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Electron-hole pair creation by an adsorbate incident on a metal surface is described using ab
initio methods. The approach starts with standard first principles electronic structure theory, and
proceeds to combine classical, quantum oscillator and time dependent density functional methods
to provide a consistent description of the non-adiabatic energy transfer from adsorbate to substrate.
Of particular interest is the conservation of the total energy at each level of approximation, and
the importance of a spin transition as a function of the adsorbate/surface separation. Results are
presented and discussed for H and D atoms incident on the Cu(111) surface.

PACS numbers: 73.20.Hb, 34.50.Dy, 68.43.-h

Understanding the fundamental processes involved in
gas-surface interactions is an important goal, from both
a pure and applied scientific perspective. In recent years
much progress has been made in understanding these
interactions,1 but a key phenomenon that has received
little attention is energy dissipation into substrate de-
grees of freedom for an adsorbate incident upon a sur-
face - an essentially non-adiabatic process. Energy loss
by phonon excitation has recently been described success-
fully (notably by Wang et al.2 and Busnengo et al.3 ), but
a description of the energy loss by the excitation of low-
energy electrons at metal surfaces has not been achieved
for ‘real’ systems. This energy transfer mechanism is
known to be of central importance in many situations.1

Here we report ab initio calculations of electron-hole pair
creation for H/Cu(111).

In a previous paper4 we have described a method to
calculate the classical force experienced by an atom in-
cident on a metal surface due to excitation of electrons
in the system - a nearly adiabatic process in which many
low-energy electron-hole pairs are excited. This method
is based upon Time Dependent Density Functional The-
ory (TDDFT) together with a nearly-adiabatic approxi-
mation that allows the definition of a position-dependent
friction coefficient. In Ref. 4 we principally described the
development of the theory and parallel algorithm neces-
sary to obtain this friction coefficient. Preliminary results
were presented for H on Cu(111), and discussed only in
terms of convergence behaviour and basic viability of the
method.

In a recent Letter5 we have briefly described a further
extension of this work. The creation of electron-hole pairs
due to the adsorbate/surface interaction is described as
the excitation of quantum oscillators by a driving force
- the well known Forced Oscillator Model (FOM). This
approach allows the prediction of the energy spectrum
of excited electrons. The results obtained may be com-

pared to the recent experimental work of Nienhaus and
co-workers, who have directly measured the hot electrons
and holes created at metal surfaces by the adsorption of
thermal hydrogen and deuterium atoms in the form of a
‘chemicurrent’ in a Schottky diode.6,7,8,9 Good agreement
was found between predicted and experimental results for
H/Cu(111).

Our aim in this paper is to provide a more complete de-
scription of the theory and approximations employed in
these calculations, and to show explicitly the relationship
between the classical description of the adsorbate dynam-
ics and the quantum description of the excited electrons.
A further important goal is to define clearly the approx-
imations in the theory and their physical consequences.
Of particular interest is the spin transition (from spin-
polarised to non-magnetic) that can occur when an open-
shell adsorbate approaches a metallic surface. This spin
transition is found for the H/Cu system and in this case
a direct application of the friction coefficient and FOM
results in an unphysical singularity in the rate of energy
transfer. In Ref. 5 we provided a brief argument as
to how this problem may be resolved. Here we present
a more complete discussion of this singular behaviour,
together with further details of the results obtained us-
ing the FOM for the properties of the excited electron-
hole pairs. In a recent paper Gadzuk10 has also analysed
the excitation and detection of chemicurrents. He uses
a three step model consisting of (i) the excitation of hot
electrons, (ii) their transport across the thin metal film of
the Schottky diode, and (iii) their transmission across the
metal-semiconductor interface. Our principal aim in this
paper is to provide a detailed theory of step (i) that goes
beyond the simple model expressions used by Gadzuk.

The approach we use may be naturally divided into
three stages. A standard first principles DFT calculation
of the adsorbate/surface system is carried out to obtain
the Kohn-Sham (KS) states and self-consistent potential
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for the adsorbate at various positions. A friction coeffi-
cient is then obtained from the KS states and potential
which gives the energy loss of the incident adsorbate due
to electron-hole pair creation. This friction coefficient
provides a description of the average non-adiabatic en-
ergy transfer behaviour of the system, and is derived by
applying TDDFT and a nearly-adiabatic approximation.
We may then solve a classical equation of motion to ob-
tain a trajectory for the incident adsorbate. Finally the
response of the electron gas to the time-varying potential
due to this trajectory is found by applying the FOM to
obtain a semi-classical (classical atomic motion coupled
to quantum metallic electrons) description of electron-
hole pair creation. In the next section the formalism
that leads to the friction coefficient is developed, and
results given for H/Cu(111). In section II the FOM is
presented, together with the approximations used in our
implementation, and discussed. In section III we show
how this method is used to predict a variety of exper-
imentally measurable quantities. Results for H and D
atoms incident on the Cu(111) surface are presented and
analysed.

I. FRICTION COEFFICIENT

We begin with a description of the classical motion of
an adsorbate coupled to the electronic states of the sub-
strate. An approach is required that extends beyond the
Born-Oppenheimer approximation of nuclear motion on
a single potential-energy surface to include non-adiabatic
energy loss of the incident nuclei to the substrate elec-
trons. The nuclei of the substrate are considered station-
ary, although our approach can easily be generalised to
include their motion. Our goal in this section is to out-
line the theory used to obtain a friction description of
the energy transfer (as first derived by d’Agliano et al.

11

and Blandin et al.
12 and used by Hellsing and Persson13

for damping of vibrational modes; see also Head-Gordon
and Tully14 and Plihal and Langreth15) and apply this
to the H/Cu(111) system. Results for the friction coeffi-
cient are found to exhibit singular behaviour. We explain
the source of this unphysical singularity and describe an
approach taken to remove it.

The time-dependent motion of an adsorbate results in
a non-adiabatic energy transfer to the many-electron sys-
tem of the substrate, which can be handled in the nearly
adiabatic approximation. To ease the notation we re-
strict the discussion to a single atomic nucleus following
a trajectory z(t). In general the non-adiabatic energy
transfer from the nucleus to the many-electron system
can be expressed as (see Appendix),

Ėnon-ad(t) = ż(t)

∫

dr
dVext(r, z(t))

dz
δn(r, t). (1)

Here, Vext(r, z) is the electron-nucleus interaction poten-
tial and δn(r, t) = n(r, t)−n0(r, z) is the deviation of the
instantaneous electron density n(r, t) from the ground
state electron density n0(r, z) when the nucleus is fixed
at position z(t). In our case, the time-dependent mo-
tion of the nucleus is so slow that δn(r, t) is expected to
be small and can be handled in a nearly adiabatic ap-
proximation. In this approximation δn(r, t) is obtained
by using the linear response of the electron system for a
fixed position of the atomic nucleus to the perturbation

Vext(r, z(t
′))−Vext(r, z(t)) ≃

dVext(r, z(t))

dz
(z(t′)−z(t)) ,

(2)
where in the last step we have assumed that the nu-
cleus only moves a small distance during the electronic
response time. The linear response of the many-electron
system to an arbitrary perturbation δV (r, t) is given by

δn(r, t) =

∫ t

−∞

dt′
∫

dr′χ(r, r′, t− t′; z)δV (r′, t′) (3)

where χ(r, r′, t−t′; z) is the density-density response ker-
nel for the nucleus at position z. Equation (3) together
with the perturbation of Eq. (2) result in the following
expression for the non-adiabatic energy transfer,

Ėnon-ad(t) = ż(t)

∫ t

−∞

dt′Λ(t− t′; z(t))z(t′). (4)

Here the memory function, Λ, is defined as

Λ(τ ; z) =

∫

dr

∫

dr′
dVext(r, z)

dz

(

χ(r, r′, τ ; z)− δ(τ)

∫ ∞

0

dτ ′χ(r, r′, τ ′; z)

)

dVext(r
′, z)

dz
. (5)

Note that this formalism can also be applied to vibra-
tional damping of an adsorbate by excitation of electron-
hole pairs. In this case, the expansion is simply around
the equilibrium position.13

The friction force description of the lossy response of

the many-electron system to the adsorbate motion is now
obtained by taking the slow adsorbate limit. In this case,
we can use the low frequency limit of the response of
the electron gas and one finds, in close analogy with the
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derivation of the vibrational damping rate,13

Λ(ω; z) = −iη(z)ω +O(ω2), (6)

where η(z) is real. This low frequency approximation
for Λ(ω; z), inserted in Eq. (4), gives directly a friction
description for the energy loss

Ėnon-ad(t) = η(z(t))ż(t)2 . (7)

That this result gives rise to a friction force is sim-
ply understood by imposing energy conservation for the
combined many-electron and nucleus system. The time
derivative of the total energy then gives

Mz̈ = −dV0
dz

− η(z(t))ż (8)

where M is the mass of the atomic nucleus and V0(z) is
the ground state energy of the electronic system when the

nucleus is at a fixed position z. In Eq. (7) it can be seen
that the ‘memory’ of the lossy response of the electronic
system is removed, hence the limit leading to Eqs. (7) and
(8) can be regarded as a Markov approximation. For a
complete equation of motion for the adsorbate one needs
to add a stochastic force to Eq. (8) to ensure that the
particle reaches thermal equilibrium. However, in our
case the temperature is low and we can neglect this force.
An explicit expression for the friction coefficient can

now be obtained using time-dependent density functional
theory, again in close analogy with the derivation of the
vibrational damping rate.13 In TDDFT the response ker-
nel at a frequency ω is approximated by the response ker-
nel for the non-interacting KS electrons and the external
field is replaced by an effective field Veff (r, ω) which in-
cludes the Hartree and exchange-correlation fields. Un-
der the widely used assumption of an adiabatic exchange-
correlation potential, the imaginary part of the frequency
dependent memory function in Eq. (5) is given by13

Im Λ(ω; z) = −2π
∑

i,j

∣

∣

∣

∣

〈ψi|
dVeff (ω)

dz
|ψj〉

∣

∣

∣

∣

2

(f(ǫi)− f(ǫj)) δ(~ω − ǫi + ǫj) (9)

where ψi and ǫi are the KS eigenstates of the electrons at
position z of the adsorbate, and f(ǫ) is the Fermi-Dirac
occupation function. The friction coefficient is now, ac-
cording to Eq. (6), obtained from the low frequency limit
of Im Λ(ω). By making a straightforward generalisa-
tion to spin-polarised TDDFT, and changing our nota-
tion slightly, we obtain4

η(z) = π~
∑

σ

∑

α,α′

∣

∣

∣

∣

〈ǫFα, σ|
dVσ
dz

|ǫFα′, σ〉
∣

∣

∣

∣

2

(10)

where α and α′ are supplementary quantum numbers for
states on the Fermi surface, and Vσ(r, z) is the KS po-
tential for spin σ. It is important to note that the static
KS potential, Vσ(r, z), for spin σ appears in Eq. (10) as
a result of the low frequency limit and not due to an ad-
ditional approximation or assumption, hence this is the
correct result within TDDFT for an adiabatic XC func-
tional.
The results in Eqs. (8) and (10) allow us to calculate

the classical trajectory of an adsorbate interacting with a
substrate, using a friction coefficient to describe the non-
adiabatic energy loss to the substrate electrons. This
description is valid within TDDFT (of course an approx-
imate XC functional must be chosen for calculations) in
combination with two approximations. First, we assume
the substrate electrons respond nearly-adiabatically to
the motion of the adsorbate in the sense that the instan-
taneous electron density is always close to the ground
state density. The second, and most significant, approx-

imation is the assumption that the adsorbate moves so
slowly that the Markov limit can be taken to remove the
memory of the lossy response of the electronic system.
The validity of this approximation depends on the as-
sumption of a linear frequency dependence of the mem-
ory function over the frequency range set by the time-
dependence of the adsorbate motion. Such a frequency
dependence is expected over the range where the den-
sity of states for electron-hole pairs is essentially linear.
In the case of a jellium surface the corresponding energy
range is several eV and the Markov limit should be a good
approximation for atoms with a kinetic energy of a few
eV.13 However, as discussed in more detail below, we find
that the adsorbate motion through the spin transition is
not slow, and in this case the Markov approximation fails.

A. H/Cu(111): Spin transition and singularities

We begin with a standard, self-consistent plane-wave
pseudopotential calculation of the required KS states and
potentials, for H atoms moving perpendicular to the sur-
face above the top site of Cu(111). To describe the sur-
face a five-layer slab together with a vacuum gap equiv-
alent to another five empty layers is employed. Calcula-
tions are performed using a 2× 2 in-plane super-cell, XC
effects are described by a spin-polarised version of the
PW91 functional,16 a Troullier-Martins17 pseudopoten-
tial is used for Cu, and H is represented by a Coulomb
potential. A plane-wave cut-off of 830 eV is used and 54
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FIG. 1: Potential energy (solid line) and friction coefficient
(dashed line) for H atom in perpendicular motion above the
top site of Cu(111).

k-points are included in the full surface Brillouin zone,
together with a Fermi surface broadening of 0.25 eV.
Total energy calculations are performed for a range of
heights between 1.0 and 4.0 Å above the surface, and
for heights ±h around these points from which the de-
formation potential, dVσ/dz, is calculated using a finite
difference. For the results given here, h = 0.02 Å. Full de-
tails of the calculation are given in Trail et al.4 Friction
coefficients are evaluated for the same range of heights
and for motion perpendicular to the surface. Care must
be taken to interpret the super-cell geometry correctly
when evaluating Eq. (10) within a plane-wave basis since
we are interested in the isolated motion of an atom above
the surface, not the coherent motion of a mono-layer. It
is also important to perform a correct discretisation of
Eq. (10) within the finite available sampling of k space
to obtain an accurate friction coefficient.4 In keeping with
the natural application of spin-polarised DFT, we begin
by assuming spin-adiabaticity. This means that the total
energy is minimised with respect to the magnetisation
density as well as the charge density. We refer to this in
what follows as the ‘free spin’ case.
As a preliminary test it is encouraging that the fric-

tion coefficient at the total energy minimum predicts a
lifetime of 0.8 ps for the perpendicular vibrational mode
of atomic hydrogen on Cu(111), a value that compares
well with the 0.7 ps deduced from the results of Infrared
Reflection Absorption Spectroscopy experiments.18 Here
we have assumed that the amplitude of the mode is small
enough that no significant variation of η(z) occurs, and
that the potential is harmonic.
Figure 1 shows the friction coefficient and potential

energy for the range of heights considered. It is immedi-
ately apparent that for H close to the surface and very far
from the surface our results may be realistic, but that as
the atom approaches z0 = 2.39 Å from above the fric-
tion coefficient shows singular behaviour. Analysis of
these results shows that close to z0, η(z) ∼ (z − z0)

−1.
We also find that z0 is the height at which the system
makes a transition from a spin-polarised (z > z0) to spin-
degenerate (z ≤ z0) state. The changes in the electronic
structure that accompany the spin transition are shown
by the density of states projected onto the hydrogen 1s
orbital (Fig. 2). When the atom is well separated from
the surface the density of states shows narrow resonances
with the majority spin state fully occupied and the mi-
nority spin state empty. As the atom approaches the
surface (see figure for 2.5 Å) both spin states broaden
and begin to merge. At a height of 2.0 Å the two spin
states have become degenerate and there is no net polari-
sation. For closer atom-surface separations the H-related
states continue to drop in energy.

The results of Fig. 1 clearly show that the singular
behaviour of the friction coefficient is a consequence of
the spin transition. The effect of this singularity in η
may be assessed by considering the energy loss, ∆E, for
an adsorbate following an arbitrary trajectory z(t). For
η(z) = η0z

−1

∆E =
∫∞

−∞
η(z)v2dt (11)

= η0
∫ zf
zi
vz′

−1
dz′,

where v = ż, zi is the initial height and zf is the final
height. For any real trajectory, ∆E must be finite so
either the trajectory does not reach the singularity (at
z = 0) for any time, or at z = 0 the velocity is zero. In
other words, any real trajectory stops at or above the sin-
gularity, no matter how fast the adsorbate impinges on
the surface. For example, a flat potential results in a tra-
jectory that starts at zi with a velocity of −vi, and stops
at zf = zi exp(−mvi

η0

). This ‘infinite stopping power’ is

obviously unphysical, and the source of this behaviour
must be identified.

We begin by showing that the singular behaviour is
an expected consequence of the theory applied here, and
is not a numerical artifact. Equation (10) contains the
expression dVσ/dz. In terms of the spin up and spin
down charge densities, ρ↑ and ρ↓, we define the total
charge density, ρ = ρ↑ + ρ↓, the total spin S =

∫

(ρ↑ −
ρ↓)d

3
r and the relative distribution of magnetisation ζ =

(ρ↑ − ρ↓)/S. Expressing the charge and magnetisation
densities in terms of these three quantities allows us to
separate out the gross variation due to changes in total
spin by giving the variation of the potential with z as
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FIG. 2: Densities of states projected onto the hydrogen 1s orbital at different heights above the Cu(111) surface. Dashed and
solid lines show results for majority and minority spins respectively. Fermi energy is at 0 eV.

dVσ(r)

dz
=

∫
(

δVσ(r)

δρ(r′)

∂ρ(r′)

∂z
+
δVσ(r)

δζ(r′)

∂ζ(r′)

∂z

)

d3r′ +
∂Vσ(r)

∂S

∂S

∂z
. (12)

We concentrate on the third term of this equation since
this explicitly describes the effect of changes in the total
spin. Our calculations show that S ∼ (z − z0)

1

2 , as ex-
pected for a second order phase transition within a mean

field theory. This implies that, provided ∂Vσ(r)
∂S

has a con-
stant part to its variation with S as S → 0 (and there is

no reason to believe it has not), the resulting (z − z0)
− 1

2

behaviour will dominate the deformation potential near
z0. Through the definition of the friction coefficient in
Eq. (10) this results in the ∼ z−1 behaviour of η above
the transition point.

Given that the singularity arises naturally in our fric-
tion coefficient description of electron-hole pair creation,
it is important to ask which of the approximations in
the underlying theory breaks down in the vicinity of the
spin transition. As discussed above, a major assump-
tion is that the linear part of the expansion of Λ(ω; z) in
Eq. 6 provides an accurate approximation for Im Λ(ω; z)

over the range of ω where the trajectory is significant.
It is a failure of this assumption that results in the sin-
gular behaviour; any non-zero velocity of the adsorbate
exactly at the spin transition means that the nearly adi-
abatic approximation breaks down. The spin cannot re-
lax instantaneously, as is assumed in the free spin case.
Given that some ‘memory’ must be retained in reality,
the Markov approximation cannot provide a realistic de-
scription close to the spin transition. The timescale for
spin relaxation will in practice be set by the rate of hop-
ping of electrons between adsorbate and substrate and
this in turn is governed by the width of the projected den-
sity of states shown in Fig. 2. How can the unphysically
fast spin relaxation that naturally arises in our nearly
adiabatic theory be prevented? We have chosen to adopt
the simplest solution to this problem, namely to keep the
total spin fixed for the whole trajectory of the adsorbate.
Our justification for this derives largely from the results
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FIG. 3: Potential energy (solid line) and friction coefficient
(dashed line) for H atom in perpendicular motion above the
top site of Cu(111). Results are obtained using the fixed spin
approximation.

we obtain. We show below that, except in the immediate
vicinity of the transition point, the potential energy and
friction coefficient are very similar for the free spin and
fixed spin cases. Also, it is shown in section III that the
peak in the friction coefficient near z0 does not provide a
dominant contribution either to the total rate of electron-
hole pair creation or to the spectrum of the electron hole
pairs, provided the singularity is smoothed. Essentially,
our results show that, provided the unphysical singularity
is removed in a reasonable way, the results for electron-
hole pair creation are not strongly dependent on the way
in which the singularity is smoothed. In another paper
we address this point in more detail, by using the Newns-
Anderson model of the adsorbate-substrate interaction to
analyse the dynamics close to the spin transition.19

For the free spin case Eq. (12) can be viewed as limω→0

of the derivative of the TDDFT effective potential, as re-
quired in Eq. (9). The fixed spin approximation takes
limω→0 for the variation of the charge and spin densities,
but limω→∞ for the variation of the total spin, S. Essen-
tially this corresponds to assuming that the total charge
density, ρ, and the relative distribution of magnetisation,
ζ, respond adiabatically to the motion of the incident ad-
sorbate, but the total spin, S, responds in the opposite
impulsive limit - that is, for the time scales considered,
the total spin does not have time to change. For the fixed
spin case Eq. (12) is replaced by

dVσ(r)

dz

∣

∣

∣

∣

S

=

∫

δVσ(r)

δρ(r′)

∂ρ(r′)

∂z
+
δVσ(r)

δm(r′)

∂m(r′)

∂z

∣

∣

∣

∣

S

d3r′,

(13)
where m(r) = ρ↑ − ρ↓ is the standard KS magnetisation
density, and variations are constrained such that S is
unchanged.20 In this form the z−1 singularity due to the
change in total spin is removed.

Figure 3 shows the friction coefficient and potential
energy for the fixed spin approximation with S = 1, the
total spin for the H atom far from the surface. The poten-
tial energy agrees well with the previous free spin results
- the maximum difference occurs at the minimum, where
the fixed spin energy is ∼ 0.08 eV greater than that for
free spin. Agreement between the calculated η(z) away
from the transition height (z0 = 2.39 Å) is also good.
Since no singularity is present the problem of an infinite
stopping power is removed.

II. FORCED OSCILLATOR MODEL

In the previous section a semi-classical description of
the motion of an adsorbate was given, in the sense that
the classical motion of the adsorbate atom can be ob-
tained by taking into account the energy losses due to
excitations of the electrons of the metal surface. In this
section our aim is to describe in more detail the exci-
tation of the electron gas itself. This will enable us to
obtain the spectrum of the excited electron-hole pairs
and thus make a connection to a variety of experimen-
tally measurable quantities. The basis of the approach is
the well known Forced Oscillator Model (FOM), where
here the oscillators are electron-hole pairs, and these
are ‘forced’ by the changing potential due to the mo-
tion of the adsorbate. Past applications of the FOM
have involved the investigation of simple model systems
for electron-hole pairs (see, for example, Schönhammer
and Gunnarson21,22,23,24, Minnhagen25 and Brako and
Newns26) and more detailed phonon models (Persson
and Harris27,28). Our goal here is to describe a FOM
approach rooted in our ab initio description of friction,
and assess to what extent the FOM is consistent with
TDDFT.
We begin with the energy distribution function, P (ω),

defined as the probability that the electron gas, subjected
to a potential V (t), is excited to energy ~ω above the
ground state, after the interaction has taken place.21 By
applying a second order cumulant expansion29 to the ap-
propriate matrix element it is possible to obtain an ap-
proximation to P (ω) that is exact for some special cases,
and is a good approximation for slowly varying potentials
of arbitrary magnitude. Within this truncated cumulant
expansion P (ω) is given by21

P (ω) =
1

2π

∫ ∞

−∞

ePs(t)−α0eiωtdt (14)

where α0 =
∫∞

0 Ps(ω)dω is the average number of

electron-hole pairs excited, e−α0 is the Debye-Waller fac-
tor and gives the probability of the system remaining
unexcited, and

Ps(t) =

∫ ∞

0

Ps(ω)e
−iωtdω. (15)

Equations (14) and (15) may be understood as a multi-
excitation expansion of the probability of the electron
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gas being excited by ~ω after infinite time has passed,
in terms of the probability that n electron-hole excita-
tion events have occurred, and the probability that n
electron-hole excitation events will excite the electron gas
by energy ~ω. Here, Ps(ω)/α0 can be interpreted as the

probability that a single electron-hole excitation event is
of energy ~ω.

For non-interacting electrons, and ω > 0 (defining
Ps(ω) = 0 for ω < 0), Ps(ω) is given by21

Ps(ω) =
1

~2ω2

∑

ij

∣

∣

∣

∣

∫ ∞

−∞

〈ψi(t)|V̇ |ψj(t)〉dt
∣

∣

∣

∣

2

δ(ω − ωi + ωj) (f(ωi)− f(ωj)) (16)

where |ψi(t)〉 are the time dependent one-electron states
that are initially eigenstates of the unperturbed Hamil-
tonian, with eigenvalues ωi, and evolve via the full per-
turbed Hamiltonian. V̇ (t) is the time derivative of the
perturbing potential. As described by Schönhammer and
Gunnarsson21 this expression may be simplified by mak-
ing two assumptions. First we assume that V (t) is slowly
varying, so the |ψi(t)〉 are well approximated by the
time-dependent adiabatic states of the full Hamiltonian,
e−iωit|ψi〉t. Physically, this adiabatic approximation im-
plies that the probability of electron-hole excitation is in-
dependent of the number of excitation events that have
occurred. For a slow variation of V (t) on a time scale
T , only states for which |~ωi − ǫF | ≪ ~/T contribute to
Eq. (16). This suggests that the matrix elements may
be well described by the values taken at the Fermi level,
the second approximation by Schönhammer and Gun-
narsson. With these assumptions, Eq. (16) becomes

Ps(ω) =
1

ω

∑

α,α′,σ

∣

∣

∣

∣

∫ ∞

−∞

〈ǫFα, σ|V̇ |ǫFα′, σ〉e−iωtdt

∣

∣

∣

∣

2

, (17)

where |ǫFα, σ〉 denotes a stationary single particle state of
spin σ on the Fermi surface, and a supplementary quan-
tum number, α, has been introduced (as in Eq. (10)).

So far we have not stated what the non-interacting
electron system actually is. We now show that, if Kohn-
Sham states and the KS potential are used in Eq. (17),
then the rate of energy gain by the electron gas given by
Eqs. (14) and (17) is identical to the energy loss rate of
the adsorbate due to friction, given by Eqs. (7) and (10).
It is shown in the Appendix (see also Ref.25) that, within
the FOM, the rate at which the electrons gain energy by
the non-adiabatic process is

Ėnon-ad(t) = ~

∫ ∞

0

ω
∂

∂t
Ps(ω, t)dω, (18)

where the t variable in Ps(ω, t) has been introduced as
a new upper limit to the integral in Eq. (16) or (17).
Substitution of Eq. (17) into Eq. (18) and integration

over ω then gives

Ėnon-ad(t) = π~
∑

α,α′,σ

∣

∣

∣
〈ǫFα, σ|V̇ |ǫFα′, σ〉

∣

∣

∣

2

= η(z)ż2.

(19)
This shows that the FOM implemented with adiabatic
KS states and matrix elements taken at the Fermi en-
ergy gives the same average energy gain as the TDDFT
description within the Markov approximation.
The close connection between the TDDFT and FOM

approaches to energy transfer from adsorbate to sub-
strate implies that the FOM can be used to provide a the-
ory of the excitation spectrum of the electron gas (that
is, P (ω) and Ps(ω)) that is consistent with the friction
description presented in the previous section. This con-
nection between TDDFT and the FOM means that the
singularity associated with the spin transition will also
be present in the FOM. This is clear in Eq. (17) where

V̇ is the derivative of the Kohn-Sham potential. For the
free spin case V̇ will be singular at the spin transition,
resulting in unphysical behaviour. The argument that
led to constraining the total spin to be constant, thus
removing the singular behaviour, is therefore as relevant
to the FOM as to the friction description of the energy
transfer.
Equation (17) may be evaluated by the same approach

used to obtain the friction coefficient, however this re-
quires the storage and interpolation of a large number
of matrix elements. Due to the approximations already
made to develop the theory to this point this effort does
not seem justifiable. Instead, we adopt an analogue of
models used by past authors to describe Fermion excita-
tions of this nature.1,21,25,26,30 It is well established that
if the eigenstates can be chosen such that the matrix
element 〈ǫFα, σ|V̇ |ǫFα′, σ〉 that appears in Eq. (17) is di-
agonal in α, α′ then the system corresponds to the ex-
citation of Tomonaga bosons that describe the electron-
hole pairs21. Here we seek a useful approximation to
Eq. (17) that describes the excitation of a system of
‘average’ bosons, the properties of which vary with z.
This is achieved by assuming that the dependence of
the matrix elements in Eq. (17) on z and α, α′ can be
expressed in the separable form fα,α′g(z). Physically,
this implies that each electron-hole pair excitation expe-
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riences a time-dependent ‘force’, of the same functional
form, but with different strengths. Introducing this fac-
torisation leads to

Ps(ω) =
∑

σ

1

π~ω

∣

∣

∣

∣

∫ ∞

−∞

η
1

2

σ (z)ż(t)e
−iωtdt

∣

∣

∣

∣

2

(20)

where different spin terms are shown explicitly (subscript
σ) and ησ is given by Eq. (10) with no sum over spin.
Equation (20) is the final expression used to define the
FOM for the calculations reported here.
Although there is no rigorous justification for this sim-

plified form of Ps(ω), there are several reasons for expect-
ing it to provide a useful description of the statistics of
the energy loss. Like Eq. (17), Eq. (20) gives exactly the
same average rate of energy transfer between adsorbate
and electron gas as the classical friction coefficient. A
similar ‘single channel’ approach has been used by previ-
ous authors1,24,26,28 in constructing model descriptions of
energy loss processes at surfaces using the FOM, and this
approximation is also exact for other special cases, such
as for symmetry reasons or if the excited electrons are
predominately s in character21. In order to implement
the FOM in this form only the friction coefficient and tra-
jectory of the incident particle are required. From these,
the probability distribution function for single electron-
hole pair excitation, Ps(ω), may be calculated and this
function, through Eq. (14), defines completely the exci-
tation of the electron gas.

III. RESULTS

In this section we present results for the H/Cu(111)
adsorbate/surface system. A standard Verlet integration
of Eq. (8) is performed with the fixed-spin friction coeffi-
cient shown in Fig. 3 to obtain the classical trajectory of
an incident H atom, for a range of initial kinetic energies.
The resulting trajectories show expected features with a
critical initial kinetic energy (ǫc) above which the atom
escapes from the well, and below which it is trapped.
For H/Cu(111), ǫc = 0.166 eV, and for an atom that
escapes from the well we find the round-trip time (for
which z(t) < 3.0 Å) is ∼ 0.04 ps.
The next step is to apply Eqs. (14), (15) and (20) to

implement the FOM and extract physically measurable
quantities from it. A characteristic property of the adsor-
bate/surface interaction is the sticking coefficient, S(ω),
defined as the probability that an incident adsorbate loses
sufficient energy to be captured by the surface. Here we
consider only the contribution to sticking due to the en-
ergy loss via electron-hole pair production. In terms of
the probability for energy gain by the substrate defined
in (14) the sticking coefficient becomes

S(ωi) =

∫ ∞

ωi

P (ω)dω, (21)

where ~ωi = ǫi is the initial kinetic energy of the adsor-
bate. Following the approach described by Schönhammer

�
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FIG. 4: Sticking coefficients for H and D atoms perpendicu-
larly incident on the top site of Cu(111). Elastic trajectory is
dashed line, inelastic trajectory is solid line. Upper and lower
curves are for H and D respectively.

and Gunnarsson21 a trajectory is chosen that travels into
the surface and out, but is truncated at the next turning
point if there is one. The use of this trajectory results in
a P (ω) that is the probability that the electron gas is ex-
cited by an energy ~ω in the time taken for the adsorbate
to cross the surface-adsorbate well twice. If this energy
loss is larger than the initial kinetic energy of the adsor-
bate then it is considered to be captured. Past applica-
tions of the FOM to this type of problem have generally
employed simple model Hamiltonians and elastic trajec-
tories, hence do not take into account the influence of the
loss of energy on the trajectory itself. Here calculations
have been performed for both the elastic and truncated
inelastic trajectories.

Figure 4 shows the sticking coefficient as a function
of the incident kinetic energy. As expected there is an
overestimate of S(ωi) for the elastic trajectory due to the
increased velocity. Generally, S(ωi) falls from ∼ 80% at
ǫi = 0 to ∼ 40% at the classical critical initial kinetic en-
ergy, ǫc, and then falls smoothly to zero. It is important
to note that this sticking coefficient does not take into
account any energy loss due to phonon excitations and
so it may not be compared directly to experiment. This
is immediately apparent if we consider H incident on Cu
at 300K. Experimental results and previous theoretical
estimates31 suggest S ∼ 1, whereas for ǫi =

3
2kT = 38.8

meV (T = 300K, the results vary slowly with incident
energy in the thermal range, and taking a Boltzmann
average makes no discernible difference) our calculation
gives S = 0.68− 0.72.

A quantity of interest is the number of electron-hole
pairs excited in the process of a single H atom being
captured by the surface. The probability that n electron-
hole pairs are excited by the adsorbate surface interaction



9

is given by the Poisson distribution

Pn = e−α0αn
0/n! (22)

where α0 is the average number of electron-hole pairs
excited, as defined earlier. Figure 5 shows Pn for
H/Cu(111) for an inelastic trajectory that follows the H
atom all the way to the bottom of the potential well. α0

takes the value of 11.4 electrons which, combined with
a total excitation of ∼ 1.8 eV, implies that on average
each excitation is of order 0.15 eV. This supports the
premise that underlies our approach to calculating the
energy transfer from adsorbate to substrate; namely that
the process is nearly adiabatic and involves the excitation
of multiple, low-energy electron-hole pairs.

A. Chemicurrents

Of particular interest here, and not investigated before
using ab initio methods, is the creation of hot electrons
and holes during the adsorption process. In a number of
papers Nienhaus et al. describe experimental investiga-
tions of the electronic excitation behaviour for a variety
of adsorbates and metal surfaces6,7,8,9. They construct
a Schottky diode device consisting of a clean metal film
deposited onto a Si wafer. Incident atoms or molecules
may excite hot electrons (or holes) at this metal surface
and electrons with energies high enough to surmount the
Schottky barrier can be detected as a current, referred to
as a ‘chemicurrent’.
The electrons detected in these experiments can be

thought of as undergoing two processes. First they are
excited to sufficient energy to be detected and second
a number of geometrical factors and scattering mecha-
nisms within the detector cause signal loss. The second
of these has been discussed in detail by Nienhaus6,7,8,9

n

P

n

3020100

0.1

0.05

FIG. 5: Probability of excitation process creating n electron-
hole pairs, Pn.

�h! �h!

e

�

F

FIG. 6: An electron is excited from below the Fermi energy
by ~ω to a state ~ωe above the Fermi energy. The probability
for this excitation to occur depends only on the electron-hole
pair energy, ~ω, provided 0 < ωe < ω. For ωe > ω and ωe < 0
this probability is zero.

and Gadzuk10, and a simple model to describe these pro-
cesses results in good agreement between our results and
experiment, as discussed in Ref. 5. Here we do not con-
sider device losses, instead we concentrate on the funda-
mental quantity of the number of electrons excited above
a specific energy. We refer to this quantity as ‘electrons
made available for detection’.
The number of electrons made available for detection

over a Schottky barrier of ~ωs by the adsorbate/surface
interaction is written as Ne(ω > ωs). To obtain Ne we
must transform from excitation statistics in terms of the
energy of electron-hole pairs to statistics in terms of elec-
tron energies. The probability that a single excitation
event results in an electron-hole pair of energy ~ω, with
the electron possessing an energy of ~ωe, can be written
as

Ps(ω, ωe)

α0
=

1

α0

Ps(ω)

ω
Θ(ω − ωe)Θ(ωe). (23)

Here Ps(ω)/α0 is the probability that a single excitation
event results in an electron-hole pair of energy ~ω, as
defined by Eq. (20), and Θ(x) = 0, 1 for x < 0, x ≥ 0.
Equation (23) is obtained by noting that an electron-hole
pair of energy ~ω will consist of electrons distributed over
the energy range 0 < ~ωe < ~ω with equal probability
(see Fig. 6 ). The probability that a single excitation
event results in an electron of energy ~ωe may then be
obtained by integrating Eq. (23) over all electron-hole
energies, resulting in

Pe(ωe)

α0
=

1

α0

∫ ∞

ωe

Ps(ω)

ω
dω. (24)

The total number density of electrons excited to energy
~ω by all events in a multi-excitation expansion is then
Pe(ω). It follows that the number of electrons made avail-
able for detection can be expressed as

Ne(ω > ωs) =

∫ ∞

ωs

dω

∫ ∞

ω

dω′Ps(ω
′)

ω′
. (25)
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FIG. 7: Number of electrons per atom made available for
detection over a Schottky barrier of height ǫs for H and D
incident on the top site of Cu(111). The vertical lines span
the range of Schottky barrier heights found by Nienhaus et
al.6 for both Cu and Ag.

Figure 7 shows Ne(ω > ωs) for a range of barrier
heights, and for H and D normally incident on the top site
of Cu(111). As in Fig. 4 the incident energy is 38.8 meV,
and full inelastic trajectories are used. The data shows an
essentially exponential behaviour over most of the range
considered, and most of the difference between the results
for H and D may be accounted for by scaling ǫs by

√
2

(the agreement would be exact for an elastic trajectory).
This dynamic scaling is a consequence of Eq. (20) and the
scaling of velocity with mass for a given kinetic energy.
The unusually strong isotope effect apparent in Fig. 7 is
consistent with the experimentally measured chemicur-
rent. Nienhaus et al.6 reported no results for D incident
on Cu, but for Ag the detected number of electrons per
atom for H was larger than for D by a factor of ∼ 6.
Figure 8 shows the calculated ratio of chemicurrents for
H and D, and in the range of relevant barrier heights
we find an isotope effect close to the experimental result.
This comparison is particularly useful as it is not neces-
sary to consider device losses if we take the signal to be
suppressed by the same factor for both H and D incident
upon the detector.

It is interesting to ask where in the trajectory most of
the relatively high-energy electrons that are detected as
a chemicurrent are produced. This is significant because
of the discussion in Section I concerning our method for
removing the singularity in the friction coefficient caused
by the spin transition. By keeping the spin fixed the
singularity is removed, but the friction coefficient is still
peaked at z0 = 2.39 Å. Given the rather ad-hoc way in
which this peak is derived, if we find that it makes a ma-
jor contribution to the predicted chemicurrent then the
basis of our results could be questioned. If, however, the
chemicurrent is relatively insensitive to the peak in η,
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FIG. 8: The predicted ratio of the chemicurrents due to H
and D incident on the top site of Cu(111) as a function of
Schottky barrier height. The vertical lines span the range of
Schottky barrier heights found by Nienhaus et al.6 for both
Cu and Ag. The horizontal line is the ratio of chemicurrents
found experimentally for Ag (ǫs = 0.5− 0.55 eV).

then we can have more confidence in our results. Equa-
tion (20) shows that the spectrum of electron-hole pairs is
determined by two factors, the speed of the adsorbate, ż,
and the friction coefficient, η. These peak in very differ-
ent places in the trajectory; ż is greatest at the minimum
of the potential well (at about 1.4 Å) while η peaks at
z0 = 2.39 Å. Which dominates the chemicurrent?
To address this question we (arbitrarily) separate the

friction coefficient into two parts, a ‘smooth’ part

ηsmσ (z) =

{

ησ(z) z ≤ 1.85 Å

ησ(1.85)e
−2(z−1.85)2 z > 1.85 Å

(26)

and a ‘peak’ part that is zero for z ≤ 1.85 Å,

ηpkσ (z) = ησ(z)− ηsmσ (z). (27)

The value z = 1.85 Å is chosen to be the minimum of
η between z = 1 and 2 Å (see Fig. 3), and the func-
tion introduced in Eq. (26) is chosen to decay smoothly
from z = 1.85 Å to a value below the total friction at
z = 4 Å. This continuous decay prevents a discontinu-
ity in the integrand of Eq. (20) which would result in
spurious high energy electron-hole pair excitations. Cal-
culations are carried out as before, using the full friction
coefficient to obtain the trajectories, but using either ηsmσ
or ηpkσ to evaluate measurable quantities from the FOM.
This allows us to analyse the statistics of electron-hole
pair creation due to each part of the friction coefficient
separately. For example, we find that ∼ 25% of the total
energy transfered from the incident atom to electron-hole
pairs is due to the peak, indicating that this region is sig-
nificant, but not of primary importance. Figure 9 shows
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Ne(ǫ > ǫs) obtained from the smooth and peaked parts,
in comparison to that obtained from the complete friction
profile. It should be stressed that the sum of the first two
quantities is not equal to the last, due to the factor of

√
η

in Eq. (20). It can be seen that the presence or absence
of the peaked region of η makes little difference to the
predicted number of electrons made available for detec-
tion, at least for the Schottky barrier heights considered
here. We conclude that the interaction of the incident
atom with the electron-hole pairs of the substrate is not
dominated by the peak found in the calculated friction
coefficient. This suggests that, provided the peak does
not become singular, its precise form will not have a great
bearing on our predictions of experimental observables.

Finally, we have not so far addressed an important
question: what influence would the introduction of en-
ergy loss via the creation of phonons have on our es-
timates for the detected chemicurrent? A full answer
to this would require a molecular dynamics description
of the interaction, including electron-hole pair creation,
and is beyond currently available computing resources.
However, Strömquist et al.

31 have performed molecu-
lar dynamics calculations for H/Cu(111) (not including
electron-hole pair creation) using a model energy surface
fitted to ab initio data, and sampling a large number of
trajectories. They obtain an energy relaxation rate of
∼ 0.7 ps−1 due to phonon creation, a value that is sim-
ilar to the rate of energy loss due to electron-hole pairs
for the perpendicular vibrational mode of H on Cu(111)
discussed above. We may obtain a crude estimate for
the influence of phonon creation on our results by intro-
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FIG. 9: Number of electrons per atom made available for
detection over a Schottky barrier of height ǫs for H incident
on the top site of Cu(111). The vertical lines span the range
of Schottky barrier heights found by Nienhaus et al.6 for both
Cu and Ag. Solid line is Ne due to the full friction coefficient
(as in Fig. 3), dashed line that due ηsm, the smooth part of
the profile, and the dotted line that due to ηpk, the peaked
part of the profile.

ducing an ‘extra’ friction term to the calculation of the
trajectory (not the FOM itself) that would reproduce
this energy loss rate were no electron-hole pair creation
present. Taking an appropriate friction coefficient and
introducing the trajectory at z = 4 Å above the surface
(see Fig. 3) results in a decrease in the chemicurrent by
an approximately constant factor of ∼ 0.8 for H, and a
decrease in the average number of excited electron-hole
pairs from 11.4 to 9.5. Although we stress this is a crude
estimate it does suggest that phonon production has a
small (though not negligible) influence. For heavier ad-
sorbates a stronger effect would be expected.

IV. CONCLUSION

An ab initio description of the energy transfer from
an adsorbate incident on a metal surface to the electrons
present in the surface via electron-hole pair creation has
been developed. Energy loss from the adsorbate has been
described semi-classically, and the excitation of the elec-
tron gas described quantum mechanically using a FOM.
It has been shown that a large degree of consistency exists
between TDDFT, the classical energy loss of the adsor-
bate and the energy gain of the substrate electrons, in
that the average energy changes are equal. We have also
shown that the Markov limit used to define a friction
coefficient for the classical motion of the adsorbate has
a counterpart in a common Fermi energy approximation
for the matrix elements used in the implementation of
the FOM.
This classical adsorbate/quantum electronic descrip-

tion of the non-adiabatic electron-hole excitation process
has been applied to H (and D) incident on Cu(111), with
somewhat surprising results. We find that a singular
friction coefficient results from the application of spin-
dependent DFT. The singular behaviour occurs at the
transition point (spin-polarised to spin-degenerate) and
is due to the strongly non-adiabatic nature of the evolu-
tion of the system around this transition. A breakdown
of the nearly-adiabatic definition of the friction coeffi-
cient results, suggesting that the friction coefficient can-
not be defined for systems exhibiting a spin-transition
of this kind. The FOM exhibits the same singular be-
haviour. Further investigation of this effect suggests that
the strongly non-adiabatic system can be replaced by a
weakly non-adiabatic ‘fixed spin’ system that provides a
good approximation for the trajectories of the incident
atoms considered, avoiding the breakdown of both the
FOM and the friction description. Our final results in-
dicate that, provided the singularity in the friction co-
efficient is removed, the region of the trajectory in the
vicinity of the spin transition is not of prime importance.
Comparison of the results presented here with the

‘chemicurrent’ detected by Nienhaus et al.6 using Schot-
tky diode devices has been given in a previous Letter5.
Calculated and experimental chemicurrents agree well,
and we have shown that simple dynamics can reproduce
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the large difference between measured chemicurrents for
H and D. The calculations presented here can be ex-
tended in several ways. For an H atom adsorbate it
would be interesting to investigate other sites on the sur-
face and also to consider motion parallel to the surface.
Other atomic adsorbates and surfaces can obviously also
be analysed, although for heavier species it will be im-
portant to treat phonon as well as electron-hole pair exci-
tation. It would also be interesting to consider molecular
adsorbates. One question that immediately arises here
is whether vibrational or rotational motion is as effective
as translation in producing electron-hole pairs.
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APPENDIX

In this appendix we outline the derivation of the re-
sults in Eqs. (1) and (18). To ease the notation we take
~ = 1. We begin by deriving the general expression for
the non-adiabatic energy transfer in Eq. (1), which is just
a variant of the Hellmann-Feynmann theorem. The in-
stantaneous expectation value E(t) of the many-electron
system in the presence of the adsorbate is defined as

E(t) = 〈ψ(t)|Ĥ0 + V̂ext(t)|ψ(t)〉 (A.1)

where Ĥ0 is the many-electron Hamiltonian, V̂ext(t) is
the time-dependent interaction of the electrons with the
moving nucleus, and |ψ(t)〉 is the many-electron state sat-
isfying the time-dependent Schrödinger equation with the
Hamiltonian Ĥ(t) = Ĥ0+ V̂ext(t). Using the Schrödinger
equation in the evaluation of the time-derivative of E(t)
one obtains directly

Ė(t) = −i〈ψ(t)|Ĥ(t)Ĥ(t)|ψ(t)〉 + i〈ψ(t)|Ĥ(t)Ĥ(t)|ψ(t)〉 + 〈ψ(t)|Ĥ(t)

dt
|ψ(t)〉 (A.2)

= 〈ψ(t)| V̂ext(t)
dt

|ψ(t)〉. (A.3)

To obtain the non-adiabatic part of Ė(t) we have to subtract the adiabatic part Ė0(t). The adiabatic energy E0(t)
is defined in an analogous manner to E(t) in Eq. (A.1) but with the difference that |ψ(t)〉 = |ψ0(t)〉 where |ψ0(t)〉
is the instantaneous ground state of Ĥ(t), that is, Ĥ(t)|ψ0(t)〉 = E0(t)|ψ0(t)〉. Using this definition of |ψ0(t)〉, a
straightforward differentiation gives

Ė0(t) = 〈ψ̇0(t)|E0(t)|ψ0(t)〉+ 〈ψ0(t)|E0(t)|ψ̇0(t)〉+ 〈ψ0(t)|
Ĥ(t)

dt
|ψ0(t)〉 (A.4)

= 〈ψ0(t)|
V̂ext(t)

dt
|ψ0(t)〉 . (A.5)

In the last step we have used the fact that the derivative
of the norm of |ψ0(t)〉 is zero, that is, d

dt
〈ψ0(t)|ψ0(t)〉 =

〈ψ̇0(t)|ψ0(t)〉 + 〈ψ0(t)|ψ̇0(t)〉 = 0. Eq. (1) is now di-

rectly proved by using the explicit result for V̂ext(t) =
∫

drVext(r, z(t))n̂(r) where Vext(r, z) is the bare electron-
nucleus interaction potential and n̂(r) is the electron den-
sity operator. Note that n(r, t) ≡ 〈ψ(t)|n̂(r)|ψ(t)〉 and
n0(r, t) ≡ 〈ψ0(t)|n̂(r)|ψ0(t)〉.

We now turn to the derivation of the expression for
the non-adiabatic energy transfer in Eq. (18). Starting
with Pt(ω), the probability of the incident atom having
lost energy ω by electron-hole excitation at time t, the

expectation value of the energy loss is given by

Et =

∫ ∞

−∞

ωPt(ω)dω (A.6)

where

Pt(ω) =
1

2π

∫ ∞

−∞

ePs(τ,t)−α0(t)eiωτdτ (A.7)

and Ps(ω, t)/α0(t) is defined as in Eq. (16), but with the
upper limit of the time integral taken as t. Physically
this quantity is the probability that a single electron-hole
excitation event is of energy ω, in the time interval −∞
to t. Interpreting the factor iω as a derivative operator
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in the time co-ordinate leads to

Et = i
d

dτ
ePs(τ,t)−α0(t)

∣

∣

∣

∣

τ=0

(A.8)

= i
d

dτ
Ps(τ, t)

∣

∣

∣

∣

τ=0

.

Ps(τ, t) is then expressed in terms of its Fourier transform
in τ , giving

Et =

∫ ∞

−∞

ωPs(ω, t)dω. (A.9)

It is also possible to obtain higher moments of Pt(ω) in
terms of Ps(ω, t) by the same approach.
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