APPLIED PHYSICS LETTERS VOLUME 79, NUMBER 22 26 NOVEMBER 2001

Multipeak negative-differential-resistance device by combining
single-electron and metal—oxide—semiconductor transistors
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A multipeak negative-differential-resistance device is proposed. The device comprises a
single-electron transistor(SET) and a metal-oxide—semiconductor field-effect transistor
(MOSFET), and can, in principle, generate an infinite number of current peaks. Operation of the
proposed device is verified at 27 K with a SET fabricated by the pattern-dependent oxidation
process and a MOSFET on the same silicon-on-insulator wafer. Six current peaks and a
peak-to-valley current ratio of 2.1 are obtained, and multiple-valued memory operation is
successfully demonstrated. @001 American Institute of Physic§DOI: 10.1063/1.1421085

In a single-electron transistg8ET), Coulomb blockade combined SET-MOSFET device, the periodic nature of the
is controlled by the gate, which is capacitively or resistivelyl -V characteristics results in a number of stability points,
coupled to the Coulomb island, and the discreteness of thand this enables multiple-valued memory operation. Note
electric charge in the island results in unique current—voltagéhat these multipeak characteristics originate from the char-
characteristics, i.e., a periodic increase and decrease of dradwteristics of a single SET. And the number of peaks is infi-
current as a function of the gate voltalgé.Although this  nite in principle, but is in practice limited by the breakdown
periodic nature is utilized in some applicatiditsthe poten-  voltage of the MOSFET drain or SET gate.
tial of SETs as functional elements has not been fully ex- The above idea was verified with a SET fabricated by
ploited. We report here a method by which to realize a SETthe pattern-dependent oxidatigRPADOX) proces$™*! and
based multipeak negative-differential-resistand®lDR)  with a MOSFET located on the same wafer. In the PADOX
device, that should have a wide range of applications such gxocess, a one-dimensional Si wire patterned in silicon-on-
multiple-valued memorie$, analog-to-digital converters, insulator (SOI) is converted into a small Si island with a
and multiple-valued logic® Conventionally, multipeak NDR  small tunnel capacitor at each end. Figufa) 8hows thd 4—
devices have been constructed with a series connection &fy¢ characteristics of a SET. Periodic drain—current peaks
resonant tunneling diodg&TDs).6~8 However, the number are clearly seen along with the effect of tunnel resistance
of peaks is determined by the number of diodes. It is alsanodulation by the gate voltage. From Fig. 2 and a Coulomb
limited by accumulated series resistance, which should bdiamond plot, the gate capacitance, source/drain capacitance,
smaller than the negative resistance of a single RTD.and tunnel resistance were calculated to be 0.27 aF, 2.7 aF,
The NDR device proposed here consists only of a SETand 80-220 R, respectively.
and a metal-oxide—semiconductor field-effect transistor PADOX is highly compatible with the complementary
(MOSFET), and can, in principle, generate an infinite num-MOS (CMOS) fabrication process, and areas other than that
ber of peaks. Using this device, multiple-valued memory op-of the one-dimensional Si wire can readily be used as an
eration is demonstrated. ordinary MOSFET channel. Here, amtype MOSFET with

A schematic of the proposed NDR device is shown ineffective channel width of 12m, channel length of 14m,

Fig. 1(a). The source of a MOSFET with fixed gate big, and gate oxide thickness of 90 nm was combined with the

is connected to the drain of a SET. As illustrated in Figp),L
Ve

the SET drain currerity increases and decreases periodically
as a function of the gate voltaggs.* > However, thd 4 has
such a large dependence on the drain voltsige that the
stablllty fomts
-f\-MMJ\
to sustain Coulomb blockade. By connecting the SET gate to
the MOSFET drain, the multipeak NDR CharaCterIStICSFIG. 1. (a) Schematic of the proposed multipeak NDR device comprising a

peak current is almost proportional ¥, and the valley
shown in Fig. 1c) are obtained as two-terminktV charac-  sgT and a MOSFET. A constant-current sourgés connected for multiple-

current increases more rapidly when the Coulomb blockade

breaks. The MOSFET connected to the SET eliminates this

teristics. If a constant-current sourtgis connected to the valued memory operatiorib) Typical 14—V (three-termindl characteris-
tics of a SET.(c) Expected -V (two-termina) characteristics of the SET-

large V4 dependence of the SET characteristics by keeping
Vys nearly constant around,,—Vy,, whereVy, is the thresh-

MOSFET device. Load lind, and the corresponding stability points for
¥Electronic mail: inokawa@aecl.ntt.co.jp memory operation are also shown.
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old voltage of the MOSFET. Thi¥y,—Vy, is set low enough
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~ 3} Closed symbols are the measured data for the peak and valley between
| stability pointsc andd in Fig. 2b), and the lines are simulated ddfRef.
2 c d e 12). Characteristics of the MOSFET connected to the SET drain are also
1 H stability points shown. The continuous lines are fitted to the measured data, and the dashed
0 . . . lines correspond to the case whee is reduced by a factor of 5 and the
1 2 3 4 5 tunneling resistance is increased by the same amount while keeping the
V({V) other parameters constant.

FIG. 2. (a) 14—V characteristics of a SET for4s of 10 mV, measured at

27K.(b) -V characteris‘t‘ics of_the proposed NDR deviceVgy, of 1.08 V The memory operation was confirmed by the current

measured at 27 K. Stability pointa{f) expected for a current load of 4.5 . .

nA are indicated by circles. The SET was fabricated by the PADOX proceséweep measurements shown in Fig. 3. If the current starts

(Refs. 9-11 together with the MOSFET on the same SOI wafer. from stability point a and increases, the voltage jumps when

the current exceeds the second peak inlth¥ characteris-

tics [Fig. 2(b)]. If the current sweep is reversed at this mo-

SET. The tlhreshold yoltagb’th and subthreshold S'OPS ment, sgtability poinb can be reachSd. Other stability points,

corresponding to drain voltagéys of 3 V and operating  ¢_¢ can also be reached by choosing higher current-sweep

currentl, of 4.5 nA, were 1.07 and 60 mV/dec, respectively. reyersal points. Note that stability poifittannot be attained

All devices were operated and measured at 27 K. by this current-mode operation, because the last peak in the
|-V characteristics of the combined SET-MOSFET de-| -V characteristic§Fig. 2(b)] is lower than the previous

vice are shown in Fig. ®). The current increases and de- one. Direct access to any stability points can be made by the

creases periodically, reflecting thg-V,s characteristics of voltage-mode operation exemplified in RTD memory

the discrete SET. More than six peaks are obtained. Since traevices

period of the peaks ie/C,, wheree is a unit charge an@, Since the PVCR is one of the major parameters for NDR

is the gate capacitance of the SET, the number of peaks c#l¢vices, we analyzed the present state and sought improve-

be increased by increasii@y,. For some combinations of an Ment by simulatiort? Figure 4 shows the peak and valley

adjacent peak and valley, the peak-to-valley current ratigurrents of SETs as a function of drain voltadg;. Closed

(PVCR) exceeds 2. If we connect a current source of 4.5 nASYMPols are the measured data for the peak and valley be-
. . : tween stability pointsc andd, and the lines are simulated

stability points a—f should appear, and multiple-valued . '

menzlo?/y gp:aration can bg expgsted uttipie-valu data. Characteristics of the MOSFET connected to the SET

drain are also shown, taking into consideration that the
MOSFET gate-to-source voltage is given Wy,—Vgys. The
points of intersection indicated by circles are the peak and

5 compliance valley conditions for the combined SET-MOSFET device.
Currently a PVCR of 2.1 is attained, and this can be further
4t increased by reducing the SET valley current and/or increas-
ing the slope of the MOSFET characteristics. The former can
s be attained by reducing temperaturereducingCs , or in-
g 3 creasing tunneling resistan&y, and the latter by reducing
Cs or MOSFET subthreshold slogg The dashed lines in
2} Fig. 4 correspond to the case whé¢ is reduced by a factor
of 5 andRy is increased by the same amount while keeping
other parameters such &asandS constant. A PVCR as high
1 0 8 as 28 can be expected as the result of this moderate scaling.

[ (A Room-temperature operation is also consideredCJf
(nA) and R are further scaled by a factor of 3, almost the same
FIG. 3. Current sweep measurements of the NDR device in k. Zhe F_)VCR of 2_0 can be expeCted at _300_ K Note that the r_educ-
output voltage of the current source is limited by the compliance of 5 V. tion of Cs is very effective in maintaining the PVCR, since
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