick insulating layers compared to the de Broglie
wavelength of the electrons at the Fermi energy (lF). In this
case the Wentzel–Kramers–Brillouin ~WKB!
approximation7 is valid for the tunnel transmission and
widely used to obtain simple analytic expressions for the
current-voltage curves for simple barrier models which, in
the end, are easy to apply in the analysis of experimental
current-voltage curves. The WKB approximation is quite ac-
curate when dealing with opaque barriers, but it is not appli-
cable to barriers with high transparency: For thin and low
barriers~relative to the Fermi energy,EF) the WKB approxi-
mation breaks down. This becomes especially important for
large applied voltages which can lower the tunnel barrier
substantially. Thus it is interesting to consider an alternative
analytic model avoiding the WKB and still tractable when
fitting to experimental data. Our motivation for deriving an
analytic expression for the current-voltage characteristic for
a simple thin-barrier model stems from a study of atomic-
sized gold contacts in a scanning-tunneling microscope
setup8 where nonlinear current-voltage curves were related to
tunneling through a thin layer of contaminants in the contact.

In the next section the general formulas for the current
are discussed. Then the truncated parabolic barrier model is
introduced followed by the derivation of the current-voltage
characteristics for this model and illustration of the model by
an example.

II. EXPRESSIONS FOR THE CURRENT

Often details about the contact geometry and tunneling
region are unknown and the experiments are discussed in

terms of the simple barrier geometry shown in Fig. 1~a!.
Here we consider tunneling through an areaA5LxLy

through a barrierf(z) of thicknessd.
We assume that the electrons do not lose energy in in-

elastic scattering inside the barrier. In this case the currentI
for voltageV is given by the Landauer–Bu¨ttiker formula9,10
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wheref (E) is the Fermi–Dirac distribution,k' , is the wave
vector perpendicular to thez-axis, andTk'

(E,V) is the tun-
nel probability for an incoming electron withk'5(kx ,ky)
and total energyE. We asume that the contact dimensions
Lx ,Ly are much largerlF so the quantization in the trans-
verse direction can be neglected andk' is continous. The
integration overk' is restricted to values which conserveE
andk' . For free electron dispersions the transmission prob-
ability depends only on the kinetic energyEz along z (E
5E'1Ez), and we may write

Tk'
~E!5T1D~Ez!5T1D~E2E'!. ~2!

T1D(Ez ,V) is simply the probability for tunneling through
the one-dimensional~1D! potentialf(V;z).

We find it instructive to define the mean transmission
T3D for an incoming electron with energyE by averaging
over all possible values ofEz

T3D~E,V![
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whereby the current is written as
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T3D increases with increasing energy since here the electrons
with Ez close toE penetrate a smaller potential barrier. This
is illustrated by the arrows in Fig. 1~b!. T3D will also in-
crease with increasingV. We note that for a transparent bar-
rier (T3D51) and in limit of small voltages (eV!EF) Eq.
~4! yields

I ~V!5pA
2EFm

h2

2e
2

h
V5

pA

lF
2 G0V5GSV, ~5!

whereG052e
2/h;1/12.9 kV is the quantum unit of conduc-

tance andGS is known as the Sharvin conductance.11 It is
natural to rewrite the expression for the current such thatGS

is used as a prefactor

I ~V!5GST~V!V, ~6!

where

T~V!5
*0

`dE@ f ~E!2 f ~E1eV!#ET3D~E,V!

eVEF
~7!

is the mean transmission probability averaged over all elec-
trons in the energy window eV below the Fermi energy in the

left electrode. By writing the current in the form of Eq.~6!
we see that the interesting physics such as nonlinearities is
contained in the voltage dependence ofT(V).

SinceT3D(E,V) is most often a smoothly varying func-
tion of E ~on the scale ofkBT), we can use the Sommerfeld
expansion12 and write Eq.~7! as

T~V!;T0~V!1DT~V!, ~8!

where

T0~V!5
1

eVEF
E

EF2eV

EF
dEET3D~E,V! ~9!

is the zero temperature mean transmission, and

DT~V!5
p2

6

~kBT!2

eVEF
@T1D~EF ,V!2T1D~EF2eV,V!#

~10!

is the second order temperature correction to the mean trans-
mission. In the following, we employ these formulas for a
simple parabolic model potential.

III. PARABOLIC BARRIER MODEL

Simple square potential models and the WKB
approximation5 are often used in the analysis of experiments
where little is known about the tunnel region, so a minimum
of parameters are used for its description such as the barrier
thickness and height. This has, e.g., been done for tunneling
through organic monolayers.13,14 Here we focus on a barrier
model which is again only described by a barrier height and
thickness but is adequate for thin and low barriers, where the
WKB approximation can not be applied. Our choice is the
parabolic barrier, which, unlike the rectangular barrier is
continuous at the electrodes, thereby removing the infinite
forces at the surface and causing cusps in theI –V curves. In
our model, we place the parabolic barrier with heightf0 in
the middle of the gap between the metal electrodes as shown
by the thick solid line in Fig. 2 and write the barrier forV
50

f~0;z!5H 0 if z,0 or z.d,

f02
1

2
KS z2

d

2D 2

if 0<z<d.
~11!

FIG. 1. ~a! Model geometry used for calculating the voltage dependent
tunnel current through a thin insulating film.~b! Energy diagram for tunnel-
ing through a thin barrier with no bias voltage applied.~c! Energy diagram
for a applied positive voltageV. The thin dotted lines illustrate how the
generated electric field in the film deforms the zero voltage barrier assuming
no charge redistribution in the barrier. Only electrons in the energy window
defined by the Fermi functionsf (E)2 f (E1eV) contribute to the current.

FIG. 2. Solid lines: The truncated parabola model without~thick line! and
with ~thin line! an applied bias voltage. The dotted lines show the continu-
ations of the parabolas.

3583J. Appl. Phys., Vol. 95, No. 7, 1 April 2004 K. Hansen and M. Brandbyge

Downloaded 07 Aug 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



We select the curvatureK in Eq. ~11! such that the barrier
connects continuously to the bottom of the electrode poten-
tials at the surfaces@f(0;0)5f(0;d)50#, whereby the
shape of the barrier is fully described byf0 andd

K5
8f0

d2 . ~12!

We will neglect charge rearrangement inside the barrier,
so the zero voltage barrierf(V50;z) is modified by
2eVz/d when a bias voltageV is applied1–5,15–17

f~V;z!5f~0;z!2eV
z

d
. ~13!

We can write the barrier at finite bias~shown as a thin
solid line in Fig. 2! by using Eq.~13!

f~V;z!5fV2
4f0

d2 ~z2zmax!
2. ~14!

The voltage-dependent barrier maximum located atzmax, is
given by

fV5max@f~V;z!#5f0S 12
1

4

eV

f0
D 2

. ~15!

The presence of an electric field in the film lowers the barrier
height by eV/2 to lowest order in eV. Unlike rectangular and
image barriers, the parabolic barrier does not change its
shape~curvature! when a voltage is applied. Only the barrier
height and the maximum position change. In the following,
we will see that this is a very convenient feature of the
model.

The WKB tranmission is evaluated to the simple expres-
sion

T1D
WKB~Ez ,V!5exp@2g~fV2Ez!#, fV.Ez , ~16!

whereg is given in terms of the barrier height and width as

g5
&p2

h
Am

f0
d. ~17!

In practical units,g is given by

g@~eV!21#;0.805
d@Å #

Af0@eV#
. ~18!

Instead of applying the WKB approximation we may con-
sider a parabolic barrier which extends toz56` instead of
being truncated at the metal surfaces as indicated by the dot-
ted curves in Fig. 2. For this potential a simple andexact
expression for the transmission,T1D

P , can be found7,18,19

T1D
P ~Ez ,V!5

1

11exp@g~fV2Ez!#
. ~19!

Unlike the WKB result derived in Eq.~16!, this formula is
also valid forEz.fV . In the tunneling regime, it is instruc-
tive to rewrite Eq.~19! as20

T1D
P 5

1

111/T1D
WKB , EZ,fV . ~20!

In the opaque barrier limit (T1D
WKB!1), the WKB transmis-

sion is identical to the extended parabolic barrier transmis-
sion. For more transparent barriers, the WKB approximation
gradually breaks down. In the extreme caseEz5fV , where
T1D

WKB51, the parabolic result isT1D
P 50.5. By refining the

WKB approximation, it can actually be shown that a better
estimate of the transmission probability close to the top of an
arbitrary barrier is given by Eq.~20!.18,21,22

Although the expression forT1D
P in Eq. ~19! gives more

reliable values for the transmission close to the top of the
barrier, one might still question its validity at energies ap-
proaching the bottom the electrode potentials. Since the
asymptotic wave functions for the extended parabolic barrier
bare no resemblance to the plane waves found for the trun-
cated parabolic barrier, this could give very different results.
On the other hand, small values ofEz correspond to opaque
barriers, where the WKB approximation is known to hold
fairly well. Since the WKB transmission depends only on the
shape of the classically forbidden region~which is the same
whether we truncate the parabola or not!, the deviations may
not be so large. To elucidate this point further, we have per-
formed numerical23 calculations of the transmissionT1D

TP of
the truncated parabolic barrier for different barrier param-
eters. Representative results are shown in Fig. 3 and com-
pared with the analytical expressions forT1D

P @Eq. ~19!# and
T1D

WKB @Eq. ~16!#. At zero bias voltage, the transmissions
gradually saturate to one as the energy increases towardsf0 .
When a voltage of 2 V is applied, the barrier is lowered by
'1 eV @Eq. ~15!#, effectively shifting the curves to lower
energies by'1 eV. As expected, the WKB approximation
overestimates the transmission close to the top of the barrier.
At lower energies, on the other hand,T1D

TP.T1D
WKB as can be

seen in the lower left panel. In general,T1D
P closely follows

T1D
TP .

Inserting Eq.~19! in Eq. ~3! we get

T3D
P ~E,V!5

1

gE
ln$11exp@2g~fV2E!#%, ~21!

where we have omitted a constant term ln$11exp@2gfV#%
since it is negligible in comparison to ln$11exp@2g(fV

2E)#% for realistic values of the barrier parameters. In Fig.
4~a! we show the energy dependence ofT3D

P for the same
parameters used previously in Fig. 3. ForE approachingf0 ,
the transmissions gradually roll of from the exponentially
increasing WKB regime and saturate at a value below one.

Now we use Eq.~21! to calculate the mean transmission
averaged over the active voltage windowT P(V). Using the
Sommerfeld expansion, we first calculate the zero tempera-
ture mean transmission by inserting Eq.~21! in Eq. ~7! and
solving the integralexactly. The result is

T 0
P~V!5

1

g2EFeV
~Li2$2exp@2g~fV1eV2EF!#%

2Li2$2exp@2g~fV2EF!#%!, ~22!

where Li2(z) is the dilogarithm function.24,25 The tempera-
ture correctionDT P can be found immediately by inserting
Eq. ~19! in Eq. ~10!
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DT P~V!5
p2

6

~kBT!2

EFeV H 1

11exp@g~fV2EF!#

2
1

11exp@g~fV2EF1eV!#J . ~23!

Equations~22! and~23! are the key results of this article
and give the current-voltage characteristics,I P(V)
5GST P(V)V, for the simple parabola model.

In Fig. 4~b! we show examples of the voltage depen-
dence ofT P for the same parameters used previously. When
the voltage is increased, the transmission generally increases
because of the barrier lowering which gives rise to
nonlinearity.8 We also note that the thicker the barrier, the
larger the nonlinearities. We have plotted the temperature
correcting termDT P for T5300 K with thin lines. For the
thin 8 Å barrier,DT P is two to three orders of magnitude
lower thanT P, and it can be neglected. However, when the
thickness is increased, the temperature correction becomes
increasingly important, and for the 24 Å barrier~dashed-
dotted lines!, it gives a 5% contribution to the total transmis-
sion. This is because the energy dependence ofT3D

P increases
with increasing thickness as seen from Fig. 4~a! and elec-

trons which are excited by an energy of the orderkBT at the
Fermi energy will have a significantly enhanced transmis-
sion.

For opaque barriers where the WKB approximation ap-
plies, the exponentials in Eq.~22! will be much less than
one. Since Li2(x);x for x!1, Eq. ~22! reads

T 0
P;

exp@2g~f02EF!#

gEF

3expF2
g

16f0
~eV!2G 2 sinh~geV/2!

geV
. ~24!

In this limit we find the temperature correction,

DT P

T P 5
p2

6
g2~kBT!2'7.931029

d@Å #2T@K#2

f0@eV#
, ~25!

which is only valid for sufficiently low temperature and
small barrier thickness were the Sommerfeld expansion ap-
plies (gkBT!1). Formulas for theI –V curve identical in
form to Eqs.~24! and~25! can be shown to hold forarbitrary
symmetric barrier within the WKB approximation.4

IV. SUMMARY

We have derived a simple analytic result for the current-
voltage curve for tunneling of electrons through a simple
parabolic barrier model. Our result for the current-voltage

FIG. 3. The energy dependence of the 1D transmission through a truncated
parabolic barrier with barrier heightf056 eV and electrodes withEF

55.5 eV, lF55.2 Å, corresponding to gold~see Ref. 12!. The transmis-
sions are plotted for barrier thicknesses of 8 Å~left panels! and 16 Å~right
panels! using a bias voltage of 0 and 2 V as indicated in the graphs. For each
choice of barrier parameters, the transmission is calculated using three dif-
ferent methods:~i! the exact transmissionT1D

TP using a recursion method~see
Ref. 23! ~solid lines!; ~ii ! the transmissionT1D

P through an extended para-
bolic barrier@Eq. ~19!# ~dashed lines!; and ~iii ! the transmissionT1D

WKB cal-
culated within the WKB approximation@Eq. ~16!# ~dotted lines!. The trans-
missions are shown on both linear~upper panels! and logarithmic~lower
panels! scales. The Fermi energy is indicated by a thin vertical line.

FIG. 4. ~a! The energy dependence of the average transmissionT3D
P (E) for

different voltages using the same parameters as in previous figures. The
thick parts of the curves indicate the active energy window of the electrons,
see Eq.~22!. ~b! Thick lines: voltage dependence of the mean transmission
T P calculated using Eqs.~22! and ~23! for different barrier thickness. Thin
lines: the temperature correction to the mean transmissionDT P calculated
using Eq.~23!.
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curve goes beyond the widely used WKB approximation by
using a more accurate formula for the transmission. This
makes the model well suited for calculatingI –V curves for
thin barriers with small barrier heights. The only parameters
in the model are the Fermi energy of the electrodes, the
barrier height, and thickness. The model has previously been
used to fit experimental nonlinear current-voltage curves.8

We have illustrated how temperature effects and nonlinearity
in the I –V curves become increasingly important as the
thickness of the barrier is increased.
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