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Crossover from tunneling to incoherent (bulk) transport in a correlated nanostructure

J. K. Freericks
Department of Physics, Georgetown University, Washington, D.C. 20057-0995, U.S.A.

We calculate the junction resistance for a metal-barrier-metal device with the barrier tuned to
lie just on the insulating side of the metal-insulator transition. We find that the crossover from
tunneling behavior in thin barriers at low temperature to incoherent transport in thick barriers at
higher temperature is governed by a generalized Thouless energy. The crossover temperature can
be estimated from the low temperature resistance of the device and the bulk density of states of the
barrier.

PACS numbers: 73.63.-b, 71.30.+h, 71.27.+a

Many electronic devices employ quantum-mechanical
tunneling in determining their transport properties. Ex-
amples include Josephson junctions1 and magnetic tun-
nel junctions2. When designing a device manufactur-
ing process, or when optimizing the operational charac-
teristics of a device, it is important to have diagnostic
tools that can determine if the transport is via tunnel-
ing or via defects in the barrier (such as pinholes). In
superconductor-based devices, this is well understood,
and was described in detail by Rowell3 in the 1970’s.
However, the criteria relied on testing the device in the
superconducting state. Interest in this problem for nor-
mal metals and for higher device operating temperatures
has been driven by recent activity in magnetic tunnel
junctions2. A number of useful criteria for tunneling4

have emerged for these normal-metal-based devices: (i)
the junction resistance should increase with decreasing
temperature; (ii) the fit of an IV characteristic to a Sim-
mons model5 should have a barrier height that does not
decrease and a fitted thickness that does not increase as
T decreases; and (iii) the junction noise should not in-
crease at finite bias. It has also been well established
that the naive criterion for tunneling, that the resistance
increases exponentially with the barrier thickness is in-
sufficient, since a rough interface plus pinholes will also
yield this exponential dependence6.
In this contribution, we perform a theoretical analy-

sis of tunneling through a correlated barrier to investi-
gate the crossover from a tunneling regime, where trans-
port is dominated by quantum processes that provide
“shorts” across the barrier, to an incoherent bulk trans-
port regime, where the transport occurs via incoherent
thermal excitations of carriers in the barrier. In the latter
case, one expects the junction resistance to scale linearly
with the barrier thickness, with the slope proportional
to the bulk resistivity of the barrier (which has a strong
temperature dependence in an insulator). As the barrier
is made thinner (or the temperature is decreased), the di-
rect quantum-mechanical coupling of the metallic leads
through states localized in the barrier begins to domi-
nate the transport process, and the resistance is reduced
from that predicted by the incoherent transport mecha-
nism to a relatively temperature independent tunneling-
based resistance. Since the wavefunctions that connect
the two metallic leads decay exponentially in the bar-

rier, the tunneling resistance depends exponentially on
the barrier thickness. Most commercial devices operate
in this tunneling regime because the junction resistance
is low enough to generate reasonable current values for
low voltages and because the weak temperature depen-
dence simplifies variations of the device parameters with
temperature.
In conventional tunneling devices, which use an insu-

lator with a large energy gap (like AlOx), one cannot
see the crossover to the bulk transport regime, because
it occurs at too high a temperature, or for too resistive
junctions to be of interest. But there has been recent
work in examining barriers that are tuned to lie closer to
the metal-insulator transition7 (like TaxN), and thereby
have much smaller “energy gaps”. Barriers of this type
may be easier to work with because they can be made
thicker and thereby be less susceptible to pinhole forma-
tion. They also can be advantageous for different appli-
cations. As the energy gap of the barrier material is made
smaller (or equivalently, if the barrier potential height is
reduced), it becomes possible to observe and study the
crossover from tunneling to bulk transport.
We consider a device constructed out of stacks of in-

finite two-dimensional planes stacked in registry on top
of each other. This kind of inhomogeneous layered de-
vice can be used to describe a wide range of different
multilayer-based structures. We couple a bulk ballistic
semi-infinite metal lead to thirty self-consistent ballis-
tic metal planes; then we stack 1 to 20 barrier planes
and then top with another thirty self-consistent ballis-
tic metal planes followed by another bulk ballistic semi-
infinite metal lead. The ballistic metal is described by a
simple hopping Hamiltonian with no interactions. The
barrier is described by a spin-one-half Falicov-Kimball
model8 with the same hopping parameters as the metal
plus strong scattering that yields correlations for the elec-
tron motion. The Hamiltonian is

H = −t
∑

〈i,j〉σ

c†iσcjσ +
∑

iσ

UFK
i wi(niσ −

1

2
), (1)

where c†iσ (ciσ) creates (destroys) a conduction electron
at site i with spin σ and t is the hopping parameter. The
hopping is on a simple cubic lattice constructed from the
stacked two-dimensional planes; i.e., the hopping integral
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is chosen to be the same within a plane and between two
planes. UFK

i is the Falicov-Kimball interaction and wi is
a classical variable, equal to zero or one, which denotes

the presence of a scatterer at site i. Finally, niσ = c†iσciσ
is the electron number operator. The Falicov-Kimball
interaction is nonzero only within the barrier, where we
set it equal to 6t—large enough to create an insulator
with a gap of 0.4t. The average concentration of scat-
terers is 〈wi〉 = 1/2 and we choose half filling for the
electrons as well (with our choice of interaction, this cor-
responds to a vanishing chemical potential). In order to
be quantitative, we pick the hopping parameter to sat-
isfy t = 0.25 eV, which yields a bandwidth of 3 eV for
the metallic leads and a gap of 100 meV for the corre-
lated insulator (much smaller than a conventional oxide
insulator). We solve for the Green’s functions using an
inhomogeneous dynamical mean field theory calculation
described elsewhere9,10,11,12. The resistance-area prod-
uct for this device is calculated by a real-space version
of Kubo’s formula. We take the lattice constant to be
0.3 nm.

FIG. 1: Ratio of the resistance of the junction at temperature
T to the resistance at 30 K. The different curves correspond to
different thicknesses of the barrier, which are labeled with an
integer denoting the number of atomic planes in the barrier.
As expected, the temperature dependence of the resistance
increases as the barrier is made thicker, because the barrier is
becoming more bulk-like. However, in this regime, all of the
transport is still dominated by tunneling.

In Fig. 1, we plot the ratio of the junction resistance
at temperature T to the resistance at 30 K for junctions
with a barrier thickness ranging from 1 to 10 atomic
planes. In all cases, the resistance shows a weak temper-
ature dependence with an insulator-like character. This
low-T behavior is often used as a diagnostic to indicate
that tunneling is occuring in a junction4,13, and that cer-
tainly is the case here. Note how the temperature de-
pendence increases as the thickness increases. This is
because the thicker the barrier is, the more it looks like a
bulk material, and an insulating barrier has strong (expo-
nentially activated) temperature dependence in the bulk.

FIG. 2: Resistance-area product as a function of the barrier
thickness L for a number of different temperatures (the labels
on the curves are in K). Notice how the thin barriers have
an exponential dependence on thickness, which gives way to
a linear dependence as the junctions are made thick enough.
This crossover region moves to thinner barriers as the tem-
perature is increased.

Since our junctions are defect free, with atomically
smooth interfaces, we can analyze the resistance at fixed
temperature as a function of the barrier thickness to look
for exponential dependence in the tunneling regime, with
a crossover to linear dependence in the incoherent (bulk)
transport regime. This is plotted in Fig. 2 for a number
of different temperatures, ranging from 30 K to 1000 K.
Note how we see a perfect exponential dependence on
thickness for thin barriers, which then gives way to a
crossover to linear behavior as the junctions are made
thicker and the transport becomes incoherent and ther-
mally activated. Because of the thermal activation, this
crossover moves to thinner barriers as the temperature is
increased. But it is interesting to note that there is no
simple relationship between the bulk gap (approximately
50 meV or 550 K when measured from the T = 0 chemi-
cal potential) and the location of the crossover thickness
as a function of temperature. Indeed, as T is increased,
this crossover region is pushed to thinner and thinner
barriers. This type of behavior has been seen in Joseph-
son junctions made from high temperature superconduc-
tors using molecular-beam-epitaxy14. When the barrier
was increased from 1 to 3 to 5 to 7 atomic planes, the
junction resistance initially increased exponentially, and
then started to turn over to a more linear dependence on
thickness. However, because the high-temperature su-
perconductor is a d-wave superconductor, there is strong
temperature dependence to the junction resistance, even
in the tunneling regime, so direct comparison with results
given here is impossible. This behavior has also been seen
in some magnetic tunnel junctions15 where an exponen-
tial increase as a function of thickness gives way to an
essentially constant dependence on thickness for thicker
Aluminum regions. What is less known about this data
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is how much of the Aluminum is oxidized in the manu-
facturing process. Also, no temperature scans at fixed
thickness were reported.

FIG. 3: Resistance-area product as a function of tempera-
ture for a number of different barrier thicknesses plotted on
a log-log plot. Notice how the thin barriers have a weak de-
pendence on temperature, and a constant step-size increase
in the logarithm of the resistance as the thickness increases,
indicating tunneling behavior, and how there is a crossover
to incoherent transport as T is increased. The dashed line
shows the boundary where the generalized Thouless energy
is equal to kBT . This marks the approximate crossover from
tunneling (for ETh(T ) ≫ kBT ) and incoherent transport (for
ETh(T ) ≪ kBT ).

In Fig. 3, we plot Rn(T )A versus T for a variety of
barrier thicknesses on a log-log plot. This figure clearly
shows the tunneling regime, where the resistance-area
product is approximately constant, and it shows the in-
coherent regime, where the resistance-area product has
a strong temperature dependence. The dashed line, that
divides these two regions is an approximate boundary
that denotes the crossover region for the two different
types of transport. This crossover line is determined by
equating an energy scale extracted from the resistance
with the temperature. When this energy scale is larger
than kBT we have tunneling, when it is lower than kBT
we have incoherent transport. The energy scale is a gen-
eralized Thouless energy16, valid for a barrier that is de-
scribed by an insulator that does not have either ballistic
or diffusive transport. The generalized Thouless energy
ETh is the energy scale constructed from the resistance
at temperature T via the expression

ETh(T ) =
~

Rn(T )
2e2

~

∫

dω
(

− df(ω)
dω

)

ρint(ω)L
(2)

where f(ω) = 1/[1 + exp(ω/kBT )] is the Fermi-Dirac
distribution, ρint(ω) is the bulk density of states in the
insulator, and L is the barrier thickness. This definition
of ETh agrees with the conventional notion of ~/tdwell,
relating the Thouless energy to the dwell time in the
barrier, when the transport in the barrier is described by
either a ballistic metal (where the Thouless energy varies
like C/L) or a diffusive metal (where the Thouless energy
varies like C/L2), but it can now be generalized for an
insulating barrier as well (where the Thouless energy now
picks up a substantial temperature dependence).

The notion of a Thouless energy can be employed as
a diagnostic for tunneling devices. Since Rn(T ) depends
weakly on T in the tunneling regime, one can measure
Rn at low T , and estimate the crossover temperature,
by computing a simple integral over the bulk insula-
tor density of states. Then one evaluates ETh(T ) em-
ploying Eq. (2) using the low-temperature value of the
resistance. The crossover temperature is estimated by
the point where ETh(T ) = kBT . Note further that this
crossover temperature is not proportional to the gap of

the bulk insulator, but rather is a complicated function of
the barrier thickness, and the strength of the correlations.

In summary, we have determined an energy scale ex-
tracted from the resistance of a junction, that governs
the crossover from tunneling to incoherent transport.
This energy scale approaches zero as the barrier thick-
ness becomes large, hence it could have applicability to
any tunneling-based device, but when we examine the
common resistance-area products of actual devices, it be-
comes clear that this concept will have the most applica-
bility to junctions with barriers tuned to lie close to the
metal-insulator transition. Since it is possible such de-
vices will be used for devices of the future, the concept of
a generalized Thouless energy should become an impor-
tant diagnostic tool in evaluating the quality of devices,
and allow one to engineer the thickness and operating
temperature range to guarantee tunneling with the cho-
sen barrier.
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