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Using a newly developed density matrix renormalization group algorithm, we have computed exact
solutions of the Schro¨dinger equation for water at two geometries in a basis of 41 orbitals.
Calculations of this size cannot be carried out using any other method. We compare our results with
high-order coupled cluster and configuration interaction calculations. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1574318#

Exact solutions of the Schro¨dinger equation within a
given one-particle basis set, lie at the heart of quantum
chemistry. Even when the one-particle basis is not very large,
such calculations provide invaluable benchmarks by which
the accuracy of more approximate methods may be judged.

Using the full configuration interaction method~FCI!,
advances by Handy and Knowles,1–3 Olsenet al.,4,5 Harrison
and Zarrabian,6 and Bendazzoli and Evangelisti,7 to name
but a few, together with rapid improvements in computer
technology, now allow calculations involving up to 93109

Slater determinants. The largest such calculation, by Rossi
et al.8 has been on the N2 molecule, involving 10 electrons
and 34 orbitals inD2h symmetry. However, notwithstanding
these accomplishments, the exponential cost of the full con-
figuration interaction algorithm as a function of problem size
severely limits the choice of problems that can be studied to
high accuracy.

We have been working on an alternative route to exact
solutions of the Schro¨dinger equation, via the density matrix
renormalization group~DMRG! algorithm. The DMRG,
based on early work by Wilson,9 was invented by White10,11

in the field of model Hamiltonians~e.g., 1D Hubbard mod-
els! in the early 1990s, and first applied to molecular Hamil-
tonians~of the PPP type! by Fano, Ortolani, and Ziosi.12 This
was followed by the first DMRG calculation with the full
electronic Hamiltonian by White and Martin in 1999.13 In the
last few years, this method has been actively developed in a
number of works, including those of Daulet al.,14 Mitrush-
enkovet al.,15 and Chan and Head-Gordon.16

The DMRG differs from usual quantum chemistry meth-
ods, in that it avoids the expansion of the wave function in a
basis of Slater determinants. Instead, general many-body ba-
sis states, which would in principle themselves have long
and complicated Slater determinant expansions, are used to
expand the wave function. One avoids the need to know the
explicit form of such states, by storing matrix representations
of all the operators necessary to solve the Schro¨dinger equa-
tion. Then, starting from an ‘‘initial guess’’ Slater determi-
nant expansion for the wave function, one iteratively rotates
the relevant operator matrices into a complicated many-body

basis, chosen to be eigenvectors of a many-body density ma-
trix. These states are, in a certain well defined sense,10 an
optimal basis in which to expand the wave function. Each
rotation is accompanied by a variational truncation of the
many-body basis, so that only a fixed number of states need
be considered at any one time.

Because the many-body expansion states are chosen in
an optimal way, it is possible, using a small number of ex-
pansion states, to achieve a very high accuracy in the energy.
The convergence of the energy with the number of expansion
states is also very fast, indeed superpolynomial.17 With cer-
tain Hamiltonians, such as short-ranged 1D Hamiltonians,
the number of states needed to achieve a given accuracy in
the energy does not increase with the system size. All these
characteristics make the DMRG a particularly promising al-
gorithm for performing systematic high accuracy calcula-
tions.

In this report, we use the DMRG to exactly solve the
Schrödinger equation for the water molecule within a basis
of 41 orbitals. We mean exact in the numerical sense, where
we compute the energy to an accuracy of one hundredth of a
milliHartree (0.01mEh), which is the typical accuracy to
which FCI benchmarks are converged. We have chosen the
water molecule because of its long and distinguished history
as the molecule of choice for benchmark calculations. In
1981, Saxe, Schaefer, and Handy18 performed the first large-
scale FCI for the water molecule in a double-zeta~DZ! basis
of 14 functions, which involved 106 C2v determinants. In
1986, Bauschlicher and Taylor19 extended these results to a
frozen-core double-zeta, polarization~DZP! calculation, in-
volving 107 determinants. A decade later, Olsenet al.20 car-
ried out FCI in a DZP basis of 26 functions correlating all ten
electrons, which corresponded to a total determinantal space
of 53108 C2v determinants. In our calculations, we take the
next step, correlating all ten electrons using a triple-zeta,
double polarization~TZ2P! quality basis. We have chosen
the ANO basis of Widmark, Malmqvist, and Roos21 which is
a balanced basis for properties and energies, consisting of
4s3p2d functions on O and 3s2p functions on H yielding
41 basis functions in total. This may be obtained from the
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Extensible Computational Chemistry Environment Basis Set
Database under the name ‘‘Roos Augmented Double Zeta
ANO.’’ The corresponding determinantal space inC1 sym-
metry ~which is the symmetry used in our code and calcula-
tions; we have neglected symmetry for simplicity! is 5.6
31011 determinants. With full point group symmetry, this is
reduced to 1.431011 C2v determinants. Either size of space,
however, is currently out of reach of any traditional FCI
algorithm.

In addition to calculations at the equilibrium geometry
(r e), we have also considered a stretched geometry where
the OH bond is stretched to 1.5 times its equilibrium length
(1.5r e). These geometries correspond to positions~in Ang-
stroms! of O~0, 0, 0!, H(60.790689766, 0, 0.612217330),
and O~0, 0, 0!, H(61.186034914, 0, 0.918326260), respec-
tively.

In our DMRG algorithm, the orbitals are mapped onto a
lattice and divided into four blocks, two large blocks of vari-
able sizeS andE, and two small blocks of constant sizeBS ,
BE in between. At each step of a DMRG sweep, the size of
the system blockS is increased by adding more orbitals,
while the size of the environmentE is decreased. A complete
sweep consists of repeatedly adding spin-orbitals to the sys-
tem~blocking!, until the system spans all the orbitals. After a
sweep is completed in one direction, the roles of system and
environment are reversed, and the sweep is carried out in the
opposite direction; each sweep successively improves the de-
scription of the system and environment blocks and the pro-
cess may be iterated to convergence. The system block spans
a many-body space$S% before blocking; after blocking, the
enlarged system block spans the enlarged space$S% ^ $BS%.
Therefore the many body-states of the system must be trun-
cated, otherwise further blockings will lead to an exponential
explosion in the number of states. The optimal choice of
system states are the eigenvectors of largest weight~eigen-
value! of the many-body reduced density matrix of the sys-
tem. To obtain this representation, we determine the ground-
state wave functionuC& in the product space of the~enlarged!
system and environment blocks

uC&5(
SE

cSEuS&uE& ~1!

and construct the reduced density matrixG of the system by
tracing out the environment states

GSS85TrEcSEcS8EuS&^S8u. ~2!

Diagonalization ofG is then followed by the rotation of all
the necessary operators into the new eigenvector basis.

A DMRG sweep is specified by the number of spin-
orbitals in BS , BE at each step, and the number of many-
body statesM retained at each truncation to span the system
block, together with the orbitals themselves. In our sweeps,
we use the block configuration shown in Fig. 1, where at
each blocking step we add two spin-orbitals.

For a finite number of statesM that does not completely
span the FCI space, the DMRG is not invariant under unitary
transformation of the orbitals~although asM increases, and
the calculation becomes exact, invariance is recovered!; fur-
thermore, the order in which the orbitals are mapped onto the
lattice influences the convergence of the procedure.16 In
these calculations, we used restricted canonical Hartree–
Fock orbitals at the equilibrium geometry, and unrestricted
canonical Hartree–Fock orbitals at the stretched geometry.
As discussed in our earlier work16 a good criterion to order
the orbitals is provided by minimizing the one-body matrix
elements between distant orbitals. We have used this crite-
rion to yield the orbital orderings in this work, listed in Table
I. We observe that the algorithm naturally produces clusters
of virtual orbitals that surround orbitals occupied in the
Hartree–Fock reference.

We first performed DMRG sweeps retaining only a small
number of statesM and then progressively increasedM . For
each of these smallM values~200, 350, 500, 800, 1200!, up
to ten sweeps were performed to converge the sweep energy,
defined as the lowest energy out of all the block configura-
tions in each sweep. As noted by Legeza and Fath,22 and
Chan and Head-Gordon,16 there is a linear relationship be-

FIG. 1. A standard block configuration. Eachd represents a spin-orbital.BS

is to be blocked withS, andBE with E.

TABLE I. Orbital orderings. How to read: The numbers go from left to right, top to bottom; thus, at the end of the first row~63!, continue to the beginning
of the second row~52!. The numbers represent the index by increasing Hartree–Fock eigenvalue; the even numbers representa orbitals, and the odd,b. Thus,
in Hartree–Fock eigenvalue order, thea orbitals are labeled 0,2,4,6..., while theb orbitals are labeled 1,3,5,7... . To obtain the ordering used in this work,
replace each number below, in order, by the corresponding Hartree–Fock orbital. Orbitals occupied in the Hartree–Fock reference are indicated in bold.

r e

30 31 40 41 72 73 60 61 50 51 8 9 20 21 28 29 62 63
52 53 6 7 18 19 48 49 78 79 66 67 36 37 14 15 2 3
10 11 70 71 38 39 0 1 76 77 44 45 22 23 12 13 54 55
4 5 16 17 34 35 32 33 64 65 80 81 58 59 68 69 46 47

24 25 26 27 42 43 74 75 56 57

1.5r e

74 77 40 41 26 25 58 59 36 37 66 67 52 53 68 69 56 57
4 5 12 13 16 17 34 33 24 27 46 47 80 81 30 29 42 43

76 75 0 1 2 3 10 11 14 15 32 35 60 61 70 71 54 55
6 9 48 49 62 63 18 21 22 23 44 45 78 79 20 19 8 7

50 51 64 65 28 31 38 39 72 73
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tween the magnitude of the total discarded weight in the
density matrix, and the error in the total energy. Thus, plot-
ting the sweep energy against the largest total discarded
weight per sweep leads to linear plots as shown in Fig. 2. We
have used these in extrapolations to provide estimates of the
errors in our calculations. The advantage of extrapolating
using the discarded weight rather than the recently proposed
theoretical convergence behaviorudEu;exp(2k(ln M)2) ~ob-
tained in Ref. 17! is that only a linear fit need be performed
for an extrapolation.

For the largerM values~1800–6000! only one or two
sweeps at eachM value were performed. Thus, during each
sweep, the number of states retained in the system block and
environment block~built in the previous sweep! are differ-
ent. This is indicated in Table II by the notation 2400/1800,
indicating 2400 many body states in the system and 1800
many body states in the environment. The small number of
sweeps does not result in fully converged sweep energies
~and thus the DMRG results are not reported to the same
number of significant figures as the other entries in Table II!,
but of course all the results are variational upper bounds to
the sweep energies at thoseM values.

To the best of our knowledge, the largest DMRG calcu-
lations on systems with this number of orbitals, have usedM
values of up to about 1000.~In the work of Mitrushenkov
et al., although largerM values appear to be used, the block
configuration is different, and thus the effectiveM values for
comparison with this work should be divided by 2.! Since the
cost of our DMRG algorithm isO(M3k3) time and
O(M2k3) storage~where k is the number of orbitals!, our
current calculations are two orders of magnitude larger than
what has previously been reported, in terms of computational
cost and storage. These calculations are now possible be-
cause of recent advances we have made to our DMRG algo-
rithm. In particular, we have fully parallelized the DMRG
algorithm for distributed memory architectures. In this work,
we have run our code on up to 64 processors of the NERSC
IBM SP3, which has given us access to 64 IBM Power3/375
CPUs, 256 Gb of memory, and 1 Tb of disk. The sweep at

M56000/3600 took over 150 h of wall time, 250 Gb of
memory and 800 Gb of disk. We shall present full details of
our new algorithm elsewhere.

In Table II we present our DMRG results. Our final com-
puted energies are 276.31471560.000010Eh and
276.13105060.000010Eh for the r e and 1.5r e geometries
respectively. The exact nonrelativistic total energy has been
been estimated by several workers, most recently by Luchow
et al.,23 as276.438Eh ; the difference between this and our
energy is20.123Eh and is solely attributable to insufficien-
cies in the one-particle basis. The FCI energies of the O and
H atoms in this basis are274.962350 and20.499944Eh

respectively, which yields an atomization energy of
0.352477Eh , or 221.183 kcal/mol.

At both r e and 1.5r e , the convergence of the DMRG
calculations with increasingM is quite similar. Based on
these results, we see that for systems of this size, using about
800 states is sufficient to reach chemical accuracy
(,1 mEh). This is to be contrasted with the results from CI
and CC theory, which are single-reference theories. At the
equilibrium geometry, chemical accuracy is achieved using
the standard CCSD~T! method, which has an error of only
0.574mEh , and by the time one includes all connected qua-
druple excitations in CCSDTQ, the error is reduced to only
0.019mEh . However, at the stretched geometry, all the CI
and CC results deteriorate by an order of magnitude. The CC
errors at this geometry must be interpreted with care, as it is
now understood that restricted CC theories yield energies
belowthe variational energy as bonds are stretched~see, e.g.,
Ref. 24!. Similarly, the perturbative triples (T) correction
leads the CCSD~T! result to lie below the full CCSDT result
at 1.5r e , which is a precursor to the divergence of the per-
turbative correction at long bond-lengths. The magnitude of
the connected quadruples correction at 1.5r e is very large,

FIG. 2. Total discarded density matrix weight after renormalization against
total energy, for H2O at r e .

TABLE II. Calculations on H2O using the DMRG and traditional quantum
chemical methods. Energies inEh , errors~from exact value! in mEh .

r e 1.5r e

Energy Error Energy Error

RHF 276.057621 257.094 275.817273 313.777
UHF n/a n/a 275.852670 278.380

CISD 276.296239 18.476 276.092255 38.795
CISDT 276.302586 12.129 276.103767 27.272
CISDTQ 276.314001 0.714 276.128604 2.446

UCCSD n/a n/a 276.111899 19.151
CCSD 276.307118 7.597 276.115089 15.961
CCSD~T! 276.314141 0.574 276.129442 1.608
CCSDT 276.314294 0.421 276.129387 1.663
CCSDTQ 276.314696 0.019 276.130885 0.165

800 276.3143 0.4 276.1302 0.9
1200 276.3145 0.2 276.1307 0.4
1800/1200 276.31458 0.13 276.13084 0.22
2400/1800 276.31464 0.07 276.13095 0.11
3200/2400 276.31468 0.03 n/a
3600/2400 n/a n/a 276.13101 0.04
5400/3200 276.31471 0.005 n/a
6000/3600 n/a 276.13104 0.01

` 276.314715 276.131050
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about 1.5mEh . The unrestricted CCSD theory also performs
significantly worse at this geometry than the corresponding
restricted CCSD theory at the equilibrium geometry. All
these are indications of the true multiconfigurational charac-
ter of the wave function at intermediate stretched geometries,
which is hard to capture using traditional single-reference
theories, but which poses little difficulty for the DMRG.
Elsewhere we have emphasized the intrinsically multicon-
figurational nature of the DMRG.16 We may also understand
the DMRG from the viewpoint of valence bond theory. The
most important correlations, as a bond is stretched, are those
that correlate an occupied bonding orbital with its corre-
sponding virtual antibonding orbital, as emphasized in
perfect-pairing valence bond theory. If we generalize the
concept of a pair to an orbital cluster of the type shown in
Table I, and further allow correlations between different or-
bital clusters~in order of increasing importance, asM is
increased!, we recover the DMRG picture of bond dissocia-
tion.

In conclusion, we have demonstrated, by computing the
exact energy of water in a large basis, that we can now obtain
numerically exact solutions for systems considerably larger
than can be contemplated using traditional FCI algorithms.
This has been possible using a new high-performance
DMRG algorithm that we have developed. Studies on a num-
ber of challenging chemical systems are currently under way.

We dedicate this work to Professor N. C. Handy, who as
always, pointed G. K.-L. C. in the right direction. We are
also grateful to Professor R. J. Bartlett and Dr. M. Musial,
who very kindly computed the CISDTQ and CCSDTQ num-
bers reported in this work. The computations were carried
out at the NERSC supercomputer center, via a grant from the
Department of Energy, Office of Basic Energy Sciences, Sci-

DAC Computational Chemistry Program~Grant No. DE-
FG02-01ER403301!, and the NERSC staff~in particular D.
Skinner! are thanked for their assistance in many technical
matters.
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