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ABSTRACT

Tracer–diffusion of small molecules through dense systems of chain polymers is studied

within an athermal lattice model, where hard core interactions are taken into account by

means of the site exclusion principle. An approximate mapping of this problem onto dynamic

percolation theory is proposed. This method is shown to yield quantitative results for the

tracer correlation factor of the molecules as a function of density and chain length provided

the non–Poisson character of temporal renewals in the disorder configurations is properly

taken into account.
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1. INTRODUCTION

Atomic charge or mass transport processes in condensed systems often take place in a

dynamically disordered host medium, whose microscopic structure fluctuates on a time scale

of the order of the atomic hopping time. An example of current interest in materials science

are polymer ion conductors.1 These are solutions of ionic salts in a polar polymer that can

possess significant ionic conductivities. It is well–known that ionic motions in these materials

are strongly coupled to motions of polymer chain segments, a situation which may be viewed

as implying a continuing rearrangement of preferred ionic diffusion pathways through the

host medium. At the glass transition temperature Tg, large scale segmental motions get

frozen, suppressing long–range ionic diffusion. Other systems where atoms diffuse in a

reorganizing host medium include permeation of small molecules through polymer films2,3

or ionic motions through protein channels passing biological cell membranes.4

Important progress in calculating the diffusion coefficient of a random walker in a dy-

namically changing environment emerged from dynamic percolation theory (DPT) and its

generalizations. In its original form due to Druger et al.5,6 one considers the random walk

in a bond percolation model, where configurations of open and blocked bonds are ran-

domly renewed at a given rate λ. An important outcome of this model is the fact that the

frequency–dependent diffusivity D(−iω, λ) can be obtained by analytic continuation of the

diffusivity D0(−iω) = D(−iω, 0) in the absence of renewals

D(−iω, λ) = D0(−iω + λ), (1)

irrespective of the precise form of the function D0(s) to be derived from a system with only

static disorder.6 The same result (1) was independently obtained by Harrison and Zwanzig

within effective medium theory7 assuming independent random renewals of individual bonds

rather than global renewals as in Ref.6, and also by Hilfer and Orbach.8 Subsequent work

on polymer ion conductors was focused on an identification of the central parameter of this

theory, the renewal rate λ, from experimentally observed polymer viscosities9 and more
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recently from dielectric relaxation spectroscopy.10 In parallel, the theory was generalized

considerably to off–lattice hopping11, spatially correlated renewals12, cases with distinct

kinds of migration steps13 and, in particular, to non–Poisson renewal processes characterized

by some waiting–time distribution ψ(t) .11 In that case the zero–frequency diffusivity in d = 3

dimensions is given by

D =
1

6

∫

∞

0
dtψ(t)〈r2(t)〉0
∫

∞

0
dt tψ(t)

, (2)

where 〈r2(t)〉0 is the mean–square displacement of the random walker in a frozen

environment.14 Note that in the case ψ(t) = λ exp(−λt) equation (2) reduces to the zero–

frequency limit of (1).

While DPT or, generally, dynamic disorder hopping theory11 was developed as a frame-

work for diffusion of small guest molecules in a fluctuating disordered host environment, it

was also recognized that the basic idea underlying these dynamically–disordered hopping

models can provide an approximation to many–particle effects in transport processes in in-

teracting lattice gases.15 A (point–like) tracer particle in an interacting lattice gas can hop

to a neighbouring site provided the other particles have arranged such that this attempted

site is vacant and that energetic conditions for the hop are fulfilled. The fact that the

timescales for the changing environment and the tracer motion are interconnected offers a

way to establish an effective dynamic bond percolation model for the tracer, involving a time

constant λ. λ can be determined either self–consistently or by an ansatz based on the lattice

coordination number. A many–particle effective medium theory for diffusion in interacting

lattice gases emerges in this way.15

Besides these investigations for a lattice gas of point particles it seems that DPT–theories,

although motivated by processes in polymer electrolytes, have never been tested quantita-

tively in the context of statistical polymer models. While the renewal processes associated

with a system of point particles are sufficiently characterized by a single rate constant λ

entering equation (1),15 we expect this equation to fail for the problem of diffusion through

a polymer network because of the inherent distribution of relaxation times characterizing
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the chain motion. This should result at least in a more complicated form of the waiting–

time distribution ψ(t). The question now is how far equation (2) can describe the diffusion

coefficient, when ψ(t) is defined in a suitable way in terms of the actual dynamics of the

polymer network.

To elucidate this question, we investigate in this paper an athermal lattice model, defined

in Section 2, which consists of lattice chains with varying density and chain length and a

sufficiently dilute system of point particles. Both chains and point particles undergo diffusion

via elementary stochastic moves. This model is a special case of a more general lattice

model of chains and point particles with specific interactions, used previously to describe

the influence of temperature, pressure and salt–content on diffusion and network relaxation

properties of polymer electrolytes.16,17

In the present work, we first obtain diffusion coefficients from dynamic Monte Carlo

simulation of our model. These results serve as a reference with respect to the subsequent

approximation method based on dynamic percolation theory. To implement this theory, we

determine by simulation i) the waiting–time distribution ψ(t), which we define in terms of the

occupational correlation function of a site next to a fixed point particle and ii) the mean–

square displacement 〈r2(t)〉0 of point particles for static disorder (frozen chains). These

steps are computationally much less demanding than the full simulation. Comparison of

both methods via equation (2) provides a sensitive test for the applicability of DP–theories

to diffusion in a fluctuating polymer host. We find excellent agreement between the tracer

correlation–factors as a function of density and chain length, as obtained from those two

methods. Temporal correlations, reflected in the non–exponential character of ψ(t), are

found to be crucial in this analysis.18

In Section 3 we specialise to a chain length r = 1 which corresponds to a system of

point–particles only, before we present in Section 4 our full analysis for chains up to a length

r = 20. Some further conclusions are drawn in Section 5.
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2. SIMULATION METHOD AND IMPLEMENTATION OF THE DYNAMIC

PERCOLATION CONCEPT

Consider a system of lattice chains on a three–dimensional simple cubic lattice of spacing

a. The chains are made of beads, assigned to lattice sites, and linearly connected via

nearest–neighbour bonds. Apart from site exclusion, which mimics a hard–core repulsion,

no explicit interactions between beads are assumed. For N chains each with r beads in

a box of linear size La, the concentration of occupied lattice sites is simply given by c =

Nr/L3. In addition, our system contains point–like tracer particles, again subjected to site

exclusion, with a concentration ct ≪ 1 sufficiently small so that correlations among them are

negligible. Most of our simulations were carried out with L = 10, r = 1 to 20, ct = 10−2, and

periodic boundary conditions are employed. After preparation of the system with the desired

number of chains, equilibration and the subsequent dynamics at equilibrium are based on the

generalized Verdier–Stockmayer algorithm, which employs end–bond motions, kink–jumps

and crankshaft rotations19–21. Point–particles individually perform nearest–neighbour hops.

In the special case r = 2 (moving dimers) only the end–bond motion is active, which then

is a 90–degree rotation of the dimer about one of its end–points. As usual, introducing

D(s) =
s2

6

∫

∞

0

dte−st〈r2(t)〉 (3)

we can obtain the diffusion coefficient of point–particles, D = lims→0+ D(s), from their

simulated mean–square displacement 〈r2(t)〉. To separate the average effect of blocking,

contained in a factor 1 − c, one introduces the tracer correlation factor f(c) ≤ 1 according

to

D = D(0)(1− c)f(c) (4)

where D(0) = Γa2 denotes the diffusion coefficient for infinite dilution (c → 0), with Γ the

bare hopping rate.

Our aim is now to map the complete system dynamics onto a disordered single–particle

model, where disorder configurations are globally renewed according to some appropriate
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waiting–time distribution ψ(t). In order to test the validity of this idea against full simula-

tions, we have to extract the input quantities to equation (2), 〈r2(t)〉0 and ψ(t), from our

polymer model. While 〈r2(t)〉0 can be obtained in a straightforward manner from separate

simulations with frozen chains, determination of ψ(t) requires more explanation. As indi-

cated already in the Introduction, we propose to determine ψ(t) from the local occupational

correlation function 〈ni(t)ni(0)〉, where ni(t) is the occupation by chain beads of a site i ad-

jacent to a fixed tracer position. To simulate 〈ni(t)ni(0)〉 chains were first equilibrated while

keeping the tracer fixed. Such a procedure is perfectly in the spirit of dynamic percolation

theory based on renewals as “seen” by the tracer in its immediate neighbourhood. Let us

introduce the probability Φ(t) with t > 0 that there is no renewal within the interval [0, t]

when the foregoing renewal took place at an arbitrary time t0 < 0. Following Ref.11,

Φ(t) = 1−

∫ t

0

dt′φ(t′) (5)

with22

−
dφ

dt
= λ̄ψ(t) (6)

where λ̄−1 = (φ(0))−1 =
∫

∞

0
dt tψ(t) denotes the mean renewal time. Now, we argue that

with probability Φ(t) the occupation at site i (next to a fixed tracer) does not change within

[0, t] so that the stochastic variable ni(t) (with possible values 0 or 1) preserves its initial

value, ni(t) = ni(0) and ni(t)ni(0) = (ni(0))
2 = ni(0). Conversely, with probability 1−Φ(t),

one or more renewals occur within [0, t]. Then, since configurations are randomly reassigned,

ni(t) can be replaced by its average, c. Hence, in this case, ni(t)ni(0) = cni(0). Averaging

in addition over the initial occupation ni(0), we obtain for the correlation function

〈ni(t)ni(0)〉 = c[Φ(t) + c(1− Φ(t))]. (7)

This can be rewritten as

Φ(t) =
〈ni(t)ni(0)〉 − c2

c(1− c)
, (8)
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consistent with the requirements Φ(0) = 1 and Φ(t) → 0 as t→ ∞. Combination of (5), (6)

and (8) yields

ψ(t) = λ̄−1Φ′′(t)

= [λ̄c(1− c)]−1 d
2

dt2
〈ni(t)ni(0)〉 (9)

After insertion into (2) the prefactors drop out. Equation (9) completes the implementation

of DP–theory to our many–particle model. In the next sections we test the performance of

this approximation scheme to a simple hard–core lattice gas and to a polymeric system.
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3. HARD–CORE LATTICE GAS

As a first application let us briefly examine the special case of non–connected beads,

r = 1, which is identical to the conventional hard–core lattice gas of point–particles. The

tracer correlation factor f(c) in that case is known to a high degree of accuracy via dynamic

pair approximations23–25, giving

f(c) =
1 + 〈cosΘ〉

1− [(3− 2c)/(2− c)]〈cosΘ〉
, (10)

and through simulations.26 In Ref. 10, which becomes exact as c → 1, the quantity 〈cosΘ〉

characterizes the average directional change in two consecutive steps of the tracer due to the

presence of one vacancy. For a simple cubic lattice, 〈cosΘ〉 ≃ −0.209. An effective–medium

approximation to f(c) was obtained recently15 from dynamic percolation theory using the

Harrison Zwanzig approach.7

In what follows we apply the approach outlined in Section 2 to the same problem. 〈r2(t)〉0

is obtained from simulating a single mobile particle in the frozen configuration of the back-

ground particles. Φ(t) is deduced from Eq. (9) where 〈ni(t)ni(0)〉 is obtained from a short

time simulation of a lattice gas with one fixed tracer particle, as described above. These

simulations were carried out within a cubic box of length L = 10 and periodic boundary

conditions. Note that collective properties of a hard–core lattice gas with symmetric tran-

sition rates show a relaxational behaviour independent of concentration27,28. The function

Φ(t) as determined from (8) is therefore c–independent and thus can be determined from

single particle random walk theory. Within that framework Φ(t) can be interpreted as time–

dependent probability of return of a single random walker to site i, taking into account that

one site adjacent to i is blocked by a fixed tracer. In Appendix A we briefly indicate how

Φ(t) can be calculated exactly or how one can generate efficient analytic approximations.

Results for Φ(t) obtained both from Monte Carlo simulation and from these approxima-

tions are plotted in Fig. 1. As seen from the figure, the main decay of Φ(t) at short times
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is fairly well represented by an exponential with decay rate

λ0 = −(dΦ/dt)t=0 = (5/6)Γ (11)

The factor 5/6 simply arises from the fact that one of the six bonds in the simple cubic lattice

connected to site i is blocked by the tracer. The actual decay of Φ(t) is approached gradually

by continued fraction approximants of increasing order N , which were derived according to

Appendix A. The asymptotic decay of Φ(t) at long times is governed by diffusion, giving

Φ(t) ∝ (Γt)−3/2, which, however, cannot be accounted for by a finite continued fraction.

For the purpose of practically evaluating (2) we find that it is sufficient to approximate

Φ(t) in terms of a superposition of three exponentials. Fig. 2 shows the c–dependent tracer

correlation factor obtained in this way. The agreement of data points from our DPT with the

full curve representing the dynamic pair approximation Eq. (10) is quite satisfactory. For

completeness we also included Monte Carlo data for the full hard core lattice gas. The DPT

result for c = 1 with value f ≃ 0.6802 was obtained analytically, see Appendix A, whereas the

exact value is f(1) = (1+ 〈cosΘ〉)/(1−〈cosΘ〉) ≃ 0.654. Also shown are diffusion constants

calculated from the effective medium approximation as described in Ref.15, which is based

on only one time constant for renewal events. With λ = λ0 as given by (11) this theory

yields the dashed curve which deviates notably from Eq. (10) in the high–concentration

regime. (On the other hand, merely fitting λ to the exact value of f(1), giving λ ≃ 0.62 Γ,

turns out to give very good agreement with Eq. (10) in the whole concentration range.)

These results confirm the conclusion in Ref.15 concerning the applicability of dynamic

percolation theory to many–particle systems and at the same time indicate that the theory

significantly improves when the non–Poisson character of renewal processes is taken into

account. For the problems in the next section this last aspect will become much more

important.
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4. LATTICE POLYMERS

For the hard-core lattice gas (r = 1) the procedure described obviously bears no com-

putational advantage over existing methods. The situation changes, however, when we go

over to r > 1. The correlation factor f(c) now depends on r and no analytic approximation

equivalent to Eq. (10) is available for this case. At the same time full simulations of the

diffusional dynamics become more demanding because of the internal degrees of freedom of

the host molecules and the larger statistical errors connected with the small concentration

of tracer particles. Here our approximate DBT-based computational scheme is potentially

useful. In this section we examine the performance of this scheme. Fig. 3 summarizes our

MC simulation results, again represented in terms of the correlation factor f(c), Eq. (4), for

different chain lengths r up to r = 20. The full lines are fits to the simple functional form

f(c; r) = (1 − α(r)c)/(1− β(r)c) with fit parameter α, β that depend on the chain lengths

r. These results will be used as a basis for assessing the performance of the approximate

DP-based approach. As discussed above, this approach is based on evaluating the waiting

time distribution ψ(t) according to Eq. (9) and the mean-square displacement 〈r2(t)〉0 of

a tracer in the presence of a frozen solvent. Figure 4 shows typical results for the function

Φ(t), see Eq. (8) obtained for chains with length r = 10 for several concentrations. While

our simulation results for 〈r2(t)〉0 are shown in Fig. 5 for the same r-values as in Fig. 4.

Substitution of these results for into Eqs. (2) and (4) yields our DP-approximation for the

correlation factor f(c), which is shown in Fig. 6 together with the ’exact’ MC results of

Fig. 3. (For clarity, only the full lines from Fig. 3, representing the fitted data as discussed

above, appear in Fig. 6). Evidently, the DP-approximation agrees very well with the full

simulation for all r. Some further observations are noteworthy:

(a) From the MC simulation results for f(c; r) (Fig. 3) an interesting picture emerges

concerning the effect of host connectivity on the tracer diffusion. The most prominent effect

is the special behavior of chains with r = 2 (see below). Focusing first on chains with r ≥ 5

we see that for c<∼0.829 f(c) is larger than in the hard core lattice gas (Sec. 3), showing that
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in this density range chain connectivity facilitates diffusion of tracer particles. For larger

concentrations, however, f(c) drops markedly.

(b) These findings for r>
∼5 contrast to the behavior found for r = 2 which is a special case

concerning the allowed elementary moves (see Sect. 2). For all concentrations c considered,

f(c) now remains larger than 0.9, see Fig. 3. Dimers therefore induce only minor backward

correlations in the tracer motion. Intuitively, from the point of view of the tracer, only one

monomer of the dimer molecule effectively suppresses tracer forward motion by a nearest-

neighbor hop, while the second monomer is shielded.

(c) The function Φ(t) is seen in Fig. 4 to decay in a highly non-exponential fashion,

indicating the importance of temporal correlations in the associated renewal processes. Fur-

thermore, for small concentrations the relaxation first becomes faster as c increases, which

reflects enhanced fluctuations after the onset of overlap between chains, whereas in the high-

density system c = 0.8 the decay is markedly slowed down. For dimers (r = 2) we have

found that Φ(t) decays even somewhat faster than in the case r = 1 and is only weakly

c-dependent.

(d) The mean square tracer displacement 〈r2(t)〉0 in a frozen host, plotted in Fig. 5,

shows a cross-over from diffusive behavior 〈r2(t)〉0 ∼ t, to a localized random walk 〈r2(t)〉0 →

constant as t→ ∞ as expected for a percolative network. It is expected that this crossover

takes place at some critical concentration ccrit. A precise determination of the percolation

threshold ccrit(r) for walks through a frozen network of chains of length r is beyond the scope

of this article, yet rough estimates are presented in Appendix B for 2 and 3-dimensional

systems. In d = 3 dimensions, ccrit appears to increase with r, indicating again that for

given c the frozen chains are less prohibitive to tracer diffusion than a frozen background of

independent monomers. For example, for r = 10, the concentration c = 0.8 clearly exceeds

ccrit(r = 10), (see Fig. 5 and the estimates in Appendix B).

(e) As already noted the DP-approximation agrees very well with the full simulation for

all r. This remains true even in the special case r = 2 and has the advantage of saving up

to about one order of magnitude in computing time.
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5. SUMMARY AND CONCLUSION

A method has been proposed how to map particle diffusion through a fluctuating network

of polymer chains onto dynamic percolation theory (DPT). As input quantities this theory

requires the particles’ mean–square displacement 〈r2(t)〉0 in the frozen network and the

waiting time distribution ψ(t) for network renewals. We proposed to relate ψ(t) to the

occupational correlation function of a site next to the fixed tracer particle so that it reflects

the temporal distribution of pathway openings seen by the fixed tracer. In contrast to

the standard hard core lattice gas, ψ(t) decays in a highly non–exponential fashion when

longer chains are considered. This feature of the fluctuating network appears to be crucial

in implementing dynamic percolation theory to chain systems. When properly taken into

account, the DP–model gives quite accurate results for the tracer correlation factor in its

variation with concentration c and chain length r. We have verified this by comparing the

results of DPT with Monte Carlo simulations of the complete system dynamics.

Our studies so far are limited to an athermal system. The theory in that case was found

to save about one order of magnitude in computing time relative to full simulations. Under

this aspect it would be very interesting to extend these studies by applying DP–theory

with non–Poisson renewals to interacting systems and associated questions of dispersive

transport.
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APPENDIX A: HARD–CORE LATTICE GAS: SUPPLEMENTARY RESULTS

Regarding the hard–core lattice gas, the quantity Φ(t) given by (8) is equal to the

probability of return to site i after time t in the case of a single random walker. Here site

i is next to a site blocked by the tracer. In calculating Φ(t), the effect of the blocked site

can be taken into account by standard defect matrix theory.30 This yields an expression for

Φ(t) in terms of the solution of a 3 × 3 matrix equation, whose coefficients are determined

by unperturbed lattice Green functions up to third–neighbor distances. The calculation is

straightforward and will not be reproduced here.

In the present context it is sufficient to obtain an accurate approximation for Φ(t) only

until it decays to about 10−2. Computationally it is then advantageous to represent its

Laplace–transform Φ̂(s) as a continued fraction of the type Φ̂(s) = a0(s+b1−a1(s+. . . )
−1)−1,

generated by a short time expansion of Φ(t).31 Time derivatives Φ(n)(t = 0) with 0 ≤ n ≤

2N−1 are easily obtained by enumerating closed paths of the walker which avoid the blocked

site. Specifically, we use

Φ(t) =

∞
∑

n=0

Φn
(Γt)n

n!
e−Γt (12)

where Φn is the probability of return to the origin after n steps.

At stage N the continued fraction is terminated such that Φ̂(0) agrees with the exact

result from defect matrix theory (see above) which, at s = 0, is determined in terms of

Watson–type integrals. Fig. 1 contains a plot of the N–th order approximants for Φ(t) up

to N = 6. For N = 6 the simulations are accurately represented up to t ≃ 15.

Finally we comment on the limit c → 1, where the correlation factor from DPT can

be evaluated analytically. Obviously, the mean–square displacement 〈r2(t)〉0 of a tracer in

a frozen lattice is determined in that limit by successive exchanges with one neighboring

vacancy. This gives 〈r2(t)〉0 = (1 − exp(−2Γt))/2, where Γ is the jump frequency. From

(8) together with the above–mentioned results for Φ(t) we obtain f(1) = 0.6802 as given in

Section 3.
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APPENDIX B: PERCOLATION IN A FROZEN NETWORK

Calculation of the diffusion constant D from (2) requires knowledge of the mean square

displacement 〈r2(t)〉0 of a tracer particle in a frozen network on time scales of the order of

the decay time of ψ(t). In this Appendix we estimate the critical concentration ccrit(r) for

percolation of a monomer particle through a frozen network of chains, which distinguishes

diffusive from localised behavior of 〈r2(t)〉0 at long times. To our knowledge, this problem

of correlated percolation has not been investigated before for general chainlength r. We do

not, however, attempt any precise determination of ccrit(r); rather we like to point out some

major qualitative trends in ccrit(r) as a function of r in d = 3 and d = 2 dimensions.

In d = 3, equilibrated chain configurations were prepared by the same algorithm as

described in Section 2, while in d = 2 we used the algorithm by Siepmann et al.32 For

systems of varying size L, increased in steps ∆L, we determined the probabilities P (r, c, L)

of occurrence of a spanning cluster of vacant nearest–neighbor sites. For fixed r, we obtained

points of intersection of successive curves P (r, c, L) and P (r, c, L−∆L) versus c, which give

successive approximations for ccrit(r).
33 Estimates for ccrit(r) were deduced from calculations

with L–values up to a maximum Lmax, to be adapted to r. For example, in d = 2 we went up

to Lmax = 200 for r = 20, whereas Lmax = 80 for frozen dimers r = 2. These values appeared

sufficient to achieve reasonable convergence. In the limit r = 1 we find ccrit ≃ 0.41 for d = 2

and ccrit = 0.69 for d = 3, which reasonably agree with values 1 − pc given by the well–

known thresholds pc for site percolation on square and simple cubic lattices, respectively.

The qualitative r–dependence of ccrit(r) is shown in Fig. 7. In d = 3, ccrit(r) monotonously

increases with r which we interpret as a reduction of blocking of open pathways through

the connectivity of chains. The most pronounced increase occurs already when going from

monomers to r = 2. In d = 2 this argument again applies to the step from r = 1 to

r = 2, but blocking becomes more effective for longer chains so that ccrit(r) decreases, with

ccrit(r) < ccrit(1) for r>
∼12. For long chains, especially in d = 2, it might be interesting

to study 〈r2(t)〉0 near criticality on different length scales above and below the radius of
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gyration of chains, but this goes beyond the scope of this work.

Generally, for sufficiently long times and small |c− ccrit| such that the correlation length

becomes larger than the size of chains, one expects 〈r2(t)〉0 to follow the standard scaling

forms for non–correlated percolation, which imply associated scaling forms for the frequency–

dependent diffusivity D0(−iω) as ω → 0. In applications of DP–theory where the analytic

continuation rule (1) holds at least for small λ, one can immediately predict the asymptotic

forms of the long–time diffusion constant D = D0(λ) of a walker in the presence of slow

(λ → 0), Poisson–type network renewals.34 The resulting scaling expressions for D are

straightforward to write down from the corresponding expressions for D0(−iω) given in

Ref.35. Some notable special cases for nonzero λ are

D ∼











λ1−k; c = ccrit;

λ|c− ccrit|
2ν−β; c > ccrit

(13)

where ν and β are the conventional static percolation exponents for the correlation length

and the order parameter, respectively, and k is the dynamic critical exponent for anomalous

diffusion in a percolation system at criticality.
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FIGURE CAPTIONS

Fig. 1 Semilogarithmic plot of the function Φ(t) (see equation 8) for the hard core lattice

gas. Monte Carlo data are obtained by simulating the probability of return of a single

random walker starting next to a blocked site.

Dashed-dotted line: single exponential approximation as determined by the initial

slope (see equation 11). The other thin lines represent continued fraction approximants

up to order N = 6 (see Appendix A).

Fig. 2 Tracer correlation factor f(c) of the hard core lattice gas against concentration, ob-

tained by different methods (see text).

Fig. 3 Simulated tracer correlation factor f(c) for different chain lengths r = 2, 5, 10 and 20.

Full lines refer to the fit function f ≈ (1 − αc)/(1 − βc), where for r = 5, 10 and

20 the fit parameters are β = 1 and α = 1.057, 1.062 and 1.071, respectively. This

implies that the diffusion constant (4) is approximately linear in c, D(c) ≃ D0(1−αc).

One the other hand, for r = 2 we find α = 0.391 and β = 0.318. For comparison we

also show simulation data for r = 1 (hard core lattice gas) together with Eq. (10)

(dashed-dotted line).

Fig. 4 Φ(t) for chains of length r = 10 for three different concentrations c = 0.8, 0.1 and 0.4

(from above). Also shown is the short time behavior of Φ(t) for r = 1 (dashed-dotted

line), reproduced from Fig. 1.

Fig. 5 Mean–square displacement 〈r2(t)〉0 of walkers in a frozen chain network. Parameters

are as in Fig. 4. For c = 0.4 a comparison is made with the case r = 1.

Fig. 6 Comparison of tracer correlation factors from DP–theory for chains of different lengths

(data points) with results from full simulations. Full lines represent fit functions for

the simulation data, reproduced from Fig. 3.
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Fig. 7 Estimates for the critical concentration ccrit(r) versus r for percolation of a monomer

particle through a frozen network of chains of length r on simple cubic (d = 3) and a

square (d = 2) lattices.

19



FIGURES

0.001

0.01

0.1

1

0 5 10 15 20 25

Φ
(t

)

t

MC-data
Short time behavior

Continued fraction N=2
N=4
N=6

Fig 1.

20



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

f(
c)

c

present theory (DPT)
MC simulations

dynamic pair approximation
EMA

Fig 2.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

f(
c)

c

r=1
r=2
r=5

r=10
r=20

Fig 3.

21



0.01

0.1

1

0 20 40 60 80 100

Φ
(t

)

t

r=10 c=0.1
r=10 c=0.4
r=10 c=0.8

r=1

Fig 4.

0

20

40

60

80

100

0 20 40 60 80 100

<
r2 (t

)>
0

t

r=10 c=0.1
r=10 c=0.4
r=10 c=0.8
r=1  c=0.4

Fig 5.

22



0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

f(
c)

c

r=2
r=5 

r=10
r=20 

Fig 6.

0.38

0.4

0.42

0.44

1 5 10 15 20

c c
ri

t

r

// //

d=2

0.68

0.7

0.72

0.74

 

// //

d=3

Fig 7.

23


