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We describe a technique for connecting a nanometer-scale gold grain to leads by atomic-scale gold
point contacts. These devices differ from previous metallic quantum dots in that the conducting
channels are relatively well-transmitting. We investigate the dependence of the Coulomb blockade
on contact resistance. The high-resistance devices display Coulomb blockade and the low-resistance
devices display a zero-bias conductance dip, both in quantitative agreement with theory. We find
that in the intermediate regime, where the sample resistance is close to h/e2, the I-V curve displays
a Coulomb staircase with symmetric contact capacitances.

INTRODUCTION

Fabrication of nanometer scale devices has recently be-
come a subject of intensive study. In nanometer-scale
metallic devices, discrete electronic energy levels can be
resolved at low temperatures. The effects of discrete
electronic levels on quantum transport in small metal-
lic samples have been observed in atomic contacts and in
nanometer scale grains.

Atomic contacts have been created using scanning
probe microscopes [1] and mechanically controlled break
junctions [2, 3]. In these techniques, a metallic contact
is broken, for example by elongation, and one measures
the conductance versus elongation. The combination of
two effects, conductance quantization [4, 5] and sudden
rearrangements of the atomic structure [6, 7], cause the
conductance to decrease in discrete steps while the con-
tacts are stretched to the breaking point. The steps are
on the order of the conductance quantum G0 = 2e2/h.

In metallic grains, a single grain has been placed in
weak tunneling contact with source and drain leads, [8, 9]
creating a single electron transistor (SET). [10] At dilu-
tion refrigerator temperature, discrete energy levels of
the grain are measured from the I-V curve. The dis-
crete energy spectra are analogous to those in artificial
atoms. [11, 12, 13]

Study of both atomic scale contacts and grains has led
to major advances in understanding quantum transport
in metals. For an extensive review of quantum properties
of atomic-scale conductors and grains see Refs. [14] and
[15], respectively.

In this paper, we describe a technique to connect one
gold grain to drain and source by atomic scale contacts.
The samples that we generate demonstrate behaviors
of both atomic contacts and metallic grains. We show
that the contact conductances can be changed in dis-
crete steps of size comparable with G0, showing that the
conductance channels are well transmitting. This prop-
erty differentiates our new devices from previously stud-
ied grains. [15] We investigate the Coulomb blockade of a
grain as a function of the contact conductance. We iden-
tify a regime of intermediate Coulomb blockade, where

FIG. 1: Metal deposition process for creating a point contact
and/or a grain connected between the source and the drain.
The gap between Si3N4 substrates is 70nm, the width of the
undercut in SiO2 is 120nm.

the sample resistance is close to the resistance quantum.

EXPERIMENTAL SETUP

The samples are created by combining metal deposi-
tion and electric field induced surface migration of gold.
Recently, an electromigration technique has been imple-
mented in fabrication of metallic electrodes with nanome-
ter separation by Park et al. [16] In this technique a
gold nanowire had been made by electon-beam lithog-
raphy, then broken by passing large current through it.
The current flow had caused the electromigration of gold
atoms, and the nanowire to break. An electromigration
technique was subsequently applied at cryogenic temper-
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atures, [17] which lead to the fabrication of atomic scale
transistors.

Our technique is different from that of Park et al., in
that a strong electric field is applied to create a connec-
tion between two separate gold leads; it is based on elec-
tric field induced surface migration, [18] which is different
from electromigration.

A 5N purity gold film is deposited on to two insulating
Si3N4 substrates separated by a 70 nm slit, as shown
in Fig. 1, in vacuum of ∼ 10−6 torr. The slit has a
large undercut in SiO2, which prevents electrical contact
between the films. The exposed length of the slit is 0.1
mm.

Electric current across the slit is monitored during the
deposition. The applied voltage is U and the voltage
source impedance is RS . When the thickness of the film
is near ∼ 80nm, an electric contact between drain and
source appears abruptly.

The contact between the drain and the source forms
at a random location along the exposed length of the
slit. The nature of the contact depends on RS , U , the
amount of gold deposited after the contact is detected,
vapor pressure and temperature. The devices that can
be obtained by this technique are metallic point contacts,
tunneling junctions, and grains.

METALLIC POINT CONTACTS

To create a metallic point contact, we set RS = 0 and
U ≤ 0.1 V. Once the slightest conductance is detected,
deposition is stopped. With further gold deposition the
conductance would increase rapidly and display discrete
steps in conductance versus time, of size ∼ G0.

In some samples, stable contacts with conductance
comparable with G0 can be obtained by stopping the
metal deposition at the right time. These contacts are
stable for minutes or longer.

Frequently, it is impossible to stop the deposition when
the contact conductance is near G0, because the contact
conductance jumps to a value of ∼ 100G0. In addition,
the contacts that have conductance of order G0 often
suddenly jump into this 100G0 state or they disconnect.

PLANAR TUNNELING BARRIERS

Intuition suggests that if two gold surfaces are in me-
chanical contact, then there should also exist a good elec-
trical contact. In this section, we show that mechanical
contact does not necessarily imply a good electrical con-
tact. It is possible to create a stable planar tunneling
junction between two gold surfaces, with large tunneling
resistance. This tunneling barrier is created if the gold
surface contains adsorbates.
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FIG. 2: A. Circles: I−V curve of a contact taken immediately
after detecting the slightest current at 10 V bias. Line: Fit to
an I − V curve of a tunneling junctions. The fit parameters
are S = 2 × 103nm2,d = 7.5Å, and ∆ = 6.4 eV for the
junction area S, gap size d, and the barrier height ∆. B.
Increasing the contact conductance by increasing U in Fig. 1
with RS = 20kΩ. Three curves are obtained in three samples.
The curves are offset by 2e2/h in vertical direction for clarity.
These conductance traces are analogous to those found in
break-junctions. [14]

Planar tunneling barriers between gold surfaces have
been first proposed by Hansen et al. [19, 20] The authors
observe that gold metallic contacts of conductance ∼ G0

grown in ultrahigh vacuum are much less stable than in-
tentionally contaminated contacts with the same conduc-
tance. The enhanced stability is explained by a tunneling
barrier composed of adsorbates, which has a mechanical
contact area much larger than that for a metallic contact
with the same conductance. The dimensions of these bar-
riers are obtained by fitting the I-V curves. They vary
from ∼ 12nm to ∼ 50nm. The thickness of the barrier is
of order several Å.

We confirm this proposal in our experimental setup
and clarify the conditions under which different types
of contacts form. Since the pressure during the metal
deposition is 10−6 Torr, the surfaces contain adsorbates.
The nature of the contact that forms at this pressure
depends on the applied voltage.

If the applied voltage is weak (U < 0.1 V), then the
contacts are metallic, as described in the previous section.
If the voltage is large, (U > 5 V and RS = 0), the device
contains a planar tunneling barrier and there is no direct



3

metallic connection between drain and source.
If the applied voltage is between 1 V and 3 V, the

contacts are mixed between the above two cases. They
contain a large tunneling barrier and a small metallic con-
tact somewhere inside the barrier. These contacts have
the advantage of having high stability and high channel
transmittance. They are described in a separate section.
We discuss the high voltage regime first. We return

to the deposition process in Fig. 1 with U = 10 V and
RS = 0. When the Au film thickness reaches ∼ 80 nm,
the current suddenly jumps to a nonzero value.
The conductance (I/V ) strongly fluctuates in time.

The average I/V is much smaller than G0. As soon as
the contact is detected, we stop metal deposition and
reduce the bias voltage close to zero. We minimize the
time that the devices are exposed to 10 V to about one
second.
While reducing the voltage, at a rate of one volt in

ten millisecond, we measure the I-V curve. A typical I-V
curve is shown in Fig. 2-A. It is relatively well modeled
by the I-V curve of a single tunneling junction [21] with
the barrier height comparable to the gold work function
WAu = 5.1 eV. The diameter of the barrier is ∼ 10 nm,
consistent with ref. [19, 20].
The barrier height is slightly larger than WAu. This is

explained by significant contamination of the junctions
with adsorbates, such as H2O. [32]
We image the contacts by the scanning electron mi-

croscope (SEM). Transferring the sample from the depo-
sition chamber to another instrument almost certainly
leads to a sudden increase in resistance to an unde-
tectably high value, despite being grounded at both ends
during transfer. In most samples, the electrical contact
can be reestablished by applying a one second long volt-
age pulse at 10 V (or sometimes higher) in high vacuum.
The sample returns to the high resistance tunneling bar-
rier.
Figure 3-A shows one gold grain in mechanical contact

with the source. The sample disconnected spontaneously
while transferring to the SEM as described above. We
apply the voltage pulse, while imaging and measuring
the current simultaneously. The current starts to flow
during the pulse duration. After the pulse, the sample
resistance at low bias is ∼ 1GΩ or higher.
Figure 3 B shows the device after the voltage pulse.

We verify through microscopy that no additional con-
nections are formed outside the slit in Figure 3. The
mechanical contact area is of order 10 nm, confirming
the proposal by Hansen et al.
Under the influence of voltage, the grain pulled a Au

protrusion from the right lead, establishing contact. This
protrusion forms because of a process known as electric
field induced surface migration, see Ref. [18] and refer-
ences therein.
It is understood that the protrusion grows because of

a force acting on surface gold atoms. When the electric

FIG. 3: A. One gold grain attached to one lead. B. The grain
after applying the 10 volt pulse.

field exceeds a certain threshold, it leads to migration
of surface gold atoms toward the region of the strongest
electric field, creating a protrusion. The protrusion in-
creases the electric field gradient, which in turn acceler-
ates its growth. When the protrusion reaches the other
side, a planar junction is formed. This junction is stable
after the voltage is reduced.

FORMATION OF GRAINS IN ELECTRIC

BREAKDOWN

Consider a metallic point contact with resistance less
than 10Ω. We apply a voltage pulse of 10 V in vacuum.
The contact breaks down, and after the pulse the resis-
tance is immeasurably large.

We observe the break-down by the SEM. Fig. 4-A
shows an area near the contact after the break down.
Evidently, a relatively wide region around the point con-
tact melts under the influence of the voltage pulse. The
molten gold retracts away from the slit, presumably in
order to reduce surface energy.

In addition, a large number of electrically isolated
grains is left behind on the substrate surface. This is
shown in fig. 4-B. The image indicates a broad distribu-
tion of grain diameters. The particles have nearly cir-
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cular shape. This suggests that the particles have been
molten (in the liquid state, minimizing the surface energy
in contact with the substrate leads to circular grains).

PLANAR TUNNELING BARRIERS - REVISITED

In Fig. 3-B, there is a grain between drain and source.
The majority of devices fabricated with a 10 V pulse,
as in fig. 3-B, have I-V curves that exhibit the Coulomb
staircase at low temperatures. Since the staircase is con-
ditional on RL, RR > h/e2, where RL and RR are the
contact resistances between the grain and the leads, this
shows that there are at least two contacts in series be-
tween drain and source. In later sections, when we dis-
cuss Coulomb Blockade, we infer from the I-V curves that
there is only one grain between the drain and the source.
Figure 3-B supports this conclusion.
We propose the following scenario for grain formation.

We suggest that the very first contact at 10 V bias voltage
is metallic. It lasts only for a very short time, because it
breaks down by melting. During the break down, one or
several grains are created analogous to Fig. 4.

MIXED CONTACTS

After creating a device with a 10 V pulse, as in fig. 3-B,
we change the circuit in Fig. 1, so that RS = 20kΩ and
slowly increase U from zero, and measure the conduc-
tance (I/V ). Note that U is the total voltage across the
sample in series with RS . Figure 2-B shows the resulting
conductance traces in 3 different samples.
I/V jumps to a significant fraction of 2e2/h at roughly

2.8 V. After the jump, the voltage across the sample V
is reduced below U by voltage division with RS , and the
sample voltage becomes close to 1.7 V. Further increase
in U results in two effects: there are additional discon-
tinuities in conductance, of amplitude 0.2 to 2e 2/h, and
there is a smooth increase in conductance versus U . The
increase in conductance is maintained if the voltage U is
removed.
The discontinuities in conductance of size ∼ e2/h sug-

gest that discrete atomic reconfigurations take place,
analogous to those in atomic conductors. [14] The steps
demonstrate that the contacts contain well transmitting
channels. In Fig. 3-B, the atomic scale contacts form
somewhere inside the tunneling barrier between the grain
and the leads.
The smooth conductance increase suggests that the

tunneling contribution is increasing. We confirm through
microscopy that the area of the planar barrier is increas-
ing while the contact conductance is increasing smoothly.
As described before, in a strong nonuniform electric

field, at room temperature, surface gold atoms move to-
ward the strongest electric field. [18] We propose that

FIG. 4: A. Scanning Electron Microscope image of a metal-
lic point contact after the electric breakdown by the voltage
pulse, as described in the text B. A zoomed-in image of the
blown region on the left side of the slit. An array of circular
gold grains is left on the substrate.

when the electric field strength increases beyond a cer-
tain point, one atom pushes through the barrier, creating
a metallic contact.
Once the first atom is connected, further increase in

the electric field adds more gold atoms into the contact,
increasing the number of channels and the conductance
in steps of size ∼ e2/h.
These discrete atomic additions occur in both barriers.

In fact, since the voltage drop is stronger at the higher
resistance junction, and voltage drop drives the conduc-
tance increase, it follows that the increase in conductance
tends to even out any imbalance between the two resis-
tances. This balancing of the electric field leads to the
desired property that the Coulomb blockade at low tem-
perature vanishes in a relatively narrow range of sample
resistance.

COULOMB BLOCKADE

To observe Coulomb Blockade, a sample whose resis-
tance at room temperature is greater than or equal to
20 kΩ must be cooled to milliKelvin temperatures. How-
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ever, the evaporator in which each sample is prepared
cannot be cooled. So each sample must be moved to a
dilution refrigerator where it can be cooled to as low as
10mK.
The samples are very sensitive to electrostatic shock

and so a careful grounding procedure must be followed
to safely transfer each sample from the chamber to the
refrigerator. From outside the chamber, before venting to
atmosphere, the voltage on the sample is reduced to zero,
and both leads are grounded. After venting, a mobile
grounding strap grounds the removable deposition stage,
and the sample leads are grounded to the stage, where
now the voltage leads to the outside circuitry may be
safely removed. The stage may now move to an ESD-
safe workstation (table) and the sample dismounted.
To dismount the sample from the stage, a small piece

of indium wire is used to shunt the contact pads on the
chip. Leads running from the stage to chip may now
be disconnected. The chip is free to move to a stage
more suitable for the dilution refrigerator. A small chip
carrier, designed for use in the tailpiece of the refrigerator
will house the sample. Leads from the carrier to the chip
are connected by indium pressing to the contact pads.
The leads, from the top of the refrigerator to a connector
at the tailpiece, are grounded, and the carrier is finally
attached to the connector. The indium shunt on the chip
is removed. The sample is now available for cool down.
Only through this laborious grounding procedure can we
move samples and have them survive.
We have recently added the gate to our samples. To

this end, the mask is placed back over the chip, but ro-
tated by 90 degrees. Then the sample is returned to the
deposition chamber and reconnected to the outside elec-
tronics. If the resistance of the sample is infinite, the
sample is reconnected in high vacum, as in Fig. 3. Then,
we deposit a layer of Al2O3, by reactive evaporation of
aluminum. [9] Aluminum is deposited at angles of ±5 deg
relative to the substrate normal. For each angle, the de-
posited thickness is 15nm. Then, we deposit a layer of
aluminum metal, 40 nm thick, in the direction parallel
with the normal.
The refridgerator is closed and pumped down to ∼

10−5 Torr. Then, the sample resistance is modified (if
needed), using the techniques described in previous sec-
tions. Finally, the sample is cooled to 0.015 K and the
I-V curves are measured.
Standard cryogenic filtering techniques lower the elec-

tron temperature. Differential conductance is obtained
using a lock-in technique. The applied voltage is a
sum of a constant dc-voltage V and a weak ac-voltage
v(t) = vAC sin(2πft), where vAC = 1µ V and f = 500
Hz. Current I is measured with an Ithaco current pream-
plifier. To obtain the differential conductance, the out-
put of the amplifier is connected to the input of a lock-in
amplifier.
The effects of the gate voltage on differential conduc-

FIG. 5: Gate voltage dependence of the Coulomb blockade,
in sample 3. Darker = smaller conductance. The diamonds
represent different charged states of the grain, analogous to
the gate voltage dependences in quantum dots. [13]

tance are shown in fig 5, at T = 0.015K in sample 3.
The differential conductance near zero bias voltage is
strongly suppressed. If the bias voltage aproaches a cer-
tain threshold from below, the differential conductance
rapidly increases by several orders of magnitude.
The voltage threshold displays quasiperiodic modula-

tion with the gate voltage. By applying the gate volt-
age, the voltage threshold can be reduced to zero. If the
gate voltage is chosen so that the voltage threshold is at
maximum, then the conductance at zero bias voltage is
four orders of magnitude smaller than the conductance
at large bias voltage.
This proves unambiguously that the sample consists of

a metallic grain connected to drain and source, rather
than a single junction. The diamonds in Fig. 5 are sym-
metric around zero bias voltage, showing that CL ≈ CR,
where CL,R are the effective capacitances determined
from the fit to the Orthodox theory of single-charge
tunneling on a single metallic island. [22] The image is
chopped, because of the random switches in the back-
ground charge distribution (note that the gate voltage
range is rather large compared with the bias voltage).
Figure 6-A shows the I-V curve of sample 1. This I-V

curve is typical for our high resistance samples. We fit
the I-V curve using the Orthodox theory, [22] and show
the corresponding fit by the dashed line. Good fits are
generally found in approximately 50% of the samples,
suggesting that the samples typically consist of a single
metallic grain in weak electric contact with the drain and
the source.
The charging energy 82 meV extracted from the fitting

is relatively large. As a result, the bias voltage can induce
jumps in the background charge distribution (also known
as Q0-shifts in the Orthodox theory). The I-V curve
of sample 1 displays a noticeable deviation from the fit
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TABLE I: RL + RR, RL/RR , CL + CR, CL/CR: junction
resistances and capacitances determined from the Coulomb
staircase, in samples 1,2, and 3, and from the theory of strong
tunneling in an SET, in sample 4. In samples 1-3, the capaci-
tances are effective, and in sample 4, the capacitance is bare.
EC is the effective charging energy.

RL +RS [kΩ] RL/RS CL + CS[aF ] CL/CS EC [meV ]

1 550 2.9 0.98 1.2 82

2 344 1 17.4 1 4.6

3 56 1 410 1 0.2

4 14 7.1 5.52 - ≪ 0.1

at positive bias voltage, see Fig. 6-A. These deviations
are not noise. They are hysteretic - they change when
sweeping the voltage up and down. At negative voltage
bias, the deviations from the fit are weak and we do not
observe any hysteresis when repeating the voltage sweep.
This behavior is thus far consistent with single charge
tunneling.

Among samples, charging energy fluctuates strongly.
These fluctuations are explained by the broad distribu-
tion of particle diameters possible in such systems, Fig. 4.
In addition, there is another source of fluctuations in
charging energy, caused by the distribution of contact
conductances. This effect will be discussed in the next
section.

INTERMEDIATE COULOMB BLOCKADE

As RL + RR decreases, the effective charging energy
rapidly approaches zero, as shown in table 1. If the gap in
the I−V curve is well resolved at T = 0.015K, the grains
are referred to as closed. The range of conductances of
closed grains is indicated in Fig. 2-B. In table 1, samples
1-3 display a clear Coulomb blockade at T = 0.015K.
The parameters in these samples are obtained from the
fits to the orthodox theory.

Figure 6-B shows I−V and dI/dV −V curves in sample
2. This sample displays a sharp Coulomb blockade, sim-
ilar to that in sample 1. The I-V curve has no hysteresis,
which is not surprising, since the charging energy is only
4.6 meV and the bias voltage is too weak to reconfigure
the background charge distribution. The Orthodox the-
ory is in good agreement with the linear segments of the
I-V curve. We can identify the same threshold voltages
at both signs of the bias voltage: (a) corresponds to (d)
and (b) corresponds to (c). This confirms there is only
one grain in series with drain and source.

The rounding of the I-V curve is larger than expected
from the Orthodox theory. A good fit is obtained with
identical junction parameters RL = RR and CL = CR.
The first identity, RL = RR, is not as important as
the second identity; good fits can be obtained even if
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FIG. 6: A. Circles: I-V curve of sample 1. Line: fit to the
Coulomb staircase on single grain obtained from the Orthodox
theory. The charging energy EC = 82meV . B. Circles: I-V
curve of sample 2. Crosses: differential conductance versus
voltage. Line: fit to the Orthodox theory. The line is offset
in vertical direction for clarity. The best fit parameters deter-
mine effective capacitances, not the geometric capacitances,
as described in the text.

RL/RR 6= 1. CL = CR follows directly from the I-V
curve, from the fact that the threshold voltages (b) and
(c) have the same magnitude. We have noticed this sym-
metry in contact capacitance in a relatively large number
of samples - roughly 50% of samples with charging en-
ergy less than 5 meV. In samples with EC < 1 meV, this
symmetry is found in nearly every sample studied.
We do not have an explanation for this symmetry at

low temperature and low bias voltage. Experimentally,
no special care has been taken to make the junctions
symmetric. In fact, the parameters are expected to be
significantly asymmetric. We note that the symmetry
in effective capacitance is broken in a strong magnetic
field. The discussion of the magnetic field dependence is
beyond the scope of this paper.
Theoretically, one expects that if GL + GR > G0,

where GL,R = 1/RL,R, the system parameters become
renormalized near zero temperature and zero bias volt-
age. The effective charging energy of the grain decays
exponentially with contact conductance,

Eeff
C = ECe

−α(GL+GR)/G0 , (1)

where α is a constant of order 1, dependent on the na-



7

ture of the contacts (α = 1 in tunneling junction and
α = π2/4 in a diffusive metallic contact), EC is the bare
charging energy. [23, 24] This exponential dependence
on GL and GR also explains strong fluctuations in the
charging energy among samples.

The suppression of Coulomb blockade have been stud-
ied in larger metallic SETs. [25, 26] The connection be-
tween the effective charging energy and the bare sam-
ple parameters have been established. [25] Our samples
are different from metallic SETs in that the contacts are
metallic, and the grain diameter is small - small enough
so that an electron can enter and exit the grain without
loosing its phase coherence. [33]

No calculation of the I − V curve in this regime is
available. We still fit the I−V curve using the Orthodox
theory, with the notion that the best fit parameters rep-
resent effective (renormalized) parameters. In this sense,

Eeff
C = e2/(2Ceff ). The central result of this paper, be-

yond describing the new technique, is that Ceff
L = Ceff

R ,

when Eeff
C ≪ EC and when the applied magnetic field is

weak. In table 1, the sample parameters are the effective
parameters as defined here. No connection between ef-
fective and bare parameters is established in this paper.
This connection is the subject of present research in our
laboratory.

The observation Ceff
L = Ceff

R has important implica-
tions for conversion from bias voltage into grain energy.
For example, if the density of states of the grain varies as
a function of energy, then this variation can be measured
from the I-V curve. The capacitive division prefactor,
which converts from bias voltage to energy, is 2.

In instances where the theoretical calculations can be
solved exactly, the theory predicts that any asymmetry
in the junction’s real parameters is only enhanced by the
renormalization at low temperatures and low bias volt-
age. [27] The theoretical model, however, is valid only
if there is one electronic mode per contact, which may
not apply to our samples. Our data demonstrate the op-

posite behavior from that predicted theoretically: in a
weak magnetic field, the effective capacitances are sym-
metrized.

WEAK COULOMB BLOCKADE

We have observed that when the sample resistance
at room temperature is less than roughly 10kΩ, then
the conductance at T = 0.015K near zero bias volt-
age remains on the same order of magnitude as the
conductance at large bias voltage (asymptotic conduc-
tance/resistance). In Fig. 2-B, the grains with this prop-
erty are referred to as open. Fig. 7 shows dI/dV ver-
sus V in a sample with room temperature resistance
≈ 14kΩ. We observe that the conductance at V = 0
and T = 0.015K remains within an order of magnitude

0.4
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FIG. 7: Symbols: Differential conductance versus bias voltage
in sample 3 as a function of temperature. Lines: Fit to the
theory of strong tunneling in a metallic grain.

from the room temperature conductance. In samples
with asymptotic resistance 10kΩ < RL + RR < 20kΩ,
the depth and the width of the conductance dip fluctu-
ates strongly among samples (in two out of forty samples
studied thus far, the conductance dip is significantly less
pronounced than that in Fig. 7).

As the temperature increases, the zero-bias dip broad-
ens. While at room temperature, the zero bias conduc-
tance dip is no longer resolved; the I-V becomes linear,
with the conductance equal to the 1/(RL + RR). Alter-
natively, this asymptotic conductance is obtained at low
temperatures, by applying a large enough bias voltage so
that the I-V curve approaches the linear form.

To interpret this result we first try to fit the data in
Fig. 7 to the dynamic Coulomb blockade model of a single
tunneling junction. [28, 29] Yeyati et al. have extended
this model to include a metallic contact with one chan-
nel, [30] showing that the temperature dependence of a
metallic contact does not differ from that of a tunnel-
ing junction. Fitting to the dynamic Coulomb blockade
model does not reproduce the temperature dependence
in Fig. 7.

We fit the data in Fig. 7 to the theory of a meso-
scopic metallic grain in the strong tunneling limit. [31]
This theory has already been used in connection with
measurements of strong tunneling SETs by Chouvaev et
al. [26] Strictly speaking, the model in Ref. [31] is not ap-
plicable to our devices because our contacts are metallic.
For example, the parameter α in Eq. 1 differs between
metallic contacts and tunneling contacts by a factor of
π2/4 = 2.46. This implies that the Coulomb blockade
is much more strongly suppressed with metallic contacts
than with tunneling contacts. [24]. In the absence of a
theory of the I-V curve for a grain with metallic contacts,
we use the theory of tunneling contacts. [31] The theory

is valid only if eV ≫ Eeff
C or kBT ≫ Eeff

C .
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The I-V curve is

I(V ) =
V

RL +RR
−

e

πh̄

RLRR

(RL +RR)2
Im

∑

r=L,R
(

h̄

R0C
+ ieVr

)

Ψ

(

1 +
h̄

2πkBTR0C
+ i

eVr

2πkBT

)

−ieVrΨ

(

1 + i
eVr

2πkBT

)

(2)

Here R0 = RLRR

RL+RR

, C = CL + CR, VL = RL

RL+RR

V, VR =
RR

RL+RR
V and Ψ(x) is the digamma function. Note that

there is a misprint in Ref. [31]. The corrected expression
is given in Ref. [26].
There are three fitting parameters RL, RR and C. We

set RL + RR to be the same as the sample resistance
at high temperature/voltage, and vary C and RL/RS to
obtain the best fit. We fit the family of dI/dV vs V
curves measured at different temperatures. The best fit
is shown by lines in Fig. 7, and the corresponding sample
parameters are given in Table 1, for sample 3. The fit
reproduces our data quite well in the entire temperature
range.
The I-V in Eq. 2 does not depend on on the capac-

itance ratio CL/CR. It is reasonable to assume that if
the conductance at V = 0 and T = 0.015K is several
times smaller than 1/(RL + RR), then the voltage divi-
sion across the grain is closer to capacitive than resis-
tive. Then, if Eq. 2 holds, it follows that the effective ca-
pacitive division is independent on the bare capacitance
ratio CL/CR. This may partially explain why the mea-
sured capacitances in the intermediate Coulomb blockade
regime are identical.

CONCLUSION

In conclusion, we present a new technique for fabri-
cation of metallic grains in contact with leads. These
grains are connected by two metallic atomic-scale point
contacts, with well transmitted conduction channels. We
show that when the sample resistance at room tempera-
ture is above h/e2, then the I −V curve at low tempera-
tures displays the Coulomb blockade. When the sample
resistance approaches h/e2, the blockade is weakened.
We discover an intermediate regime in which the I-V
curve is described by the Coulomb staircase with sym-
metric junction capacitances. As the sample resistance
is reduced further, the Coulomb blockade is completely
washed out, and only a weak zero bias conductance dip
is observed. This regime is well described by the theory
of metallic grains with strong tunneling.
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