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of the electronic Schro “dinger equation for water
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Using a newly developed density matrix renormalization group algorithm, we have computed exact
solutions of the Schiinger equation for water at two geometries in a basis of 41 orbitals.
Calculations of this size cannot be carried out using any other method. We compare our results with
high-order coupled cluster and configuration interaction calculation0@3 American Institute of
Physics. [DOI: 10.1063/1.1574318

Exact solutions of the Schdinger equation within a basis, chosen to be eigenvectors of a many-body density ma-
given one-particle basis set, lie at the heart of quantuntrix. These states are, in a certain well defined séhse
chemistry. Even when the one-particle basis is not very largeyptimal basis in which to expand the wave function. Each
such calculations provide invaluable benchmarks by whichrotation is accompanied by a variational truncation of the
the accuracy of more approximate methods may be judgedmany-body basis, so that only a fixed number of states need

Using the full configuration interaction methaé&Cl), be considered at any one time.
advances by Handy and Knowl&s Olsenet al,*® Harrison Because the many-body expansion states are chosen in
and Zarrabiaff, and Bendazzoli and Evangeliétio name an optimal way, it is possible, using a small number of ex-
but a few, together with rapid improvements in computerpansion states, to achieve a very high accuracy in the energy.
technology, now allow calculations involving up toxd0°  The convergence of the energy with the number of expansion
Slater determinants. The largest such calculation, by Rossiates is also very fast, indeed superpolynoria\ith cer-
et al® has been on the Nmolecule, involving 10 electrons tain Hamiltonians, such as short-ranged 1D Hamiltonians,
and 34 orbitals irD,,, symmetry. However, notwithstanding the number of states needed to achieve a given accuracy in
these accomplishments, the exponential cost of the full conthe energy does not increase with the system size. All these
figuration interaction algorithm as a function of problem sizecharacteristics make the DMRG a particularly promising al-
severely limits the choice of problems that can be studied tgorithm for performing systematic high accuracy calcula-
high accuracy. tions.

We have been working on an alternative route to exact In this report, we use the DMRG to exactly solve the
solutions of the Schidinger equation, via the density matrix Schralinger equation for the water molecule within a basis
renormalization group(DMRG) algorithm. The DMRG, of 41 orbitals. We mean exact in the numerical sense, where
based on early work by Wilsohwas invented by Whit€'!  we compute the energy to an accuracy of one hundredth of a
in the field of model Hamiltoniange.g., 1D Hubbard mod- milliHartree (0.0ImE,), which is the typical accuracy to
els) in the early 1990s, and first applied to molecular Hamil-which FCI benchmarks are converged. We have chosen the
tonians(of the PPP typeby Fano, Ortolani, and Ziosf. This  water molecule because of its long and distinguished history
was followed by the first DMRG calculation with the full as the molecule of choice for benchmark calculations. In
electronic Hamiltonian by White and Martin in 1943Inthe 1981, Saxe, Schaefer, and Hafftlperformed the first large-
last few years, this method has been actively developed in scale FCI for the water molecule in a double-z€&) basis
number of works, including those of Daet al,'* Mitrush-  of 14 functions, which involved f0C,, determinants. In
enkovet al,'® and Chan and Head-Gorddh. 1986, Bauschlicher and TayfSrextended these results to a

The DMRG differs from usual quantum chemistry meth-frozen-core double-zeta, polarizatioBZP) calculation, in-
ods, in that it avoids the expansion of the wave function in avolving 10’ determinants. A decade later, Olseinal ?° car-
basis of Slater determinants. Instead, general many-body baed out FCI in a DZP basis of 26 functions correlating all ten
sis states, which would in principle themselves have longlectrons, which corresponded to a total determinantal space
and complicated Slater determinant expansions, are used t6 5x 10° C,, determinants. In our calculations, we take the
expand the wave function. One avoids the need to know thaext step, correlating all ten electrons using a triple-zeta,
explicit form of such states, by storing matrix representationglouble polarizationNTZ2P) quality basis. We have chosen
of all the operators necessary to solve the &dimger equa- the ANO basis of Widmark, Malmqvist, and RGbsvhich is
tion. Then, starting from an “initial guess” Slater determi- a balanced basis for properties and energies, consisting of
nant expansion for the wave function, one iteratively rotategts3p2d functions on O and &p functions on H yielding
the relevant operator matrices into a complicated many-bod$#1 basis functions in total. This may be obtained from the
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Extensible Computational Chemistry Environment Basis Set
Database under the name “Roos Augmented Double Zeta
ANO.” The corresponding determinantal spaceGp sym-
r_netry (which is the symmetry used in our cc_)de and CaICUIa'FIG. 1. A standard block configuration. Ea@hrepresents a spin-orbitdg
tions; we have neglected symmetry for simpligitig 5.6 s to be blocked witls, andBg with E.
X 10! determinants. With full point group symmetry, this is
reduced to 1.4 10! C,, determinants. Either size of space,
however, is currently out of reach of any traditional FCIand construct the reduced density mafriof the system by
algorithm. tracing out the environment states
In addition to calculqtions at the equilibrium geometry T'sg=TreCseCoe| SH(S'|. )
(ro), we have also considered a stretched geometry where
the OH bond is stretched to 1.5 times its equilibrium lengthPiagonalization ofl” is then followed by the rotation of all
(1.5,). These geometries correspond to positiGnsAng- the necessary operators into the new eigenvector basis.
stromg of O(0, 0, 0, H(*0.790689766, 0, 0.612217330), A DMRG sweep is specified by the number of spin-
and QO, 0, 0, H(*+1.186034914, 0, 0.918326260), reSpeC_orbitals inBg, Bg at each step, and the number of many-
tively. body statedvl retained at each truncation to span the system
In our DMRG algorithm, the orbitals are mapped onto aPlock, together with thg orbitgls themsel_ves._ In our sweeps,
lattice and divided into four blocks, two large blocks of vari- We use the block configuration shown in Fig. 1, where at
able sizeS andE, and two small blocks of constant sig, ~ ©ach blocking step we add two spin-orbitals.
Be in between. At each step of a DMRG sweep, the size of ~ FOr a finite number of stated that does not completely
the system blockS is increased by adding more orbitals, SPan the FCI space, the DMRG is not invariant under unitary
while the size of the environme#i is decreased. A complete {ransformation of the orbital@lthough asM increases, and
sweep consists of repeatedly adding spin-orbitals to the sydhe calculation becomes exact, invariance is recovefad
tem (blocking), until the system spans all the orbitals. After a thermore, the order in which the orbitals are mapped onto the
sweep is completed in one direction, the roles of system anf@ttice influences the convergence of the procedtiria
environment are reversed, and the sweep is carried out in tHB€se calculations, we used restricted canonical Hartree—
opposite direction; each sweep successively improves the dEOCk orbitals at the equilibrium geometry, and unrestricted
scription of the system and environment blocks and the prog@nonical Hartree—Fock orbitals at the stretched geometry.
cess may be iterated to convergence. The system block spafi§ discussed in our earlier wci'ﬁ<a good criterion to order
a many-body spacgS} before blocking; after blocking, the the orbitals is prowd_ed by minimizing the one-body matrix
enlarged system block spans the enlarged spape{Bg}.  €lements between distant orbitals. We have used this crite-
Therefore the many body-sta’[es of the System must be truﬁlon to yleld the orbital Orderlngs in this Work, listed in Table
cated, otherwise further blockings will lead to an exponential- We observe that the algorithm naturally produces clusters
explosion in the number of states. The optimal choice ofof Virtual orbitals that surround orbitals occupied in the
system states are the eigenvectors of largest weaigen- ~ Hartree—Fock reference. .
value of the many-body reduced density matrix of the sys-  We first performed DMRG sweeps retaining only a small
tem. To obtain this representation, we determine the groundiumber of stated/ and then progressively increaskt For
state wave functioh¥) in the product space of thienlarged ~ €ach of these smalfl values(200, 350, 500, 800, 1200up

system and environment blocks to ten sweeps were performed to converge the sweep energy,
defined as the lowest energy out of all the block configura-
W)= cedS)[E) (1) tions in each sweep. As noted by Legeza and Faemd
SE Chan and Head-Gorddfi,there is a linear relationship be-

TABLE I. Orbital orderings. How to read: The numbers go from left to right, top to bottom; thus, at the end of the fir&3pwontinue to the beginning

of the second row52). The numbers represent the index by increasing Hartree—Fock eigenvalue; the even numbers tepriiselst and the odd3. Thus,

in Hartree—Fock eigenvalue order, theorbitals are labeled 0,2,4,6..., while tjgeorbitals are labeled 1,3,5,7.... To obtain the ordering used in this work,
replace each number below, in order, by the corresponding Hartree—Fock orbital. Orbitals occupied in the Hartree—Fock reference are indicated in bo

le

30 31 40 41 72 73 60 61 50 51 8 9 20 21 28 29 62 63
52 53 6 7 18 19 48 49 78 79 66 67 36 37 14 15 2 3
10 11 70 71 38 39 0 1 76 77 44 45 22 23 12 13 54 55
4 5 16 17 34 35 32 33 64 65 80 81 58 59 68 69 46 a7
24 25 26 27 42 43 74 75 56 57
1.5,
74 77 40 41 26 25 58 59 36 37 66 67 52 53 68 69 56 57
4 5 12 13 16 17 34 33 24 27 46 47 80 81 30 29 42 43
76 75 0 1 2 3 10 11 14 15 32 35 60 61 70 71 54 55
6 9 48 49 62 63 18 21 22 23 44 45 78 79 20 19 8 7

50 51 64 65 28 31 38 39 72 73
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1.2x10° T T T TABLE II. Calculations on HO using the DMRG and traditional quantum
chemical methods. Energies iy, , errors(from exact valugin mEg; .
1.0x10° [~ = le 15,

Energy Error Energy Error
 soaio" 4 RHF —76.057621  257.094 -—75.817273  313.777
9 UHF n/a n/a —75.852670 278.380
£
:;60xloﬁa i CISD —76.296239 18.476 —76.092255 38.795
2 CISDT —76.302586 12.129  —76.103767 27.272
Ei CISDTQ —76.314001 0.714 —76.128604 2.446
= 6| . —

010 uccsD n/a n/a ~76.111899  19.151
CCSD —76.307118 7.597 —76.115089 15.961
2 0x10° ] CccsOT) —76.314141 0.574 —76.129442 1.608
) CCSDT —76.314294 0.421 —76.129387 1.663
CCSDTQ —76.314696 0.019 —76.130885 0.165
I YOG TN TSI N ATEUI TS VO NI S S S N SN S WU S T S MR
O 6s1as 76314 76313 6313 763135 76312 763115 800 —76.3143 0.4 —76.1302 0.9
Energy/hartr
priaress 1200 ~76.3145 0.2 ~76.1307 0.4
FIG. 2. Total discarded density matrix weight after renormalization againsf:800/1200 ~ —76.31458 0.13 —76.13084 0.22
total energy, for HO atr,. 2400/1800  —76.31464 0.07 —76.13095 0.11
3200/2400 —76.31468 0.03 n/a
3600/2400 n/a n/a —76.13101 0.04
5400/3200 —76.31471 0.005 n/a
tween the magnitude of the total discarded weight in thes000/3600  n/a —76.13104 0.01
density matrix, and the error in the total energy. Thus, plot-_ —76.314715 —76.131050

ting the sweep energy against the largest total discarded
weight per sweep leads to linear plots as shown in Fig. 2. We
have used these in extrapolations to provide estimates of the
errors in our calculations. The advantage of extrapolatingl =6000/3600 took over 150 h of wall time, 250 Gb of
using the discarded weight rather than the recently proposemiemory and 800 Gb of disk. We shall present full details of
theoretical convergence behavjdE| ~exp(—«(In M)?) (ob-  our new algorithm elsewhere.
tained in Ref. 1Y is that only a linear fit need be performed In Table Il we present our DMRG results. Our final com-
for an extrapolation. puted energies are —76.3147150.000010E, and

For the largerM values(1800—6000 only one or two  —76.13105@ 0.000010E,, for ther, and 1.5, geometries
sweeps at eachl value were performed. Thus, during eachrespectively. The exact nonrelativistic total energy has been
sweep, the number of states retained in the system block arimeen estimated by several workers, most recently by Luchow
environment blockbuilt in the previous sweépare differ- et al,?® as — 76.43&,,; the difference between this and our
ent. This is indicated in Table Il by the notation 2400/1800,energy is—0.12FE}, and is solely attributable to insufficien-
indicating 2400 many body states in the system and 1808ies in the one-particle basis. The FCI energies of the O and
many body states in the environment. The small number oH atoms in this basis are-74.962350 and-0.499944
sweeps does not result in fully converged sweep energieespectively, which vyields an atomization energy of
(and thus the DMRG results are not reported to the sam8.352477E;,, or 221.183 kcal/mol.

number of significant figures as the other entries in Table Il At both r, and 1.5., the convergence of the DMRG
but of course all the results are variational upper bounds tealculations with increasing/ is quite similar. Based on
the sweep energies at thosk values. these results, we see that for systems of this size, using about

To the best of our knowledge, the largest DMRG calcu-800 states is sufficient to reach chemical accuracy
lations on systems with this number of orbitals, have uded (<1 mE,). This is to be contrasted with the results from CI
values of up to about 100QIn the work of Mitrushenkov and CC theory, which are single-reference theories. At the
et al, although largeM values appear to be used, the block equilibrium geometry, chemical accuracy is achieved using
configuration is different, and thus the effectivievalues for  the standard CCSD) method, which has an error of only
comparison with this work should be divided by Since the 0.574mE,, and by the time one includes all connected qua-
cost of our DMRG algorithm isO(M3k®) time and druple excitations in CCSDTQ, the error is reduced to only
O(M?2k3) storage(wherek is the number of orbita)s our  0.019mE,. However, at the stretched geometry, all the CI
current calculations are two orders of magnitude larger thaand CC results deteriorate by an order of magnitude. The CC
what has previously been reported, in terms of computationarrors at this geometry must be interpreted with care, as it is
cost and storage. These calculations are now possible baew understood that restricted CC theories yield energies
cause of recent advances we have made to our DMRG algtelowthe variational energy as bonds are stretctses, e.g.,
rithm. In particular, we have fully parallelized the DMRG Ref. 24. Similarly, the perturbative triplesT) correction
algorithm for distributed memory architectures. In this work, leads the CCSO) result to lie below the full CCSDT result
we have run our code on up to 64 processors of the NERS@t 1.5, which is a precursor to the divergence of the per-
IBM SP3, which has given us access to 64 IBM Power3/375urbative correction at long bond-lengths. The magnitude of
CPUs, 256 Gb of memory, and 1 Tb of disk. The sweep athe connected quadruples correction at rl,%s very large,
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