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The dynamics of viscous drops in linear creeping flows are investigated near the critical flow
strength at which stationary drop shapes cease to exist. It is shown that the near-critical
drop behavior is dominated by a single slow mode that evolves on the time scale diverging
at the critical point with the exponent % Our theory, based on the assumption that the
system undergoes a saddle-node bifurcation at the critical state, has been verified numerically
for drops in shear flow and axisymmetric straining flow. A good agreement is obtained between

the analytical predictions and numerical results. An important application of our theory for an

accurate determination of critical parameter values is discussed.

I. INTRODUCTION

Emulsion properties, such as rheology, depend strongly
on the drop size distribution. Thus, it is important to
understand and predict drop breakup in creeping flows,
and there has been much research on this topic (as re-
viewed by Stone!). Recent studies include drop breakup
in stationary?™, and time-dependent~!! flows. Some of
the research has been focused on the criteria for breakup
and some on the drop fragments produced by individual
breakup events.

In stationary flows, criteria for breakup can be ex-
pressed in terms of a critical capillary number, i.e., the
(dimensionless) flow strength above which no stationary
drop shapes exist. The critical capillary number depends
on the viscosity ratio of the drop, and the form of the
flow. In transient flows, criteria for breakup depend on
the flow strength as well as the flow history and the initial
drop shape.

Recently, Navot™“ explored drop dynamics in a station-
ary axisymmetric straining flow under conditions close
to the critical capillary number. Using numerical simu-
lations, Navot demonstrated that the time scale for drop
evolution diverges at the critical capillary number with
the exponent %, and the stationary drop length exhibits a
non-analytical, square-root behavior in the near-critical
regime. The main features of the near-critical drop be-
havior were qualitatively explained using a simple one-
parameter model with the drop shape parameterized by
the drop length.

In a recent presentation'®, we reported similar obser-
vations and described a systematic analysis of drop dy-
namics under near-critical conditions. We showed that
in the near-critical regime, a one-parameter description
of drop-shape evolution holds because of the separation
of time scales. The slow time scale corresponds to a sin-
gle critical mode that becomes unstable at the critical
capillary number. The remaining stable modes evolve on
a fast time scale; thus, at long times, they adiabatically
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follow the evolution of the slow critical mode. The details
of this analysis are described in the present paper.

II. DEFORMABLE DROPS IN LINEAR FLOWS
A Velocity field

We consider the evolution of a viscous drop of vol-
ume %mﬁ immersed in an unbounded fluid undergoing
stationary Stokes flow. The viscosity of the continuous
phase is p; and the drop phase is ps = 77 'p;. The drop
interface has constant interfacial tension o.

A linear external velocity field is assumed,
Vo = ’YD - T, (1)

where r is the position, 4 is the magnitude of the flow,
and D is the normalized velocity-gradient tensor (which
is asymmetric and traceless).

The fluid velocity v and pressure p in phase (i) satisfy
the Stokes equations,

wiVv—vVp=0, V-.-v=0. (2)

At the drop interface S, velocity field and tangential
stresses are continuous, and the jump of normal stresses
across S is equal to the capillary pressure,

[n-7-n|g =2Con, 3)

where 7 is the stress tensor, n is the outwards normal
vector, and C is the local mean curvature. At infinity,
velocity field v satisfies the boundary condition

v = vgq. (4)

According to Egs. (1)—(4), drop evolution depends on
the viscosity ratio n, the capillary parameter
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(the inverse capillary number), and four dimensionless
parameters characterizing the form of the external flow.
In the present paper, we examine the dependence of drop
evolution on k, for given n and the form of the external
flow.

B Evolution of the drop shape

To characterize the instantaneous drop shape, we in-
troduce an array of shape parameters f. (An exam-
ple of such an array is the set of expansion coefficients
of the radial coordinate of the interface into spherical
harmonics!#15.) The general arguments presented in this
paper, however, are independent of the particular choice
of f.

The evolution of the drop shape results from the mo-
tion of the interface with the fluid velocity v. The veloc-
ity field is nonlinear in f, but for a given drop shape the
boundary-value problem (2)—(4) is linear. Thus, v can
be decomposed into convective and relaxation parts,

v = aivs + o ve, (6)

where the first term represents the velocity field produced
by an incident flow (1) in the absence of capillary forces,
and the second term is the capillary-driven fluid velocity
in the absence of an incident flow.

Decomposition (6) implies the structure of the evo-
lution equation for the array of shape parameters. In
dimensional variables with time normalized by 4! and
distances normalized by a, the evolution equation has the
form

=G~ sH(), @
where the function G(f) results from the convective ve-
locity contribution ve, and the function H(f) is associ-
ated with the capillary-driven velocity ve.

Explicit expressions for the nonlinear functions G and
H are known only in the regime of small drop deforma-
tions (see Refs. 14-16). Outside this regime, G and H
can be evaluated numerically. In the present work, im-
portant features of drop behavior near critical stationary
states are derived from the drop-shape evolution equa-
tion in its most general form (7), supplemented by some
general assumptions.

ITII. NEAR-CRITICAL DROP BEHAVIOR
A Critical capillary parameter

According to experimental and numerical results!, for
a given viscosity ratio and type of flow, there is a range of
capillary numbers for which stable stationary drop shapes
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FIG. 1: Drop length versus time for initially spheroidal
drops (n = 1) in axisymmetric strain; k/kc = 0.998 (a) and
k/kc = 1.004 (b), where k¢ is given by Eq. (48). Drop length
evolution with different initial conditions (solid lines); station-
ary drop lengths (dashed lines); critical length (dotted line).

exist. Typically, stable stationary solutions form a con-
tinuous branch fy; = fi; (k) that exists for

K> K, (8)

where k¢ is the critical value of the capillary parameter.
Herein, we consider this case.

B Drop evolution in the near-critical regime

Some general features of drop behavior in the near-
critical regime are illustrated in Figs. 1-3, where evolu-
tion of the drop length (normalized by the drop diame-
ter 2a) is shown for a drop with 7 = 1 in axisymmetric
straining flow

vo = §(z€. — $p&,). 9)

Here (p,z) are cylindrical coordinates, and é,, &, are
the corresponding unit vectors. The numerical results
presented in Figs. 1-3 were obtained using a boundary
integral algorithm!”.

In Fig. 1(a), drop-length history is shown for a sub-
critical value of the capillary parameter, k < kc. No
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FIG. 2: Short-time evolution of drop length I for initially
spheroidal drops (n = 1) in axisymmetric strain, for k/kc =
1.004. Time-dependent solutions with different initial condi-
tions (solid lines); unstable stationary solution (dashed line).

stationary states exist in this case, and the length in-
creases continuously (until the drop breaks). In contrast,
two stationary drop shapes exist for supercritical values
of capillary parameter x > kg, as shown in Fig. 1(b).
The results indicate that the stationary shape with the
smaller length, [ = [_, is stable, and the shape with the
larger length, [ =1, is unstable.

The results presented in Fig. 1(b) and the detail of the
initial evolution shown in Fig. 2 indicate that the drop
evolves on two distinct time scales in the near-critical
regime. At short times, evolution occurs on the capillary-
relaxation time scale 7, = (k%)~!; afterwards, the drop
evolves on much longer time scale.

In the long-time regime, drop evolution is insensitive
to the details of the initial conditions, as illustrated in
Figs. 1 and 2. For k < k¢ the long-time portion of the
trajectory corresponds to a unique sequence of states.
For k > Kk, after the long-time regime has been achieved,
the drop evolves along one of the three trajectories [ =
1;(t), where

L(t) <l I <l(t) <y, It) >l (10)
(as labeled in Fig. 1).

This behavior is further illustrated in Fig. 3, where
the relation between drop length [ and its time deriva-
tive [ is shown for a subcritical, critical, and supercritical
value of the capillary parameter. For k > k¢, the three
portions of the continuous curve [(I) that correspond to
different long-time trajectories I = [;(t) were obtained
using different initial conditions (a sphere for ¢ = 1, and
elongated spheroids with different lengths for i = 2 and
i = 3). As indicated by the dashed lines corresponding
to the evolution on the fast time scale, the details of the
initial conditions become irrelevant at long times.
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FIG. 3: Rate of change of drop length i versus drop length I,
for viscous drops (7 = 1) in axisymmetric strain. Long-time
evolution (solid lines); short-time evolution with different ini-
tial conditions (dashed lines). Values of k/kc as labeled.

The results presented in Figs. 1-3 suggest that at
Kk = k¢ a saddle-node bifurcation occurs, and the criti-
cal stationary drop shape corresponds to a turning-point
singularity.'® In the following sections, we develop an ap-
propriate description.

IV. SLOW MODE DESCRIPTION
A Expansion of the evolution equation

To characterize drop behavior in the near-critical
regime, Eq. (7) is expanded in a Taylor series around
the critical stationary shape

fo = fit (ko). (11)
A regular expansion in

of =f —f¢ (12)
yields

%61‘ = G(fo) — kH(fo) + [GW (fo) — kHY (fe)] - 6F
+2 GO (fo) — kH® (fo)] : 6F6F +...,  (13)

where A(®) denotes the it" derivative of A with respect
to f.

The critical drop shape fc is stationary at k = k¢,
which yields

G(fc) - chH(fc) =0. (14)

For k > k¢ there are stationary shapes f5; (k) that are
stable to small perturbations, which indicates that all



eigenvalues \; of the matrix G (£,) — kH(") (f,;) have
negative real parts. Based on our numerical results, we
assume that only a single mode becomes unstable at the
critical state. Accordingly, at k = k¢,

A =0, (15)
and
Re(A\;) <0, 1i=2,3..., (16)
where
[GM(fo) — kcHW (f0)] - g = Nigi, (17)

with eigenvectors g; forming a nonorthogonal basis in the
space of shape parameters.

Equations (13)—(17) imply that for k = k¢ drop-shape
perturbations are naturally decomposed as

of = of, + of¢ (18)
into the slow mode
6fs = 6fsg1 (19)
and fast modes
ofy = Z of igi- (20)
=2

The time scale for the evolution of the slow mode di-
verges for kK — ko according to Eq. (15); in contrast,
fast modes always evolve on the non-singular capillary-
relaxation time scale. This separation of the time scales
results in a simplified drop dynamics in the near-critical
regime: after an initial equilibration on the capillary time
scale, fast modes follow the evolution of the slow mode
in a quasistatic way, and can, thus, be eliminated from
the evolution equations.

As shown in appendix A 1, the elimination of the fast
modes yields a closed evolution equation for the ampli-
tude of the slow mode. To the leading order we obtain

%6}2 = e(—sco+ca8f2) +€>(sc10fs +c30f2) +O(€%), (21)

where
€ = |k — Kkc|'?, (22)
s = sign(k — Kkg), (23)
5fs = €bfs. (24)

The constants ¢; (with ¢ = 0...3) are given by Egs.
(A11)—(A14) in terms of components of the evolution op-
erators G(V and H(). A discussion of the higher-order
terms in the slow-mode evolution equation (21) is pre-
sented in appendix A 2.

B Evolution of the slow mode
1 Stationary solutions

According to our assumptions, a stable stationary drop
shape exists for & > k¢ (i.e., s = 1), which yields a
constraint

cofca >0 (25)

for the coefficients in Eq. (21). We also choose the sign
of the basis vector g; to set

co > 0. (26)

Equation (21) has two stationary solutions &f; = hy
that are non-singular for € — 0,

he = +5"ho + ehy + O(e?), (27)
where
1/2
o
(2 2
ho () , (28)
e LGy 29)
L= 2 C2 C2 0)-

For supercritical values of the capillary parameter
(s = 1), the solutions (27) are real. As shown in the fol-
lowing subsection, h_ is stable and Ay is unstable. For
K — k¢ the two stationary drop shapes merge according
to (24). For s = —1, the nonsingular stationary solutions
are complex and thus, unphysical.

2 Time-dependent behavior

Integration of Eq. (21) yields implicit relations for the
time-evolution of the slow mode. The result, accurate to
O(e), is

s = By o0

o —h_ o (30

et' = 19ln

for s =1, and
et' = 29 arctan[hg 1 (8fs — €h1)] — 7o In(6f2% + h3) (31)
for s = —1, where
t'=t—t, (32)
is the time shifted by the integration constant tg,
70 = 3(coc) /2, (33)
and

g+(€) =1F qe (34)



with
q= c(l)/202_3/203. (35)

For small perturbations from the stationary states, Eq.
(30) implies

(5f_‘s = hy + Agexp (:ttl/Ti) s (36)

where Ag is the amplitude of the perturbation, and the
time scales are given by

T+ =€ tg+(€)T0. (37)

Equation (36) indicates that h_ is stable and hy is un-
stable. Drop evolution is slow in the near-critical regime,
because the time scales (37) diverge for ¢ — 0.

Relations (30) and (31) can be inverted; here we
present only the leading-order results. For supercriti-
cal values of the capillary parameter (k > xkc) Eq. (30)
yields

(SfTs = —ho COth(th/To),
(SfTs = —ho tanh(et'/ro),

|0fs| > ho; (38)
—ho < (5fTs < hg. (39)

The solution (38) has two branches: the branch ¢ > 0
(where §f; < —hg) corresponds to trajectory I; in Fig. 1,
whereas the branch # < 0 (where df; > —hg) corresponds
to trajectory I3. The solution (39) has one branch, which
corresponds to the trajectory ly. For subcritical values
of the capillary parameter (k < kc), Eq. (31) yields

(if_‘s = ho tan(et'/ro), (40)

which has the asymptotic behavior &fs — oo for
et' /1o = £im.

C Parameter choice

To characterize near-critical drop behavior in com-
puter simulations or in an experiment, an appropri-
ate measurement of the slow-mode amplitude is needed.
However, the explicit form of the slow mode is usually
unknown or difficult to obtain.

The slow mode decomposition (13)—(20) can be per-
formed analytically for nearly-spherical critical drop
shapes (e.g., high viscosity drops in near-straining
flows!%), and explicit expressions for the coefficients c;
can be obtained in this case. For higher drop deforma-
tions, the linear-perturbation problem (15)—(17) can be
solved numerically, but evaluation of higher-order terms
would be difficult. A direct experimental measurement
of the form of the slow mode is infeasible.

An explicit determination of the slow mode is, however,
unnecessary: the critical drop behavior can be observed
using any shape parameter

1=1(f) (41)

that has a sufficiently strong dependence on 6f;.

To characterize the critical behavior of a parameter
[, we expand it around the critical shape fo. The fast
modes 6fr are then eliminated using quasistatic relation
(A10). The resulting expansion of [ is

I =l + el (42)
with
81 = a1 0fs + e(sap + a20f2) + O(€?), (43)
where
lc = l(fc), (44)

and a; > 0 is assumed. Using relation (43) to eliminate
dfs from Eq. (21), the evolution equation for the shape
parameter / is obtained,

%JZ_: 6(—Sb0 + b25l_2) + 62(Sb1(sl_+ b351_3) + 0(63). (45)

This equation has the same form as the slow-mode evo-
lution equation (21), except for different values of the
expansion coefficients. Accordingly, the stationary and
time-dependent solutions derived in Sec. IV B apply to
d1, after the substitution of the coefficients b; for c;.

In this paper, critical drop behavior is shown using the
drop length (normalized by 2a) as the parameter [. Drop
length exhibits strong dependence on the critical mode,
and is convenient to monitor. With an appropriate choice
of the shape parameter [, the values of the coefficients b;
can be extracted from experimental or numerical data
without a prior knowledge of the exact form of the slow
mode.

V. NUMERICAL RESULTS

Our phenomenological theory has been tested using
results of numerical simulations. In Sec. V A, a detailed
analysis is presented for a drop with n = 1, in axisym-
metric straining flow. An example of near-critical drop
behavior in shear flow is given in Sec. V B.

A Axisymmetric linear flow

Numerical results discussed in Sec. III B show that the
essential features of our system are consistent with pre-
dictions based on the assumption of saddle-node bifur-
cation at kK = kg. Accordingly, after the fast modes
are relaxed, drop evolution is fully characterized by the
amplitude of a single slow mode. The critical capillary
number corresponds to I = 0 at the minimum of the
phase-space relation | = [(l). For k > kg, there is one
stable and one unstable stationary state.

In the remaining part of the present section, we present
detailed quantitative tests of the theory.
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FIG. 4: Stationary drop length versus capillary parameter.
Numerical results for stable length [_ (diamonds), unstable
length I, (triangles). Expansion in powers of ¢, with expan-
sion coefficients corresponding to solid lines in Fig. 5, trun-
cated at O(e) (solid line), at O(e?) (dashed line), at O(e?)
(dotted line).

1 Drop behavior near stationary states

We first consider the stable and unstable stationary
drop lengths I and I,. In Fig. 4, the stationary lengths
are shown unscaled versus the capillary parameter, and
in Fig. 5 in a rescaled form. As discussed in appendix
A 2/ the rescaled stationary length difference

d=1e 'y —10), (46)
and the average length

are regular functions of k. Numerical results shown in
Fig. 5 are consistent with this behavior. The linear
asymptotic form of d, as plotted in Fig. 5(a), corresponds
to

ke = 8.315. (48)

The lines in Figs. 5(a) and 5(b) represent the asymptotic
behavior

d=1; +13(k — kc), L=1Ily+1l(k—kc), (49)
where the values

lop = 1.700 (50)

for the critical length, and I; = 0.3426, > = 0.0548,
l3 = —0.0117 are obtained by matching to the numerical
data. The results (48) and (50) are consistent with the
values reported by Navot'2. The approximations up to
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FIG. 5: Rescaled drop length difference (a), and average
drop-length (b), versus k — k. Numerical results (diamonds);
asymptotic behavior (49) (solid lines).

O(e?) for I_ and I, with the coefficients given above, are
shown in Fig. (4).
Next we consider the inverse time scales

ay =77t (51)

characterizing the slow-mode behavior (36) near the sta-
ble and unstable stationary states. These time scales,
obtained from an analysis of the exponential evolution
of the drop length for [ = [., are shown in Fig. 6 in an
unscaled, and in Fig. 7 in a rescaled form.

The results indicate that the behavior of the time scales
in the near-critical regime is analogous to the behavior
of the stationary drop lengths. As discussed in appendix
A 2, the rescaled quantities

§=1eHayp —a) (52)
and

A=1(ay+a) (53)
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FIG. 6: Inverse time scale (51) for the evolution near the
stable and unstable stationary states. The meaning of sym-
bols as in Fig. 4, except that the results are for a4+, and the
expansion coefficients correspond to the lines in Fig. 7.

are regular in k; the results shown in Fig. 7 are consistent
with this prediction. The rescaled time-scale difference
(52) shown in Fig. 7(a) corresponds to the critical value
(48) of the capillary parameter, consistently with the sta-
tionary results. The lines in Figs. 7(a) and 7(b) represent
the asymptotic behavior

0 =g + az(k — kc), A= as(k — ko), (54)
where oy = 1.035, as = —0.259, and a3 = 0.018. (The
value reported by Navot!? for the coefficient correspond-
ing to a; is 20% smaller.)

The accuracy of the data presented in Figs. 4-7 has
been estimated by comparing the values of I+ and a4
obtained from an analysis of the drop length history just
below and just above the stable and unstable stationary
states. The evolution in the regimes | < I+ and | > [+
corresponds to different initial conditions, and the as-
sociated results for [, and a. slightly differ because of
numerical inaccuracies. In Figs. 4-7, the difference is rep-
resented in the form of error bars, which in most cases
are invisible on the scale of the figure. However, the er-
ror bars occasionally become larger, particularly for the
rescaled time scale ¢ shown in Fig. 7(a), where the inac-
curacies are magnified by the factor e ! in the definition
(52).

2  Drop evolution

The theoretical predictions given in Sec. IVB2 will
now be compared to our numerical results for the drop-
length evolution.

For k > kg, we focus on the non-exponential evolution
described by relation (30) (where the slow-mode parame-
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FIG. 7: Rescaled inverse time scale difference (a), and aver-
age inverse time scale (b), versus kK — kc. Numerical results
(diamonds); asymptotic behavior (54) (solid lines).

ter d fs is represented by the drop length [, as before). As
discussed in the preceding subsection, detailed estimates
for the accuracy of the expansions of /[ and 7 in powers
of € are provided by the results shown in Figs. 4-7. There-
fore, to verify other aspects of our approximations, we use
in Eq. (30) the exact values of the stationary lengths and
the time scales (37). The comparison between Eq. (30)
and numerical results for drop evolution in the regime
K > k¢ is presented in Figs. 8 and 9.

The results for I < [_ are shown in Fig. 8 (a), where
In(l_ — 1) is plotted as a function of the rescaled time
et' /19. The time is shifted so that Eq. (30) and the nu-
merical values agree for large ¢'. The left ends of the
curves representing the simulation correspond to the ini-
tial spherical drop shape. The theoretical curves are
truncated at ¢t = 47,, where 7, = pa/o is the capil-
lary relaxation time. Thus, the simulations and theory
are compared only in the long-time regime.

The results for | > I, are shown in Fig. 8 (b), where
In(l — 1) is plotted as a function of the rescaled time.
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FIG. 8: Drop length versus rescaled time for I < I_ (a), and
! > 1+ (b). Numerical results (solid lines); expression (30)
(dotted lines). Values of k/kc as labeled.

The time is shifted so that Eq. (30) and the numerical
values agree for large negative values of ¢'. For t' — 0,
the theoretical curves are truncated for [/l > 1.5.

The linear behavior for ¢ > 0 in Fig. 8 (a), and for
t < 0 in Fig. 8 (b), corresponds to the exponential evo-
lution near the stable and unstable stationary states. By
construction, within the numerical accuracy, approxima-
tion (30) and the numerical results agree in these regimes.
The results corresponding to nonlinear portions of the
curves indicate that the approximation (30) is valid also
in the regions where the evolution of the system is non-
exponential, as long as fast modes have relaxed, and the
perturbation from the critical state is sufficiently small.

Figure 9 presents drop evolution for [I_ <[ <.
In this case, a transition between two exponential
asymptotic behaviors occurs; accordingly, the plot of
In[(I; —1)/(l —1_)] is shown. The time is shifted so that
the numerical and theoretical curves match at t' = 0.
The results indicate, that the approximation (30) is quite
accurate up to moderate values of k — k.

Inf(Ly — )/ - 1))

et' /o

FIG. 9: Same as Fig. 8, except that I_ <1 <.

For k¥ < kg, there are no stationary drop shapes. In
this regime, numerical results for drop length are com-
pared to the leading-order solution (40) and the first-
order solution (31), with parameter values obtained from
the expansions (49) and (54). The plot of drop length
versus the rescaled time is shown in Fig. 10 for several
values of the capillary parameter. The results are consis-
tent with our theory.

B Shear flow

Using our recently developed boundary-integral algo-
rithm'”, we performed three-dimensional simulations of
drop evolution in linear flows with non-vanishing rota-
tional component. In all cases considered, the instabil-
ity of stationary drop shapes in the near-critical regime
Kk & kg < 00 occurs through the mechanism described in
Sec. TV.

In Fig. 11 we present results for a drop with n =1 in
shear flow

Vo = Jye;. (55)

In the regime k > k¢, the stable stationary drop length
is plotted as

Al? = (I_ = 1p)? (56)

versus k. The value for the critical length, Iy = 2.35, was
obtained by matching the numerical results to the linear
asymptotic behavior

A2 = 2(k — kc) + Ok — kc)3/? (57)

[which follows from Eqgs. (46), (47), and (49)]. In the
regime K < k¢, the minimal elongation rate along a drop
trajectory,

Imin = min(dl/dt), (58)
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FIG. 10: Drop length versus rescaled time. Numerical results
(solid line); leading-order approximation (dotted line); first-
order approximation (dashed line). Values of k/kc as labeled.

is shown. According to Eq. (45),
Imin = bo(k — k) + O(k — kc)? (59)

is a regular function of k. The results shown in Fig. 11
illustrate this behavior.

Within numerical accuracy, the two lines representing
the asymptotic behaviors (57) and (59) in Fig. 11 cor-
respond to the same value of the critical capillary pa-
rameter. Extrapolation of our numerical results with the
number of boundary elements used in the calculations
yields

ke = 2.320. (60)

The asymptotic formulas (57) and (59) can be efficiently
used to determine critical capillary numbers from numer-
ical or experimental data.

A detailed analysis of near-critical drop behavior in lin-
ear flows with rotation will be reported in a forthcoming
paper.'?

VI. CONCLUSIONS

Our study provides a phenomenological framework for
describing the dynamics of drops in creeping flows un-
der near-critical conditions. We have shown that in the
near-critical regime drop behavior is dominated by the
evolution of a single slow-mode, and at the critical point
the system undergoes a saddle-node bifurcation. Thus,
the transient dynamics and stationary states are charac-
terized by a critical exponent with the classical value of
% (in analogy to the Landau theory of phase transitions).

In linear flows with nonzero vorticity a stabilizing
mechanism, alternative to capillary forces, is provided
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FIG. 11: Stable stationary drop length difference Al® (dia-
monds), and minimum slope i (triangles) versus capillary pa-
rameter k, from boundary-integral simulations for shear flow,
n = 1. The critical capillary parameter k¢ corresponds to the
intersection of the dashed lines and the horizontal axis.

by drop rotation'®2%. As a result, in such flows there ex-
ists a critical viscosity ratio Ac beyond which stationary
states occur even without surface tension. An extension
of our formalism to describe the near-critical behavior
of drops for A & Ac, as well as the dependence of Ag
on the flow type, will be presented in the forthcoming
publications'®19,

In Ref. 16, multiple stable stationary states are shown
to occur for high-viscosity drops in two-dimensional flows
with a small vorticity component. Under these condi-
tions, there exists a branch of stationary solutions that
is limited at both ends, kg > Kk > kg, in contrast to
Eq. (8). With minor modifications, the theory developed
herein applies to both near-critical regions k & k¢, k(-

An important application of our theory is in the ac-
curate determination of critical parameter values from
numerical simulations or experiments in a near-critical
regime. Numerical results for the critical capillary num-
ber in two-dimensional linear flows will be presented in
the forthcoming paper!®.

Our approach may also be useful in analyzing the
dynamics of polymer molecules undergoing coil-stretch
transitions in external flows2!22. These transitions re-
sult from the interplay between entropically-driven relax-
ation and convection by an imposed flow?3. The essential
mechanism is, thus, similar to the one studied herein.



APPENDIX A: EVOLUTION EQUATION FOR
THE SLOW MODE

1 Derivation of Eq. (21)

Two coupled evolution equations for the slow and the
fast modes are derived by applying to both sides of Eq.
(13) projection operators Ps and P onto subspaces (19)
and (20),

%MS = —6rH,—6kHD-5f+L (B —6xH) : 6F 6F+.. .,

(A1)
%m = —okH; + B . 6 — 6xH" - 6F
+1BE — 5sHD) 6858+ ..., (A2)
where 0k = Kk — K¢,
B® =qg® _ chH(i), (A3)
and
A,=P,A,  a=st, (A4)

(with A = f,H,B,...). The operators G, H, B are
evaluated at f = fo. Equations (A1) and (A2) were
simplified using relation (14), and the identities

B'f=0, Bt =0. (A5)
These identities follow from (15) and the observation that
the subspaces f; and f; correspond to different eigenvalues
of the operator B(1).

Equation (A2) indicates that, at the leading order in
dk, the evolution of the fast mode near the stationary
state is governed by the constant term —dxkH; and the
linear term Bp) -0f;. In contrast, the linear term is miss-
ing from Eq. (A1) at the leading order; thus, the evolu-
tion of the slow mode is governed by the constant term
and the quadratic term in §f;. Accordingly, the following
scalings are appropriate for the slow and the fast modes

5f, = e, (A6)

5ff = 626f‘f, (A7)
where € is given by Eq. (22). In the rescaled variables,
the leading-order terms in the evolution equations for the
slow and the fast modes are

%5@ = e(—sH, + 1B : 6f, o)

+€2(—SH§1) . Jf'SB§2) : 0f; Of,

+1BY . 6, 6F, 0F) + O(¢®),  (A8)

%5& = —sH; + B 6% + 1B : 68, 6%, + O(e), (A9)
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where s is defined by (23).

Equation (A8) indicates that the evolution of the slow
mode occurs on the time scale that diverges at Kk = k¢
with the critical exponent % At the leading order, equa-
tion for the slow mode is independent of the fast modes,
but at the order O(e?), the slow and fast modes are cou-
pled. However, on the time scale t = O(1), fast modes
relax towards the quasi-stationary value

— —1 —
5t =BY . (sH; — 1B : 61, 68) + O(e),  (A10)

and then follow the evolution of the slow mode adiabati-
cally. Inserting the above expression into Eq. (A8) yields
the closed long-time evolution equation (21) for the slow
mode, where

cog1 = H;, (A11)

—1
ag = [-HD +B® . BY . H)-g, (A12)
og = 1B (g g, (A13)

-1
c3g1 = [%ng) - %Bg) - (Bgl) -B§2))] (g1 8181 (Al4)

2 Higher-order terms

Elimination of fast modes can be continued to an ar-
bitrary order. This procedure yields the slow-mode evo-
lution equation of the form

e Lo, = (e + o) + Vi), (ALD)
with 1) given as a series in Jf; and e.

The unscaled evolution equations (A1)—(A2) are reg-
ular in k and dfs. The odd powers of € in Eq. (A15)
result entirely from the rescaling of the slow-mode am-
plitude (A6). As a consequence, the function 1 satisfies
the symmetry relation

Y(—0fs; —€) = = (0fs; €),

since the unscaled array dfs is invariant under a simulta-
neous change of sign of € and 6f; in Eq. (A6).

It follows that the nonsingular stationary solutions
8fs = h+ of equation (A15) are related by

hy(€) = —h_(—e¢).

Since h is a regular function of €, Eq. (A17) implies that
the linear combinations % (hy —h_) and ge(hy + h_) are
regular functions of €2 = k — kg. The regular expansions
of (46) and (47) in €? follow.

The inverse time scales (51) are obtained from

(A16)

(A17)

a4 = 2ecohy + €2¢I(h:|:, 6), (A18)



where the prime denotes the derivative with respect to
dfs. Equations (A16) and (A17), thus, imply that

oy (€) = a_(—¢). (A19)
The regular expansions of (52) and (53) in €? follow from
the above relation.
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