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Abstract 

 

A framework for estimating heating and expected temperature rise in current carrying 

molecular junctions is described. Our approach is based on applying the Redfield 

approximation to a tight binding model for the molecular bridge supplemented by 

coupling to a phonon bath. This model, used previously to study thermal relaxation 

effects on electron transfer and conduction in molecular junctions, is extended and used 

to evaluate the fraction of available energy, i.e. of the potential drop, that is released as 

heat on the molecular bridge. Classical heat conduction theory is then applied to 

estimate the expected temperature rise. For a reasonable choice of molecular parameters 

and for junctions carrying currents in the nA range, we find the temperature rise to be a 

modest few degrees. It is argued, however, that using classical theory to describe heat 

transport away from the junction may underestimate the heating effect. 
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1. Introduction 

In several recent publications we1-4 and others5-13 have addressed the issue of 

thermal effects in charge transport through molecular nano-junctions. There are two 

important reasons for the interest in this issue. First, on the fundamental level, the effect 

of electron-phonon14 coupling is an important factor affecting the nature of the 

transmission and the conduction properties of the molecular junction. Secondly, from 

the practical point of view, this coupling is associated with possible heating of the 

junction as it operates as a conductor. As envisioned, among the most important 

advantages of molecular junctions is the combination of small size with versatile and 

controlled structure. On the other hand this small size implies small heat capacity, and 

possible heating may undermine the junction's structural integrity. This makes the 

understanding of heating effects in molecular conductors a crucial issue. 

In this paper we study this issue using a simple model that combines an 

electronic system comprised of two continuous manifolds of states that represent the 

metal leads, a tight binding chain representing a molecular bridge that connects between 

these leads and a thermal phonon bath that couples to the molecular bridge. This model 

is similar to those used by us earlier2-4 to study the effect of coupling to a phonon bath 

on the nature of the conduction process, in particular interplay between tunneling, 

activation and hopping transmission processes. Lake and Datta15,16 have used a different 

approach based on the non-equilibrium Green's function formalism to study heat release 

in junction characterized by simple barrier or double barrier structures.  

When a classical ohmic conductor characterized by a resistance R carries a 

current I the heat produced per unit time is RI2. This translates into 

2J
W �

�          (1) 

where W is the heat produced per unit time and volume, J is the current density and �  is 

the conductivity. In contrast, the observation of molecular scale resistance does not 

necessarily imply that heat dissipates locally on the source of this resistance. Consider 

for example a classical barrier separating between two identical reservoirs of charge 

carriers that are characterized by electrochemical potentials � L= � R (Fig. 1a). Imposing a 

potential bias on this junction leads to the situation depicted in Fig. 1b, in which a 
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steady state current flows in a closed circuit. This current is proportional to the rate 

difference 
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 � 
 � � 
   (2) 

where A is the pre-exponential of the barrier crossing rate, �  is the potential bias and q 

is the carrier charge. For Bq k T

 �

 Eq. (2) yields 2I A q
� �� , which implies 

 1 2G R A q
��� �         (3) 

Thus the potential barrier is associated with a resistance in this classical transport 

process, however the heat dissipation given by Eq. (1) should be considered more 

carefully. First, the net power I �  dissipated during this process is only a small fraction 

of the energy accumulated and then released as each carrier traverses the barrier. 

Secondly, this net dissipation does not necessarily fall on the barrier. In fact, in the 

common case where A is derived from transition state theory, friction is assumed to play 

a negligible role on the barrier and the power I � is dissipated in the side reservoirs 

rather than on the barrier. A similar phenomenon occurs in tunneling junctions where 

the Landauer conductance17,18 
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G E E�� ��           (4) 

(e is the electron charge, �  is the transmission coefficient and EF is the Fermi energy) 

arises from elastic transmission and is not associated with any dissipation in the barrier. 

In both cases the net power I � is dissipated in the leads, far from the barrier that 

represents the molecular junction. 

 For practical issues regarding heating effects on junction stability, the question 

where and how much heat is being released during conduction is of utmost importance. 

Energy dissipated as heat in the metal leads is expected to move away from the 

molecular junction relatively rapidly. On the other hand, energy released on the 

molecular bridge can potentially cause a large temperature increase due to the 

combination of relatively inefficient heat conduction away from the molecule with a 

relatively small heat capacity of the molecule itself. The Landauer formula (4) 

corresponds to the limit where dissipation of electronic energy on the barrier is absent, 

while dissipation in the metal is admitted only implicitly as discussed above. In reality, 

the coupling of electronic and nuclear degrees of freedom provides a mechanism for 
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heat dissipation on the bridge itself. In the present paper we provide a framework for 

discussing this issue and for estimating the expected temperature rise on the bridge. 

 A crucial element of any analysis concerning heat release on the bridge is the 

distribution of the electrostatic potential drop on it. This issue has been discussed 

recently by several workers,19-22 however no firm conclusions exist for any realistic 

system. Figure 2 shows several possible scenarios of the potential profiles between 

leads 1 and 2 when the potential bias is � 1- � 2= � . The linear ramp, A1A2, represents a 

commonly made assumption for metal-molecule-metal junctions with a strong chemical 

bonding of the molecule to both metals. Alternatively, in a scanning tunneling 

microscope (STM) experiment, a common assumption is that the electrostatic potential 

on the molecule is pinned to that of the substrate (lead 1 say) so that the entire potential 

drop occurs between the molecule and the tip (lead 2), leading to profile A1CA2. 

Because the molecule is a polarizable object we expect that the linear ramp potential 

should be replaced by the dashed line in the figure, that is sometimes approximated by 

the profile A1B1B2A2.
20,22 

A typical molecular junction carrying a current of 1nA through a potential drop 

of 0.5V,say, can deposit a power of up to 3� 109eV/s into the junction region. Such 

magnitude of heat power dissipated on a molecular bridge would pose a serious problem 

with regard to the bridge's structural integrity. The discussion above implies that I �  is 

only an upper bound, and that only a fraction, ( 1)I��� � � , is dissipated on the bridge 

itself. Estimating �  is thus a central issue of our study. 

In Section 2 we introduce our model and notations. Section 3 discusses a 

classical version of our problem where the molecular bridge is represented by a 

potential barrier separating two reservoirs of classical independent charge carriers (Fig. 

1) that move under the influence of stochastic noise and damping. Section 4 discusses 

the quantum problem introduced in Sect. 2, using for the molecular bridge a tight 

binding model supplemented by a thermal bath and by a system-bath coupling. This 

model has all the ingredients of the classical model and also involves issues of 

coherence, dephasing and tunneling that are missing in the classical analog. In section 5 

we discuss local aspects the heating process and provide an approximate method to 

compute the heat released at any local site of the bridge. In Section 6 we estimate the 
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temperature rise on the molecular bridge under typical operating conditions, using a 

classical model for the heat conduction away from the bridge. Section 7 concludes. 

 

2. Model and Notation 

 We use the same model that was used before to analyze the thermal effects in 

electron transmission through molecular bridges. This model (Fig. 3) consists of a 

molecular bridge (M), two metal leads (J=L,R for the left and right lead, respectively), a 

thermal bath (B) and interactions between bridge and leads and bridge and thermal bath. 

For details see Section 2 of Ref. 4). The bridge is described by a tight binding model 

with N sites and one state localized on each site. These states will be numbered by 

n=1,...N and taken for simplicity to be mutually orthogonal with nearest-neighbor 

couplings. The left and right metal leads J=L,R are represented by continuous manifolds 

of states, { j} ={ l} , { r} . The corresponding Hamiltonian is 

M B J JMH H H  F  H   H� � � � �       (5) 

where HB is the Hamiltonian for the thermal environment and where 

0

1

0 , 1 1,
1 1

| |     ;     | 1| | 1 |

M

N N

n n n n n
n n

H H V

H E n n V V n n V n n
�

� �
� �

� �

� �	� � �
��� � ���	�
 
  (6) 

  J l r
l r

H E | l l | E | r r |� �	� � �
�� �
      (7) 

 
,1 1, , ,1 1                

JM l r
l r

l l l r r N N r

H V V

V V | l |    V | l | V V | r N |    V | N r |  

� �

� �
� � �	� � �	� � �
�

� �

(8) 

 ,
1

| |
N

n n
n

F F n n
�

� �	��
        (9) 

In the calculation presented below we consider a particular version of this model in 

which , 1n nV V� � are the same for all nearest neighbors, and also all bridge energies En 

(n=1,...,N) are taken equal, 
n BE E� , in the unbiased case. This model is depicted in Fig. 

3, which also shows a particular incident state |0> of the left manifold with energy 

0 BE E E !#" , as well as the coupling to the thermal bath B. This coupling is taken to 

be of the form (9), where again { n}  is the set of N bridge states in the site representation 

and where Fn,n are operators in the bath subspace. These operators are characterized by 

their time correlation functions 
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where T is the temperature and k ���  the Boltzmann constant. For specificity we 

sometime use 

 � �, ', ' , '( ) (0) exp | | /
2n n n n n n c

c

F t F t
�� ��� ��� �      (11)

in which �  and � c play the roles of coupling strength and correlation time, respectively. 

The RHS of Eq. (11) becomes ( )t���  in the Markovian,  c ! 0, limit.  

 Our model is then characterized by the bridge length N, the energy gap " E, the 

intra-bridge coupling V, the bridge-leads coupling expressed be the damping rates #  and 

the thermal-coupling parameters $  and % c. Previous uses of such model have yielded 

reasonable fits to the performance of actual molecular junctions taking N of order 10,  

" E in the range of a few thousands wavenumbers, and V and #  in the range 100-

1000cm-1.  Some information on the thermal coupling parameters associated with any 

given molecular site can be obtained using the formal relationship to the site 

reorganization energy ER, /B R ck TE& '( ) .24 In the model calculations described below 

we have used for simplicity the Markovian limit, / 1,B ck T * +�+,
 and have taken -  in the 

range - =0.1-0.01ER. (Typical reorganization energies are in the range of ~0.5eV). 

In the absence of thermal interactions this model leads4 to the following 

expression for the differential (per unit of the final energy range) transmission for an 

incoming electron with energy E0 . /
' ( ) ( ) ( )† ( )

0 0 0 0 0 0 0 0( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )M L M R
ME E E E E E E Tr G E E G E E

0 01 2 1 2 3 34 4
           (12) 

(We use '5  to denote the differential transmission coefficient, while 6  is the 

(dimensionless) elastic transmission coefficient). In (12) MTr is a trace over the 

subspace { n}  of molecular bridge states, and ( ) ( )MG E is the Green's function associated 

with this subspace 

 7 8 1( ) ( )( ) ( )M MG E E E 9: ; H        (13) 

 ( )
, ' , ' , ' , '( ) ( )M

n n n n n n n n nH E E V E
<= > >@?       (14) 

with A being the self-energy associated with the interaction of the bridge states with the 

metal electrodes and B  -  its imaginary part   
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The elastic transmission coefficient � (E) is related to the zero bias conduction of the 

junction by the Landauer formula, Eq. (4). 

As mentioned in Sect. 1, the electrostatic potential profile along the biased 

junction is an essential element in our analysis. We do not determine this distribution in 

the present paper. Instead, we will consider two models that correspond to the situations 

depicted in Fig. 2. Using � E to denote EB 
 EF in the unbiased junction, model A is 

defined so that (1/ 2)L FE e� �� � ; (1/ 2)R FE e� �� � ; 1 (1/ 4)FE E E e�� ����� ; 

(1/ 4)N FE E E e�� �����  and a potential drop of (1/ 2)e�  is distributed linearly along 

the bridge between sites 1 and N, i.e. 1 / 2( 1) ; 2,..., 1.n nE E e N n N
� ! " " ! "  In 

model B # L, # R, E1 and EN are the same as in model A and the other bridge levels are 

taken independent of $ , ; 2,..., 1.n FE E E n N% &�' % (  Fig. 4 shows schematic views 

of these two models. 

 

3. Heat release )  the classical analog 

 The following classical model contains the essential ingredients of our problem: 

The molecular bridge is represented by a potential barrier (Fig. 1), and the transmission 

is a classical process of barrier crossing. Any particle that traverses the barrier from left 

to right starts its trip on the barrier at x=0 and ends it as it leaves the barrier at the point 

x=L. The particles are assume independent and their motion is governed by the Newton 

equation supplemented by a Langevin white noise 

 
1 1

( )x x F R t
m m

*+�, - -. . .
       (16) 

where ( ) /F dU x dx/�0  is the force derived from the potential barrier and where the 

friction 1  and random force R satisfy 

 1 2 1 2( ) 0 ( ) ( ) 2 ( )BR t and R t R t mk T t t2 34 576 4 576 8 .    (17) 

When the potential bias 9 =(: L-: R)/( ; e) is distributed uniformly over the barrier we have 

 ( ) ;
x e

U x e F
L L

<<=�> =       (18) 
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We will consider this situation, which is the classical analog of Model A of Fig. 4. A 

classical treatment of transmission problem that analyzes the bridge length (L) 

dependence of the transmission probability was recently provided by Hershkovitz and 

Pollak.23 

 Note that by starting the particles on top of the barrier at x=0 (Fig. 1b) we 

disregard the energy needed to get there in the consideration of heat release along their 

descent. The question is simply what fraction �  of the available potential energy e
�

 that 

the electron looses as it traverses the distance between x=0 and x=L is dissipated as heat 

on the barrier. Obviously 1� �  as L ��� , but it will be smaller for L of the order of, 

or smaller than the relaxation distance Lr (the distance, of order 2/F m� , beyond which 

the descending particle assumes constant velocity).  

We will not dwell here on the full solution of this stochastic transport problem 

and will limit ourselves to the simple zero temperature case. Eq. (16) for this case, 

/x x F m�	�
 �
 
 

, yields � �0( ) exp( ) ( / ) 1 exp( )v t v t F m t� � �� � � � �  and  

0( )x t x� � �
0 1 exp( ) /v t� �� �� � �� � � � !

( / ) 1 exp( ) /F m t t" " "# $% & & &' (
, where x0=0 and v0 

are the initial position and velocity. The time to reach the end of the slope is the solution 

t* of the equation ) * ) *+ ,
* * *

0 1 exp( ) / ( / ) 1 exp( ) /L v t F m t t- - - - -. / . /0 1 1 2 1 1 13 4 3 4   (19) 

Taking for simplicity v0=0, the fraction of energy dissipated into heat on the slope is 

obtained from 

 
2 *(1/ 2) ( )

( )
e mv t

L
e

56 578        (20) 

In the limit 1t9 : we find 

 * 22 / 2 /t mL F mL e;< <        (21) 

and the corresponding condition for this limit 

 22 / 1.mL e= > ?         (22) 

When this condition is satisfied we find from (20) and (21) 

 
2

( )
m

L L
e

@ A BC         (23) 
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 In the opposite high-friction/long-conductor limit v(t*) assumes its saturation 

value *( ) /( )v t F m��  and Eq. (20) yields 

 2 2
( ) 1

2

e
L

m L

�� ����         (24) 

We conclude that in the low friction limit (Eq. (22)) � (L) is proportional to 	 L, while in 

the opposite limit � (L) approaches unity with a correction that vanishes like ( 	 L)-2. 

 

4. A quantum calculation of heat release 

 Model A (Fig. 4) depicts a version of our quantum mechanical model 

that is analogous to the classical system discussed above. In the quantum case the 

incoming state |0> pumps the system, leading to a final energy distribution 

characterized by a quasi-elastic tunneling component and a thermal component resulting 

from propagation on the bridge. These contributions are distinct from each other (see, 

e.g. Fig. 3 of Ref. 4) only when the incoming energy E0 is well separated from the 

energy of the bridge levels. Such situations are not expected to be of concern with 

regard to heating problems, and we study them first as a matter of theoretical interest.  

To be specific, consider the case where the incoming energy is considerably 

below the bridge levels. The thermal component in this case is the analog of the 

classical process discussed in Sect. 3. It can be envisioned as a process in which the 

electron starts on the level |1> with energy E1 and is emitted into the right manifold with 

a lower average energy <E>T. The difference E1-<E>T is the amount of heat released 

on the bridge. The fraction �  of available energy that is released as heat on the bridge is 

then 

 1 TE E

e

 � �
�� ��         (25) 

where �  is the fraction of the flux that is transmitted by the thermally activated route 

and where �  is the potential drop, 1 Ne E E
��� �

. Note that as written, the numerator in 

Eq. (25) is the heat released on the bridge per transmitted electron. Again, the thermal 

energy needed to place the electron on the bridge, which is pumped out of the left lead, 

is not taken into account in the definition (25) of � . 
A framework for evaluating the energy distribution of a transmitted electron in a 

model exemplified by Figs. 3 and 4 has been described in Refs. 4 and 24.25 For an 
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incoming state of energy E0 this calculation yields the thermal analog of the differential 

transmission coefficient '
0( , )E E

�
, Eq. (12), which contains both elastic and inelastic 

contributions to the transmission. The average energy associated with the thermal flux is 

then given by 

 
'

0

T '
0

( , )

( , )
T

T

E E EdE
E

E E dE
� ��� � ��� �        (26) 

while the factor �  is given by 

 
'

0

'
0

( , )

( , )

T
E E dE

E E dE

	 

� 
��



�
�         (27) 

where 
T

�
denotes an integral over the thermal part of '

0( , )E E
�

. Obviously, these 

quantities can be defined only when the tunneling and the thermal component of the 

transmission flux are well separated on the final energy axis. Interestingly, we have 

found that in this case the factor 1 T( ) /( )E E e ���� �  of Eq. (25) depends only very 

weakly on the incoming energy E0.  

 Results based on Eqs. (25)-(27) are shown in Figures 5-6. In these calculations 

the bridge and the bridge-leads couplings are characterized by the choice of parameters 

V=200cm-1 and � L= � R=160cm-1, where the other parameters are varied as indicated 

below. Fig. 5 shows the fraction �  plotted against the voltage difference � for � E= 

3000cm-1, T=300K, bridge lengths N=5 or 10 and thermal coupling strengths � =50 or 

200cm-1 (the thermal bath is assumed to be Markovian, � c=0). Note that �  here is the 

analog of the friction �  used in Sect. 3. The fact that these quantities are proportional to 

each other can be seen from their relation to the diffusion constant: 1( )D m
�! "#  in the 

classical case of Sect. 3 and 2~ hopD l k with l being the intersite distance on the bridge 

and khop=4V2/ � .2 Still, the behavior displayed in Fig. 5 shows an interesting difference 

from the classical results of Sect. 3 in that a minimum appears in the $  ( % ) curve. Such a 

minimum is not indicated by the limiting expressions (23) and (24), that show both a 

decrease in &  with increasing % .26 Furthermore, for the parameters used in Fig. 5 '  is 

very close to 1, and the displayed dependence on (  is essentially a property of the factor ) *
1 1 /E E e +,.- / .  
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The correspondence to the classical model of Sect. 3 is seen also in Figure 6 

where /(1 )
� �� is plotted against � 2, with T=800K, � E=1000cm-1 and � =200cm-1, for 

several bridge lengths N. As �  increases this dependence becomes linear, in agreement 

with the classical high friction limit, Eq. (24). In the opposite, low friction limit we find 

that �  depends linearly on �  as seen also in Eq. (23), however a closer examination 

reveals that in the quantum case this linear behavior is dominated by � , Eq. (27), which 

was already shown to depend linearly on 	  for small 	 .2 
 We emphasize again that, while the above discussion is of general interest as a 

problem in quantum transport, the limit considered is not very relevant to the problem 

of heating in current carrying molecular conductors. Next we turn to the more 

interesting case where the current is dominated by resonance transmission through the 

bridge, i.e. by injection energies close to the bridge levels. Here the elastic and thermal 

fluxes cannot be energetically distinguished, and the total current is given by27 

'
0 0 0

'
0 0

( , , ) ( )(1 ( ))

( , , ) ( )(1 ( ))

LR

RL

e
I dE dE E E f E f E e

E E f E e f E


 
�

 


� �
�
 
 �

�� � ��
�� � � �

� � �
��

  (28) 

In analogy, the heat left on the bridge per unit time is given by30  

'
0 0 0

'
0 0 0

1
( , , ) ( )(1 ( ))

( , , ) ( )(1 ( )) ( )

h LR

RL

I dE dE E E f E f E e

E E f E e f E E E

� ��
� �

� �
�� � � ���� �  !

"  � �#
$ $ %

%&
  (29) 

Here f is the Fermi-Dirac function, '
LR

'
and '

RL

(
are the transmission coefficients in the 

left-to-right and right-to-left transmission and the dependence on the finite voltage drop )
 across the junction (that makes '

LR

*
and '

RL

+
potentially different from each other) was 

written explicitly. The differential transmission coefficients '
0( , )E E

,
 were introduced 

in Ref. 4, and are the thermal analogs of (12). The heat released on the bridge per 

transmitted electron is now obtained from Eqs. (28) and (29) 

 /hw I e I-          (30) 

It is important to realize that the results (25) and (29)-(30) arise from different 

approaches to different physical situations and are not equivalent. The result (25) 

corresponds to a quantum treatment of the process that underlies the classical discussion 

of Section 3. In this case the process that gives rise to heat release on the bridge is 
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activated, and the heat release itself is associated with the flux of particles that had 

reached the top of the barrier at energy E1, and are rolling down on the slope associated 

with the potential bias. Such particles injected with energy E0 (a fraction �  of the total 

number transmitted) have to gain energy of the order E1-E0 in order to start this process, 

but this energy gain is not taken into account in the computed energy balance. In 

contrast, Eq. (29) is a simple balance between the incoming and outgoing particle 

energies. When applied to situations where the current is strongly activated, it will 

predict that the net heat release is negative in situations where the average energy of the 

incoming particles is lower than that of the outgoing particles (such situations may arise 

because transmitted particles must be thermally activated to enter the barrier). In 

appendix A we show that with suitable handling based on these considerations, the 

result (29) reduces to (25) in the limit of large gap between E0 and the bridge levels. In 

appendix B we examine the dependence of hI  on the potential bias 
�

. Specifically we 

show that ( )hI � satisfies the obvious condition (0) 0hI � and, furthermore, that for 

small 2( ) ~ .hI
� � �

 

We next consider some numerical examples based on Eqs. (28)-(30). The results 

shown below are obtained using the model of Fig. 3 with the parameters � E=2000cm-1, 

V=200cm-1, ( ) ( ) -1
1 160cmL R

N

� ��� �
, 	 =50cm-1, 
 c=0 and T=300K. 

 In Figure 7 the current I, Eq. (28), calculated for models A and B of Fig. 4 (see 

Sect. 2) for an N=4-site bridge, is displayed against the voltage drop � . Note that the 

structure of our model corresponds to transmission through either occupied or 

unoccupied levels of the bridge so only one side of the potential bias is considered. 

Including both electron and hole transmission in the model will not change the 

considerations involving heat release in any essential way. The calculated current-

voltage characteristic shows marked sensitivity to the potential drop profile on the 

bridge as already discussed in Ref. 20. Fig. 8 shows both I vs. �  and Ih vs. �  for models 

A and B with N=4, and Fig. 9 shows w, Eq. (30), for both models, plotted against the 

applied bias. The ratio /w e� , which is a measure of the fraction of available energy that 

is released as heat on the bridge, the analog of 
  of Eq. (25), is shown in Fig. 10. 

Figures 11a,b display for models A and B the electron current and the ratio /w e�  as 

functions of the bridge length N for two values of the applied voltage, below resonance 
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� =0.1V and above it, � =0.5V. Figure 12 shows the ratio /w e�  as a function of the 

thermal coupling strength �  for several choices of molecular parameters in models A 

and B. 

The following observations can be made: 

(1) Both the current, I, and the heat release rate, Ih, depend on the model used for the 

potential drop profile on the bridge, however both models yield similar orders of 

magnitude for these quantities. As intuitively expected, the heat release per electron is 

higher for model A that is characterized by a linear potential drop along the bridge. 

(2) The fraction /w e�  of the available energy released as heat on the bridge, which is 

the analog of �  of Eq. (25) and Section 3, increases as the transmission assumes 

increasing resonance character. For the parameters used in Fig. 10 we see a marked 

increase in this ratio as the voltage increases towards and beyond the resonance 

transmission threshold � ~0.3V. 

(3) This fraction also increases with increasing bridge length, and on general grounds is 

expected to approach unity for large N. Still, for moderate bridge lengths, 10N
�

, and 

for the (reasonable) parameters used in our calculation, only ~10% of the available 

energy is dissipated on the bridge. This translates to a heat release of the order 0.1eV 

per transmitted electron or ~ 109eV per second for currents in the nA range. 

 (4) For resonance transmission the bridge length dependence of both I and Ih reflects 

specific properties associated with bridge levels going in and out of resonance with the 

injection energy range, on top of generic phenomenology discussed in our earlier 

work.2,3  The oscillatory dependence on the bridge length N seen in the dashed lines in 

Fig. 11 is a manifestation of the first issue: the transmission probability changes as 

bridge levels get in and out of resonance with the injection energy. Increasing the bridge 

length may bring more levels of the bridge into resonance, leading, at intermediate 

bridge length to a counter intuitive increase of conduction with N, as seen in the dashed 

and dotted line of Fig. 11a. At the same time, the difference between the N dependence 

at T=300K and T=200K is associated with the fact that at room temperature and for the 

parameters used transmission is dominated by thermal activation into the bridge, while 

at the lower temperature and small voltage the I/N dependence at small N shows the 

exponential behavior typical to tunneling, which crosses over to an algebraic 

dependence for large N.2,3  
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(5) As stated above (see appendix B), at small �  Eqs. (28) and (29) yield the expected 

Ohmic behavior I~ �  and Ih~ � 2. This is an important check on our formalism because it 

is not immediately obvious that Eq. (29) indeed satisfies � �
0( 0) / | 0.h hI dI d �� � �� � � As a check we have verified that our numerical code also 

shows this behavior.  

(6). The small initial drop seen in the crossed (T=200K, � =0.1V) curve of Fig. 11b 

reflects the fact that in this (tunneling dominated) regime the small thermal contribution 

(whose importance increases with bridge length) causes transmission of particles at 

energies higher than the injection energy (see discussion below Eq. (30)). 

 With reasonable model parameters and under reasonable operating conditions 

Figs 8-10 tell us to expect that a substantial amount of energy 10-30% of the potential 

drop, will be released as heat on the bridge (see e.g. Fig 12 and recall that a reasonable 

choice for �  is in the range 20-200cm-1 (see Sect. 2)). Where on the bridge is this heat 

released and what is the expected temperature rise are the next questions on our agenda. 

 

 

5. Local aspects of heat release 

In the previous section we have shown how the heat release rate associated with 

electron transmission through a molecular junction can be computed within a simple 

model for the bridge. It is also of interest to ask where on the bridge this heat is 

released. For a bridge uniformly made of identical repeat units and attached 

symmetrically to two identical electrodes one may expect that heat generation will be 

uniform along the bridge, at least far enough from the molecule-lead surface contacts. It 

is of interest to consider other situations, e.g. the heat generated about an impurity site 

on the bridge structure or at special bonds, e.g. that connecting the molecule to the 

electrode surface. In this section we consider this issue within the same tight binding 

bridge model used above. 

 Again we consider a steady state pumped by an incoming state |0> in the 

manifold that represents the left metal lead.  Denote by Jk(E)dE the steady state 

probability flux at bridge site k in the energy range E...E+dE. The integrated flux, 

( )kJ dEJ E	 
 ,         (31) 
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is obviously the same for all sites. The average energy of the transmitted flux at site k is 

given by  

 
( )k

k

dE EJ E
E

J
� ��� �         (32) 

Knowledge of ( )kJ E  at every bridge site k therefore suffices for evaluating the local 

heat dissipation during electron transmission: the averaged energy released as heat 

between sites k and k+1 is simply 1k kE E �� �	�
� � . 

 A way to calculate ( )kJ E  is provided by a generalization of the procedure4,24 

that yields '
0( , )E E dE

�
, the final-energy resolved differential transmission probability 

into energy range E...E+dE in the manifold that represents the right metal lead, for a 

given incident energy E0. This generalization (Fig. 13) is done by attaching to each 

bridge state k, (k=1,...,N-1) a fictitious electrode represented by the continuous manifold 

K in Fig. 13. Only state k of the bridge is coupled to states in its associated manifold, 

and this coupling is taken to be vanishingly small so that the main flux through the 

bridge is not affected by it. The same procedure that yields the energy resolved flux 

0
'( , )E E
�

 into the right metal lead, can be used to get the corresponding flux 

0
'( , )k E E



 into the manifold K. We will now assume that for a given incident energy 

E0, 0 0 0
'( ) ( , )kdE f E E E

� �
 and ( )kJ E  represent, up to normalization factors, the same 

quantity, so that the normalized energy distribution at site k is 

 
0 0 0

0 0 0

'

'

( ) ( , )
( )

( ) ( , )

k

k

k

dE f E E E
P E

dE f E dE E E
� �
� �

�
�       (33) 

and the average electron energy on site k is 

 ( )k kE dE E P E� ��� �         (34) 

It should be emphasized the validity of Eqs. (33) and (34) is an assumption. 

Keeping in mind that the transmission coefficient '� that appears in Eq. (33) 

corresponds to what was denoted 0
' ( , , )LR E E ��

 in Eq. (28), the integrated flux J is given 

by  

0 0 0
' ( , , ) ( )(1 ( ))LRJ dE dE E E f E f E e

� �� �
� � � � �� �  !" " #

    (35) 
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and depends on the availability of unoccupied states in the accepting final manifold. We 

have no theory for the effect of this availability on the intermediate quantities Jk(E). It is 

only if ( ) 0f E e�� �  in the relevant final energy range that Eqs. (33) and (34) are 

rigorously justified. 

As a demonstration of this approach we show in Fig. 14 the computed integrated 

heat release, i.e. the heat generated between sites 1 and n as a function of the site index 

n for a system described by model B with the parameters N=10, � E=(EB-EF)= 2000cm-1, 

V=200cm-1, ( ) ( ) -1
1 160cm ,L R

N

� ��� � �
c=0, � =50cm-1 and T=300K, under a potential bias 

18000cm ( 1eV)e	 
� � . This bias brings 
 L into resonance with the adjacent bridge 

level |1>. Setting the energy scale so that the unbiased value of the Fermi energy is 

zero, we have under this bias 
 L=E1=4000cm-1, 
 R=-4000cm-1 and EN=0, while the 

energies of the other bridge levels remain EB as defined by model B. To simplify the 

calculation we limit it to an initial energy equal to 
 L, i.e. we take 

0 0 0 1( ) ( ) ( )Lf E E E E
� � �� � � �  in Eq. (33). Fig. 14 shows results for this model, as 

well as for systems with one impurity site, where E5=EB is replaced by E5=EB �
1000cm-1. As expected, we see that energy release occurs predominantly at the regions 

near the lead-molecule contacts that carry the potential drop. The local heat release (the 

slope of the lines in Fig. 14) initially increases, then decreases as the electron traverses a 

local low energy impurity (a smaller opposite effect is seen near a high energy impurity) 

but, except when the impurity is placed near a bridge edge, there is no significant effect 

on the overall heat release i.e. the value of 1 10E E��� �  for the 10-site model studied. It 

should be emphasized however that this calculation is done for a given potential bias of 

1eV. We find that the current calculated from Eq. (28) is I/e= 1.10 � 108s-1, 9.94 � 107s-1, 

and 9.72 � 107s-1 for the no impurity case and for the cases with 5 0.125eVBE E� � and 

5 0.125eVBE E� � , respectively. Thus the presence of either impurity does increase the 

apparent junction resistance (I/ � ) by ~15%. 

 

6. Estimating the temperature r ise 

We now turn our attention to the temperature rise expected in a current carrying 

bridge molecular conductor. In making the following estimate we disregard energy that 

is deposited directly into the leads. This assumes that heat conduction in the metal lead 
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is efficient and that energy reaching the leads dissipates quickly into the bulk metals. On 

the other hand, energy released on the molecular bridge can be transferred only by 

nuclear degrees of freedom, i.e. by the process known in other contexts as 

intramolecular vibrational energy relaxation (IVR). IVR as a model of energy transfer in 

a molecule connecting two metal leads is an interesting problem that has not been 

considered yet, although some related work on heat transport in mesoscopic junctions 

has been recently published.13,31-39 In this paper we limit ourselves to a much simpler 

approach based on the classical heat conduction of organic solids. In this rough model 

we represent the bridge by a cylinder of length L connecting two planes (the metal 

surfaces) on which the room temperature T �  is given (Fig. 15). Again, this assumes that 

heat conduction on the metal leads is very efficient relative to that on the bridge. This 

cylinder is comprised of two concentric cylindrical regions. The inner cylinder of radius 

R1 is the current carrying region, and we assume that heat is generated uniformly on this 

region at a rate 2
1/( )h hi I R L��  per unit volume. (In general this heat generation may 

depend on the position along the cylinder axis z in a way that depends on the bridge 

structure and the potential drop profile, but in the present estimate this is disregarded). 

The outer cylinder of radius R2 represents in this model regions on the molecular bridge 

on which heat is not deposited. In a microscopic model energy flows into the region 

1 20 ;z L R R���� � �  is caused by redistribution of molecular nuclear energy 

(intramolecular vibrational relaxation, IVR), but here we will assume that energy flow 

in the molecule ( 20 ;z L R���� � ) is governed by classical heat conduction 

characterized by an assumed known thermal conductivity 	 h. The temperature equation 

is then  

2
h h

T
T i c

t

 �� 
 �

�         (36) 

Where c is the heat capacity per unit volume. The temperature profile at steady-state is 

determined by the Poisson equation 

2 h

h

i
T �� ���

          (37) 

that should be solved under the given boundary conditions. On the left and right 

boundaries we have T(z=0)=T(z= � )=T � . For the heat flow in the �  direction we consider 

two situations that give lower and upper bounds on the temperature rise: 
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 (a) The molecular bridge is immersed in a condensed environment so that heat 

can be conducted away in the direction perpendicular to the current flow. A lower 

bound on the temperature rise on the bridge may than be obtained by imposing T(� =R2) 

=T � . This amounts to the additional assumption that thermal conduction in the 

surrounding environment is very fast. If we assume in addition that 2L R�  so that heat 

is dissipated mostly in the direction normal to the bridge, and disregard the contribution 

of heat loss through the electrodes, this yields(Ref. 40, Chap. 2-3) 

 
2

21 2
1

1

( 0) ln
2 4
h h

h h

i R iR
T T R

R
� � ��

� �� � � �	 
� �      (38) 

Obviously when 2R 
��  we can no longer disregard the heat flux in the parallel 

direction, and Eq. (38) is no longer valid. 

 (b) An upper bound on the temperature rise on the bridge is obtained for a model 

that disregards all heat dissipation in the �  direction, i.e. by considering a bridge 

suspended between the two metal leads in vacuum, and disregard all radiative heat 

losses. In this case we need to solve Eq. (37) with the Dirichlet boundary condition 

( 0) ( )T z T z L T�� � � �  on the bridge-metal interfaces, and a Neumann boundary 

condition � �
2

/ 0
R

T �� �� � �
 on the outer cylinder surface.  

The Poisson equation (37) was solved using a standard finite difference 

algorithm(see e.g. Ref. 40 Chap. 3).  Fig. 16 shows results obtained from this 

calculation, using typical molecular parameters. In particular we note that � h= 10-4 

cal/(s� cm� K) is a typical value for the heat conductivity of condensed organic materials. 

The heat generation rate Ih=1010eV/s is the order of magnitude expected in a junction 

carrying a current of 10nA. We see that the temperature in the molecule increases only 

in a modest way that should not be significant in most situations. Obviously, for larger 

values of L, and when no heat flow is possible in the normal (� ) direction, the 

temperature at the molecular center will be higher (we get T � 450K for L=500� ). While 

these results are gratifying from the point of view of molecular conductors design, the 

crude nature of our approximations should be kept in mind. In particular a careful 

evaluation of vibrational energy flow in molecular bridges is highly needed and should 

be the next stage in this study.  
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7. Conclusions 

 Heating in current carrying molecular junctions is controlled by the combination 

of at least two factors. First, the amount, per transmitted electron, of electronic energy 

directly deposited on the molecular bridge is of great importance. Second, the rate of 

heat conduction away from the molecular bridge will determine the ultimate 

temperature rise at the junction. In this paper we have presented a framework for 

discussing these issues and for estimating the amount of temperature rise expected in 

current carrying single molecule conductors.  To discuss the first issue we have 

developed a formalism that makes it possible to estimate the power dissipated on the 

bridge. In the strong localization limit, where the electron (or hole) fully thermalizes on 

each bridge site and charge carrier propagation proceeds by site-to-site hopping, all 

available energy (i.e. the full potential drop) is deposited as heat on the bridge. In this 

limit the heat power deposited on the bridge is given by the ohmic expression .hI I ��  

In the opposite limit, where electron-phonon interactions on the molecular bridge are 

disregarded, no heat is deposited directly on the bridge. In intermediate cases only a 

fraction of the available energy will be deposited on the bridge. This fraction is 

expected to be small for large inter-site electronic coupling, strong bridge-lead coupling, 

relatively weak electron-phonon interaction and short bridges. Indeed, for a reasonable 

range of molecular and relaxation parameters we have found that this fraction may be 

substantially smaller than 1, even down to order 0.1, but given that in a junction that 

carries 1nA under a bias of 1V the total energy dissipation rate is ~1010eV/s, and that 

less than 10eV is sufficient to dissociate the molecular bridge, the issue of temperature 

rise cannot be disregarded. This observation makes it imperative to consider the 

second factor - the efficiency of heat conduction away from the junction. This issue was 

treated in the present paper within a classical heat conduction model. For a simple 

model that represents the molecular bridge as a cylinder characterized by heat 

conductivity typical to organic solids, we have found the temperature rise in molecular 

junctions to be in the tolerable few degrees range even under the extreme conditions 

where all the energy associated with the potential bias is assumed to be deposited 

(uniformly) on the bridge, and where heat is allowed to escape only through the 

molecule-lead contact. It should be emphasized, however, that our classical heat 

conduction model is a gross oversimplification that is expected to underestimate the 

temperature rise. Not only does the classical theory of heat conduction expected to fail 
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in restricted-geometry systems (see, e.g. Ref. 39), the discrete spectrum of nuclear 

motions in suspended molecular bridges may render vibrational energy transfer 

relatively slow. A molecular level treatment of vibrational energy transmission is 

needed to get a more reliable estimate of temperature rise in current carrying molecular 

junctions. 

 Finally we note that, while our generic treatment provides a framework for 

analyzing heating in molecular junctions, in practical applications one should worry 

about possible energy accumulation in specific molecular bonds. In particular, since 

much of the potential drop is expected to occur at the molecule-lead contacts, the 

possibility of heating these particular locations that are critical to the junction stability 

should be considered. In the present paper we have developed the theoretical framework 

for computing approximately the position dependence of the dissipated power, and have 

shown that one can associate this dependence with the bridge structure. Again, 

molecular level treatment of vibrational motions in specific molecular junctions will be 

needed to assess this issue. 

 

 

Appendix A 

Consider Eq. (29) and let E0 be much below the bridge levels. We focus on the 

case where the potential bias �  is positive so that � R< � L and consider only the current 

from left to right. Eq. (28) then takes the form 

0 0 0
' ( , , ) ( )(1 ( ))LR

e
I dE dET E E f E f E e

� �
�
� �

�� � �
� � �	 	

    (39) 

We will also assume that �  is much smaller than the gap between the injection and 

bridge energies. In this case the differential transmission from left to right may be 

approximated as a sum of coherent-elastic and thermal components 

         0( )
0 0 0 0

' ( , , ) ( ) ( ) ( , )BE E
LRT E E A E E E e B E E

�
 � � �� � �     (40) 

Where the A and B terms are the coherent/tunneling and the activated components of the 

transmission, respectively. Under the approximations made the function 0( , )B E E , 

viewed as a function of the final energy E, is peaked in an energy range substantially 

higher (in terms of kBT) than E0, therefore f(EB) and ( )Bf E e ����  may be taken to 
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vanish. In this case Eq. (39) may be written as a sum of a tunneling component and a 

thermal component 

 tun thermI I I� �          (41) 

where  

        
0

0 0 0 0

( )
0 0 0

( ) ( )(1 ( ))

( ) ( , )B

tun

E E
therm

e
I A E f E f E e dE

e
I dE f E e dEB E E

�
��

�

�
� � � �� ��� � �

� � 	�

�



 


�
�

    (42) 

The result for the heat generation rate (29) under the same approximation is obtained by 

modifying the thermal component in Eq. (42) 

 0( )
0 0 0 0

1
( ) ( , )( )BE E

h BI dE f E e dEB E E E E E
�� � �� �

�
� �

�
��� � �� ��    (43) 

Note that in the spirit of our discussion below Eq. (30), the energy balance is computed 

by comparing the final energy to the energy of the activated electron at energy E0+EB. 

The heat released per thermally transmitted electron is obtained by inserting expressions 

(42) and (43) into Eq. (30). We further assume (as was verified numerically above) that, 

in the limit considered, the integrals over E are practically independent of E0. We 

therefore get 

 
0 0

1 1

0

( , )( )

( , )

B

h

therm

dEB E E E E E
I

E E
I

dEB E E

�
� � �

� �

� �� � � ��� �
�

�     (44) 

where 1 0 BE E E !  and where 1E" #  is the average energy of the thermally 

transmitted electron. This heat release per thermally transmitted electron is then 

multiplied by the fraction of electrons transmitted thermally 

 therm

tun therm

I

I I

$&% '
        (45) 

and divided by the energy available for release, -e( , to give the result (25). 
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Appendix B 

 Here we examine the dependence of the heat generation rate, Ih, Eq. (29), on the 

potential bias ( . First consider the zero bias case. In this equilibrium case 

( 0)hI � � must vanish because there should not be net heat dissipation on the bridge in 

this situation. We will show that Eq. (29), which in this limit becomes 

� �
0 0 0 0

'2
( 0) ( ) 1 ( ) ( , )( )hI dE f E f E E E E E dE
� � � �� � � �
� �
	 	 	� � �
    (46) 

indeed satisfies this requirement. For simplicity we limit ourselves to a model where the 

density of states in the two continuous manifolds does not depend on energy. In this 

case the differential transmission probability 0
'( , )E E
�

 is symmetric in its arguments, 

i.e. 0 0
' '( , ) ( , ).E E E E�� �

 Since we are dealing with an equilibrium situation we may 

further assume that 0
'( , )E E
�

 satisfies the detailed balance condition 

        
0( )  

0 0
0

0 0

' ( ) ;
( , )

( ) ;

E EA E E e E E
E E

A E E E E

����� � ��
� � ���
    (47) 

with ( ) ( ).A x A x� �  We take the chemical potential �  to be the zero reference energy, so 

that �  1
( ) 1 exp( )f x x

! "# $ . Rewriting Eq. (46) in the form 

1
0 0( 0) (2/ ) ( )hI dE F E

% & '( ( ') )+* ,-
 with 

. / . /0

0

0

( )
0 0 0 0 0 0( ) ( ) 1 ( ) ( )( ) 1 ( ) ( )( )

E
E E

E

F E f E f E A E E E E f E e A E E E E
01 2�22 1

3 45 6 6 6 7 6 6 68 98 9: ;< <
           (48) 

we will show that 0 0( ) ( ) 0F E F E= > ? , thus proving that ( 0) 0.hI @ A A  To this end we 

use the equalities 

0

0

0

0

1
( )(1 ( ))

11

1
( )(1 ( ))

11

E

E E

E

E E

e
f E f E

ee

e
f E f E

ee

BB B BB BC
D E FF

D D E FF       (49) 

with Eq. (48) to get 
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� �

� �

           (50) 

It is easily shown that on the right hand side the first and the fourth terms cancel, as do 

the second and the third terms. For example, by putting 0E E x	 � in the first integral 

we get 


 ��
 � 
 ��
 � 
 ��
 �0 0 0

0 0 0 0 0 0

0 0( )
-

( ) ( ) ( )
0

( ) ( ) ( )
 

1 1 1 1 1 1

x E E E
x x

E x E E x E E x E

e A x e A x e A x
xdx xdx xdx

e e e e e e

� � �
� � � � � �

�� � ��� � ��� � �� � � �
� ���������� � � � � �

� � �

 

which is opposite in sign to what we get by using 0E E x !  in the fourth integral. It 

follows that 0 0( ) ( ) 0F E F E" # $  and consequently  

( 0) 0hI % & & .         (51) 

 The behavior of ( )hI ' for small bias (  can be evaluated under the assumption 

that the dependence of the transmission probability on )  can be disregarded, i.e. 

0 0 0
' ' '( , , ) ( , , ) ( , , 0)RL LRE E E E E E

* * *+ + +, , ,
. In this case the -  dependence is 

dominated by the Fermi function f. The linear term can be obtained by setting 

( ) ( ) ( )Ff E e f E e E E
. .0/1 2 3 3       (52) 

Using this together with (51) in Eq. (29) leads to 

0 0 0 0
' '( , ) ( )( ) ( , )(1 ( ))( )h F F F F

e e
I dE E E f E E E dE E E f E E E

4 4
5 5
6 6
7 6 7 6

8:9 9 ; 9 9< <= => > (53) 

Assuming again that the differential transmission probability has the form (47) we get 

that up to linear terms in ?  

0( )
0 0 0 0 0 0 0 0

( )

( ) ( )( ) ( ) ( )( )
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which can be shown to vanish by the same procedure used for Eq. (50). Thus, under the 

assumptions made the first contribution to the Joule heating of the junction comes from 

an O( � 2) term 

� �2 2

0 0 0 0 0

2 2

0 0 0 0

'

'

( , ) ( ) ''( ) ''( )(1 ( ) ( )
2

( , ) ( ) ''( )( )

h

e
I dE dE E E f E f E f E f E E E

e
dE dE E E f E f E E E

�
�

�
�

� �

� � � �
� �

� � � �
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�

�
 (55) 

This contribution to the thermal current is the Joule heating. Note that for a classical 

diffusive resistor the factor multiplying 2�
in (55) should be the conductivity G, 

however, because some of the energy e
  is not deposited on the bridge but on the leads, 

this factor should be smaller than G computed from 0lim ( / )I� �� with I given by Eq. 

(29). (Note that due to the presence of thermal relaxation this G is not given by 

Landauer formula). 
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Figure Captions 

 

Fig. 1. A classical barrier separating two particle reservoirs without (a) and with applied 

bias. 

Fig. 2. Several possible scenarios for the potential drop profile across a molecular 

junction. See discussion in text. 

Fig. 3. A schematic view of the model described by Eqs. (6)-(9) and the accompanying 

text. 

Fig. 4. Different models for the potential distribution along a model molecular bridge. 

See text for details. 

Fig. 5. The fraction �  (Eq. (25)) of the available energy that is released as heat on the 

bridge, plotted against the potential bias �  for different bridge lengths N and 

thermal coupling parameters ( � ). Full line: N=10, � =200cm-1. Dashed line: N=5, 

� =200cm-1. Dotted line: N=10, � =50cm-1. Dashed-dotted line: N=5, � =50cm-1. 

For other system parameters see text. 

Fig. 6. /(1 )
� �� plotted against � 2 for different bridge lengths. From bottom to top: 

N=4,5,6,7,8. 

Fig. 7. Current vs. Voltage in models A (full line) and B (dashed line) of Fig. 4 for a 

four-site bridge. See text for the system parameters used. 

Fig. 8. The electron current (up) and the heat release per second (down) computed for a 

system with 4 bridge units in model A (full line) and B(dashed) line. System 

parameters (see text) are as in Fig. 7. 

Fig. 9. The heat release per transmitted electron, Eq. (30), computed for a system with 4 

bridge units in model A (full line) and B(dashed line). System parameters (see 

text) are as in Fig. 7. 

Fig. 10. The fraction w/(e � ) of available energy that is released as heat on the bridge, 

computed in the framework of Eqs. (28)-(30) for a system with 4 bridge units, 
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for models A (full line) and B (dashed line). System parameters (see text) are as 

in Fig. 7. 

Fig. 11. The electron current (a) and the heat release per transmitted electron (b) plotted 

against the bridge length N for � E=2000cm-1 , �  =160 cm-1, V=200 cm-1 , � =50 

cm-1. Full line: model A, � =0.1V; Dashed line: Model A, � =0.5V; Dash-dotted 

line: model B, � =0.1V; Dotted line: Model B, � =0.5V; all for T=300K. Line 

with + marks shows results for model B at � =0.1V and T=200K. 

Fig. 12. The fraction of heat released on the bridge per transmitted electron plotted 

against the thermal coupling strength �  for different choices of models and 

molecular parameters. � E=2000cm-1, V=200cm-1, � =0.5V, T=300K. Model A 

results: line with circles - N=8, � =160cm-1; dotted line - N=8, � =2500cm-1; line 

with squares - N=4, � =160cm-1; dashed-dotted line - N=4, � =2500cm-1. Model 

B results: dashed line - N=8, � =160cm-1; full line N=4, � =160cm-1. 

Fig. 13. A schematic view of the theoretical construct used to discuss local aspect of 

thermal relaxation on the bridge: Each intermediate bridge level (here k) is 

coupled infinitesimally weakly to a fictitious continuous manifold K, which is 

used as a local energy probe. 

Fig. 14. Heat released on the bridge between sites 1 and n, displayed as a function of the 

site index n for a system represented by model B, (see Sect. 2). Full line: the 

computed result for the standard bridge (see text for parameters) at T=300K with 

a potential bias of 1eV. Dashed line: result for a system similar to the original, 

but with an impurity site represented by setting E5=EB-0.125V where EB is the 

energy of all other bridge states in the site representation. Dotted line - same for 

an impurity characterized by E5=EB+0.125V. 

Fig. 15. A model for analyzing temperature rise in a current carrying molecular bridge. 

The molecule is represented by a cylinder of length L and cross-section radius 

R2 connecting between two surfaces (shaded areas) at z=0 and z=L on which the 

temperature T �  is given. Heat is deposited at a given rate w in on the inner 

cylinder of radius R1. On the boundary � =R2 either Neumann or Dirichlet 

boundary condition is taken according to the physical situation (see text). 
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Fig. 16. The temperature distribution in the cylinder representing the molecule (see 

text), obtained from solving Eq. (37) using T(z=0)=T(z=L)=T �  and either 

T(R2)=T �   (dashed line) or 
� �

2
/ 0

R
T ����� � �

 (full line) as boundary conditions.  

The other parameters used are L=60	 , R1=4	 , R2=10	 , T 
 =300K Ih=1010eV/s 

and h
� = 3.5 � 10-4 cal/(s·cm·K). 


































