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Measurement of surface charge densities on Brownian particles using total
internal reflection microscopy
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Due to double-layer forces a charged colloid suspended in an electrolyte is repelled from a
like-charged planar wall. We demonstrate that and how a precise measurement of these double-layer
forces acting on a colloid near a glass surface can be used to determine surface charge densities. The
effective wall—colloid potentials are measured using the total internal reflection microscopy
technique, and a whole series of such potentials, taken for various different salt concentrations, are
then analyzed in terms of a given theoretical interaction potential, where the surface charge densities
are the only unknown parameters. We find reasonable values for the surface charge densities of
silica and polystyrene spheres in water, and compare the proposed method with other more
established techniques to measure surface charge densities on single particB301 @merican

Institute of Physics. |

I. INTRODUCTION these techniques, however, is that considerable theoretical
) ) _input is required; in particular, one needs the relation be-
Interactions that occur between charged objects iMyyeen the velocity response of the particle to an external
mersed in an electrolytic solution, such as colloids, micellesgie|q ang its surface potential, which usually requires a solu-
vesicles, and proteins, play an |mp'1cr)12ant role in many bioyigp of the Smoluchowski equation. Another disadvantage of
logical and physmpchempal systg In the vicinity of dynamical measurements in general is that, since the hydro-
charged surfaces in solution, a diffuse layer of electrolytedynamic radius of the particle is not known priori, the
1ons forms, V!'Eh a th|ckn'ess n t he order of the.Debye SCreeNayact relationship between the static surface potential and the
ing length «~. Accordingly, if two such objects having dynamically determined potential is often not clear.

like-charged surfaces approach _each other closely, their Other approaches utilize the fact that surface charges can
double layers start to overlap which eventually leads to an .
be obtained from a measurement of double-layer forces.

increase of counter-ion density in the gap between them rel%robably the best known technigue to study double layer

tive to the bulk solution. This results in a repulsive double- . . .
layer forcé® being—besides dispersion and  steric repulsion forces is the surface force appard®iSA) which

interactions—one of the principal long-range forces in sucma§ begn devel.oped by Israelachvili and Adérhk)wever, .
systems. while this technique has been very successful in the determi-

Besides its importance for the stabilization of chargednati_On of dout_)le_—layer, solvation ar_1d ster_ic fo_rces, it ?S ex-
colloidal suspensions, double-layer forces are also crucial fdp€fimentally limited to macroscopic bodies, i.e., typically

the interpretation of ion adsorption and ion permeation pro-tW0 cros_sed mi(_:a cylinders. In contras_,t, the dire_ct measure-
cessegsee, e.g., Ref.)4and for the understanding of me- ment of interaction forces between a single colloidal particle

chanical properties of biological membranes, the latter bein%nd a wall is difficult if not impossible to achieve with the

important in, e.g., membrane—membrane interactions and e SFA. To overcome that limitation, it has been suggested to
suing properties like bacterial adhesfofihe details of such measure double-layer forces close to a flat surface by attach-
double-layers depend crucially on the surface charge densif{d @ colloidal sphere to the tip of an atomic force micro-
of the charged object. In addition, surface charge densitie8cOPe(AFM) cantilever, see Refs. 7-9. In the first experi-
are also interesting because they contain important structurgtent of this kind Duckeet al.” measured the forces between
and chemical information of surfaces which might lead to@ 3.5um silica sphere attached to an AFM cantilever and a
conclusions about the composition of such interfaces. Thi§ilicon wafer in agueous solutions for various concentrations
article therefore concentrates on surface charge densities affl NaCl salt and showed consistency with DLVO-theory in
proposes a new and simple method how to determine sudhe regime of 5-40 nm distance to the surface. Common to
charge densities. all AFM-based techniques is the restriction to very small
Different methods have been suggested to measure ttgeparations where forces are strong enough to cause a detect-
surface charge or the surface potential of an object. Measur@ble bending of the cantilever. At larger separations, how-
ments of the velocity of charged objects in the presence oéver, (where dispersion forces are negligibléouble-layer
electric fields, e.g., allow the determination of the so-calledorces are too weak to be measured with AFM.
{-potential. Several methods to determine ghgotential like Another method that allows measurements on single un-
electrophoresis, electro-osmosis, streaming potential anperturbed Brownian particles is total internal reflection mi-
sedimentation potential are well establisi@@ommon to all ~ croscopy(TIRM) which has been introduced by the group of
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Prievel®12TIRM is based on the scattering of a single par-1l. EFFECTIVE WALL-COLLOID INTERACTION
ticle that moves inside an evanescent field which is formed ak pgisson—Boltzmann theory
an interface by total reflection of a laser beam. It has been ) ] .
demonstrated by several groups that TIRM allows the pre- N this theory section, we seek to calculate the effective
cise determination of double-layer repulsion potentials beinfcgracgon bletween t\lllvob“kﬁ charged gb_JeCts' a sbpheréca(\jl iml
tween a particle and a flat wall. For thin, slightly overlapping oid and a pianar wa, oth immerse N an unbounded L:
. . . ; .electrolyte solution. The sphere of radiadearsZ negative
ion clouds, the double-layer interaction potential of a spheri- . . -
. . . chargese at its surface, while the confining wall has a sur-

cal particle at a distanck above a charged planar wall, is f . .

) . : I S ace charge density of eoy. The distance from the center
given by a simple exponential functioa™ “", with the

. . o of the sphere to the surface of the walhisln the vicinity of
screening parameter given by the salt concentration in the these objects, the net charge density distributiofr)

system. Indeed, such an exponential dependence of th§p+(l’)—p,(l’) of the electrolyte ions is inhomogeneous. In

double-layer repulsion has been found in several experiments ean-field approach, the density distribution of both the

employing TIRM**~** A precise determination of surface positive and negativémonovalentionsp.. are related to the

charges or surface potentials, however, is difficult when uspgormalized electrostatic potentidh through p.=pe™?.

ing the standard data evaluation of TIRM. Far away from both surfacep,. approach their bulk value
In the present paper we introduce a more elaboratg  so thatp(r) then vanishes. The potentid@l is the solution

method to analyze TIRM data which additionally considersto the Poisson—Boltzman(®B) equatiort®

that the prefactor of the exponential function in the wall— 5 5

colloid interaction potential is not constant, but a complex v ®=«"sinh®, @

function of x. The purpose of this paper is to show thatnere k2=8m\gps is the screening parameter characteriz-
accurate values for surface charge densities can be obtainﬁqg the electrolyte solution\g=e€?g/e the Bjerrum length

if the kappa dependence is carefully analyzed. This opens Ugg=1/kT), and € the dielectric constant of the solvent.

a convenient way to measure surface charges via double- The charges on the surface of the sphere and the inter-
layer forces on a single particle which may complementface enter the calculation through the boundary conditions.
other more established methods like those mentioned aboveet us calldG,, the boundary given by the interfacial wall at
Besides a good estimate of the surface charges of wall are=0, ¢G the surface of our colloid an@ the region of the
colloid, our data represent a direct experimental confirmatiorlectrolytic solution between both surfaces.#&: we then

of the theoretical wall—colloid interaction potential which require the normal component of the electric field to be equal
has been originally suggested by Verwey and Overdak. to the colloidal surface-charge densityc=Z/4ma?

the theoretical section of this paper, we interpret this wall-(constant-charge boundary conditipwhile atJG,y we are
colloid potential as resulting from the interaction of a point- faced with the more complicated boundary condition,

charge with the unperturbed double-layer in front of the
charged wall. The point-charge representing the colloid can
thus be regarded as a test charge which probes the unpevhere€’ is the dielectric constant of the wall material at
turbed double-layer. Seen in this way, our measurement o&0. In general, this boundary condition is not easy to satisfy
the effective wall—colloid interaction potential can also bein a PB problem, even in a full numerical treatméhSince
understood as an indirect measurement of the unperturbede are here concerned with an aqueous electrolyte solution
double-layer. This double-layer in front of a planar wall canhaving a dielectric constante(=78) that is more than an
be calculated from the nonlinear Poisson—Boltzmann equarder of magnitude larger than the dielectric consteinof

tion, one of the very few cases where this can be done andactically every possible wall material, we may assume
lytically. This approach, known as the Gouy—Chapman?'/f—’O- We then know the abso!ute vfellue of the e!ectric
solution* belongs to the fundamental building blocks of the fiéld atz=0 to be given byo, . Using this approximation,
classical theory on double-layer forces. we here consider a limit where image charges are fully

The paper is organized as follows: First we derive theSWitched ort” Our first task thus is to solve the following

effective interaction between a colloidal sphere and a ﬂapoundary value problerBVP),

€9,®| =04 — € 9, D|,—g_=4meNgOW, (2

wall from the grand canonical potential. Applying approxi- V2P (r)=k?sinh®(r), reG,
mations suitable for our experimental range of parameters
results in an analytic expression for the interaction potential nNwV®=47m\goyy, redGy,

as a function of surface charges, Debye length, and separa- B
tion distance. Then the principles of TIRM are reviewed and NcV®=4mhgoc, redGe, )

the relation between surface charge and measured potentig{feren,, andnc are two unit vectors directed normal to the
is clarified. Next the eXperimental results are presentEd anQJrfaceS of wall and colloidal SpherE, respective|y, and point_
compared with our theoretical predictions. It follows the cen-ing into the regionG. The position of the boundagG in

tral idea of this work, the determination of surface chargegq. (3) still depends on the distandebetween the colloid
densities from interaction potentials. After a brief discussionand the wall. For one specific value lof we have one BVP

of our results, we conclude with a short summary of the mairto solve. In the following, we writ&,, whenever we want to
points of this paper. stress thatb depends on the parametler Once we know



d,,, we can compute the grand potential of our systsimce For our purposes, E@7) cannot be used as it stands, but
the electrolyte solution is unbounded we work in the grand+equires two modifications. The first of these concerns Eq.

canonical ensemble (8), the potential of the isolated wall in linear approximation.
1 This is correct if® <1, which is valid in a very small region
th:mf dr(Vd,)? of the parameter space only. A simple remedy for this defi-
BJG

ciency is to replac&; of Eq.(8) by the well-known Gouy—
Chapman solution to the nonlinear PB problem of a double-

+ E drp,(logp,A3—1) layer near a planar charged wall,
a== G
®,(z)=4 arctane™ ““tanH d/4)), (9)
— _ _ pWSE
der('B“S(p* Tp-)=2ps) = W ) \Wwhered, is the wall surface potential. The derivative of this

] o - 3 potential with respect taatz=0 is, — 2« sinh®,/2, which
which by substitution ofp.=pse™"" and Bus=10gpsA”  according to Eq(3) must be equal to #\gay,. This leads
becomes to the Graham-equatién relating surface charge densities to

1 ) surface potentials,
Bﬂh=8ﬂ8f6dr[(vq>h>

477)\BO'V\//C:_2K Sinf’(fbw/c/Z). (10)

+21?(®p sinh®y, —cosh®,+1)]— BWSE (5)  The two subscrip€ andW are introduced, because this ex-
The last term BWSE=Z2\p/2a, is the Coulomb self-energy pres_sion will be used for_ the surfaqe—charge/surface—potential
of the colloidal charges, which we have subtracted for latefelation of both the colloidalsubscriptC) and the wallsub-
convenience. Througtb,, the grand potential is, of course, SCTiptW) surface. For a convenient notation, we use &@)
also dependent on the parameter The effective wall— to define the following twoy factors:
colloid interaction potentia3V(h) can now be defined as 1
the total change of the grand potential when the colloidal yW,Cz|tanh<I>W,C/4|:tan>'{§arcsin
sphere is brought frore to a finite distancér. Hence,

BV(h)=B(Qp— (L), () . . N
which we will view as a function ok~ =, further below. If
With the numerical solution of Eq3) inserted in Eqs(5)  xz>1, Eq.(9) becomes

and (6), we have thus arrived at the effective interaction
potential in full nonlinear PB theory. Our technique to solve ~ ®1(2)=—4yue %, (12)
Eq. (3) (subtraction of Gouy—Chapman solution, bispherical
coordinatesis described elsewheré.

11

2TNgOWIC
K

becausey,, cannot be larger than one.

The second modification concerns the limida—0
which is certainly not realized in our experiment. We here
may replace the bare colloidal charge by a renormalized
effective charge, a heuristic procedure which is well-known
If the normalized potentiab is smaller than one every- from the theory of effective colloid-colloid interaction in

where, we may linearize the differential equation in B2).  pulk?® Equation(7) may then be used also for finite values
The resulting BVP can be solved in the limia— 0 (point- of ka provided one rep|aces the bﬁd)y

like colloid), and Egs(5) and(6) then result in the effective

B. Approximate interaction potentials

interaction potential in linear theorigee Appendix _ Zek® (13
72\ 2% 1+ ka’
z=h
=— o+ . . . o
AV Z04(2)[;-= 2 2h @ If in addition to this finite size effect, the surface charge

| density of the colloidal particle is too high for the lineariza-
"tion approximation to hold, one may hope to capture some
nonlinear effects by representing the spherical double-layer
around the colloid by that of a planar wall, E{.2). For-
mally, this can be done by renormalizing the charge yet an-
other time, thus replacing by

Here®d, is the potential of a double-layer of an isolated wal
which in linear theory is

Agow Kz

[see Eq(A7)]. The interpretation of Eq(7) is obvious: The
first term, dominating for largeh and strong interfacial a

charges, is just the electrostatic energy of a point-charge Zeff:)\_B47CeKa: (14
—Ze interacting with the unperturbed double-layer of the

charged wall, while the second term is the screened interacsee Ref. 21.

tion between the point-chargeZe at the positiore=h and Inserting now the effective charges of E¢E3) and(14)

its own image charge being locatedzat —h. Their distance and the potential of Eq.12) into Eq. (7), we finally obtain
hence is & which explains the factor 2 in front of the wall- two expressions for the effective wall—colloid interaction,
sphere distanch in Eq. (7), see Ref. 19 for the explanation which are valid in different regions of thecg, «h)-plane.

of the prefactor. These are



L e nificant in our parameter regime. Without this term ELf),
PB ] divided by the factor 1&ycyw/\g, then reduces to the
approx. form. ===--=-=-- : same exponential functioa™ ("~ for all three values of
x(hes) g xa. The dashed lines in Fig. 1 are the interaction potentials
e ] obtained from Eq(15), which show for all three values of
xa good agreement with the PB based interaction potential
over a remarkably large(h—a) range. It is evident from
this figure that with increasinga both the PB based inter-
0.010F E action potential as well as the interaction potential of Eq.
C ] (15) approach the straight line corresponding to the interac-
tion potential in Eq(16). Closer inspection of the prefactors
in Egs. (15 and (16) show that for our value of¢ both
interaction potentials become identical in the lima—c°.
10 20 30 40 50 60 70 We can draw two conclusions from Fig. 1. First, for
k(h-a) xa>10 andk(h—a)>2, the difference between the full PB
interaction potential and the approximate expressions of Eqgs.
Fh'G- 1d_ﬁcfgﬁitdc—c‘)’l‘ig:hg}tzficéirgnr;);tieqtriisaicncffggci? tﬂti C?f;ﬁig f00f(15) and(16) is marginal. Since, in all our measurements the
:e:]?iZISIEZsuS) (dashed ﬁne)sand(lé) (line Wituh fiII)(led circles,pgre tested P value 9f ka remains always well above 10, both interaction
against the potential that is based on the solution to the full nonlineaiPOtentials Eqs(15) and(16), are reasonably good under our
Poisson—Boltzmann equatidthick solid line. experimental conditions. In the following, we will use Eq.
(16). We, secondly, realize that image charge effects in our
parameter regime are not to be expected; we therefore may

T Ag)
:

BV/(6a

0.001

BV(h)= zew Ayye Ze” \ge 2 (15  drop the second term in E¢16).
1+ka l1+ka 2 2h So far, we have only considered the contribution of the
and double-layer force to the effective wall-sphere interaction
- potential. In our experiment we study a colloidal sphere
_ _h wa—2xh which is located at the bottom of a glass container, and
pV(h)=4 \g vel4ywe Tt ycee 1 (18 which is thus pressed by gravitational forces against the
The conventional way to derive EQL6)—briefly outlined in double-layer. The gravitation potential reads
the appendix—is more diréct making use of the well- Amrad
known Derjaguin approximation. However, we emphasize  BVgalh)=—3—09(pspi~ pw)(h—a)=Ger(h—a),
that this derivation gives only the first term in EG6), while (17)
ours leads also to the image-charge interaction t¢s@sond
term in Egs.(15) and (16)]. with pg,n and p,, being the density of the sphere and of

water, respectively. Another contribution to the total poten-
tial comes from the short-ranged dispersion interaction,
We give a more elaborate derivation of these potentialsvhich in our experiment, however, is important only under
in Ref. 18, where we have also carefully tested in what reigh salt conditions. We take Hamaker’s linear superposition
gion of the four-dimensional parameter spaceformula}
(ka,xh,on,0c) these potentials represent a reliable ap-
proximation of the potentials based on the exact solution to BVgisdh)=—
the nonlinear PB equation. To check if and how good Egs.
(15 and (16) work in our specific case, let us concentrate
here on a set of parameters that are typically realized in o
experimentgcf. data plots further below These parameters

. — —-1__ _
are: \g=0.72nm, «~'=100nm, 0y,=0.0007C/M, og been calculated according to Bevan and Priévgoth con-

=0.0001 C/r, ".de K(h_a). ranging approximately _be- tributions, Eqs(18) and(17), are to be subtracted from our
tween 2 and 10 in our experiment. Using these values in Eqsrheasured otential in order to extract the double layer inter-
(3), (5), and(6), we calculate the interaction potential in PB P Y

S : : faction potential which—after all the considerations of this
theory and compare it with the approximate potentials Osection—we expect to obey the following simple relation:
Eqs.(15) and (16) in Fig. 1. P y g simp '

Shown in this figure are the interaction potentials in a 16a
logarithmic plot for three different values af. To facilitate BV(h)=~—rcywe" wh=a), (19
a direct comparison, we have dividgd/(h) by the prefactor 8
of the first term of the potential in Eq16), 16aycyw/Ag,  The prefactor of the exponential in EGL9) depends onx
and plotted it as a function of(h—a). Plotted in this way, and thus on the salt concentration of the electrolyte solution.
the potentials of Eq(16) for all three values oka collapse We see from Eq(1l) that the prefactors of double-layer
onto the same straight lindéne with filled circles in Fig. J, potentials at different salt concentrations are interconnected,
which shows that the image-charge term of Ef) is insig-  with the only open parameter being the surface charge den-

C. Experimentally accessible interaction potentials

A(h) [2a h+a | h+2a 18
6 | hhtza 9 [0 19

which Bevan and Prievésuccessfully used to interpret their
YfIRM data of sphere—wall interaction potentials in the high-
salt limit. The retarded, screened Hamaker conségh) has



sity of the wall and the sphere,, ando . This brings us to cc
the main point: If we measure a sequence of interaction po- g, Camera
tentials for a variety of different salt concentrations and ex- %, A

o ) %
tract the double layer contribution, we can determifygand %,f
o by a systematic analysis of thedependence of the pre- <efj~?j;j%e
factors in Eq.(19). This is the central idea of this paper. | n |

< U Beam splitter

Il. THE EXPERIMENT |

S Optical filter

Double-layer potentials have been measured by using e S
TIRM, which has been described and reviewed in a numbey Photo-
of previous publications and will here discussed only in | MutiPier
brief.1%-12 When light is totally reflected at an interface an Dichroitic V .
evanescent field is created whose intenkifgcays exponen- mirror A Upper optical
tially with distancez perpendicular to the interface, tweezer 532 nm

I(2)=10e"%, (20 P
Microscope

wherel is the intensity of the evanescent wave at the inter- optics LD
face @=0) and ¢ is the inverse characteristic penetration 50x
depth of the evanescent wave,

; NNy -1 @

= " Cell d Inlet I_—I
4m(Si? ©—(n,/np)2) 2 Prs | 8 g

with \ the wavelength of light in vacuun®) the angle of
incidence, andh; andn, being the refractive indices of the
solvent—glass interface. If a colloidal sphere of radiuis
brought to the positioz=h inside this evanescent field, it *
scatters the evanescent wave with an intensity which is & Lower optical
loe €~ see Refs. 23, 24. Thus the scattered intensity, tweezer 532 nm
which fluctuates owing to Brownian motion, determines sen+FIG. 2. Sketch of the experimental setup. The scattered light of the colloid
sitively and instantaneously the wall—colloid distariteln is_imaged onto a CCD camera and focused onto a photomultiplier by a
order to obtain the spatial dependence of the potential enerﬂjg.qscc’pe optics. An upper and a lower optical tweezer are focused by
. . . itional lenses on the particle and serve to manipulate the colloid.
of the particle one has to measure the separation distances
sampled by the colloidal sphere for a statistically long period
of time. From this, the probability distribution of finding the pletely deionized corresponding to a conductivity of 0.07
particle at any separation distance can be calculated which jgS/cm which is close to the theoretically expected value of
directly related to the potential energy via the Boltzmannpure water.
distribution. To determine the origin of the distance scale, we  In addition to our conventional TIRM-setup we used two
have referred the measured intensities to the scattering intepptical tweezer€ which were directed onto the particle from
sity of a particle that stuck to the substrate. the top and the bottom of the cell, see Fig. 2. The idea of
Since the experimental setup, see Fig. 2, is similar to thatising light forces to control the movement of the particle has
described earliet! we will refer to the technical issues here been introduced to the TIRM method by Brownal?® and
only in brief. As a light source we used a 10 mW HeNe laseWalz et al?® In our case both tweezers were formed by a 200
with a wavelength ofA =633 nm. The angle of incidence mW frequency doubled Nd:YAG lasek &£532nm). As the
was chosen in a way that the characteristic decay lefgth  upper tweezer we employed a strongly focused laser beam
the evanescent field was 250 nm. The sample cell which wasith an adjustable intensity of 50-150 mW. This tweezer
composed of two parallel optical flats of silica with an served to hold the particle tightly in the view-field while
O-ring in between was optically matched to a glass prism. Irexchanging the solvent in the sample cell and allowed us to
order to control the salt concentration in the cell, it was conperform measurements at different salt concentration with
nected to a closed circuit with Teflon tubes. This circuit con-the same particle. The other optical tweezer coming from the
tained also a conductivity meter, a storage container, a perbottom was only moderately focused by && 40 mm lens
staltic pump and a vessel with ion exchange resin whicltand operated at much weaker intensite800 wW. It only
allowed to control the Debye length in the systés par-  served to restrict the lateral movement of the particle during
ticles we used surfactant free monodisperse polystyiieBe the measurement but was too weak to induce a noticeable
latex spheréS of 10 um diam and 3um diam silica vertical light pressure on the particle. The latter was con-
sphere® which were suspended in water. In order to guar-firmed by measuring potentials at various laser intensities
antee that only a single particle was in the field of viewand comparing them to measurements without the tweezer.
during the measurement, only highly diluted suspension$leasurements at different salt concentrations were per-
were used. Prior to the measurement the solution was confermed by adding small amounts of NaCl solutions to the

> Focussing lens f=40 mm
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FIG. 3. Total interaction energgV,(h) for a 10 um charged polystyrenéPS particle in front of a silica surface as obtained by TIRM. Plotted are the
measured interaction potentigly,,(h) as a function of the wall—particle distanbe-a, for ten different salt concentrations between'=10 nm and
«~1=100 nm (symbol3. Since each potential is a sum ofkadependent double-layer contribution at short distances ardndependent gravitational

contribution at larger distances, all potentials approach the same limiting straighddisieedl given by G 4(h—a). Fitted curvegqsolid lineg are B8Vy;(h) as
explained in the text.

circuit and gently pumping until the conductivity meter indi- since TIRM determines potentials relative to an arbitrary ref-
cated a constant distribution of the salt. The value of theerence value. However, since at very large distances double-
conductivity meter agreed to the amount of added salt anthyer forces are insignificant, all potentials in Fig. 3 have to
allowed to calculate the Debye screening length within arconverge to the sheer gravitational contributidy. (17)]
error of 5%. After equilibration the upper optical tweezer

was turned off and the particle was held in the middle of the

field of view during the measurement with the lower twee- 20——F———T——T——=— T T
zer. In order to exclude effects due the possible inhomoge- &

. . r W B o K'=96.4 nm
neity of the substrate, all potentials were measured at the i % o =761 1m
same position over the substrate. 16 - a%& R & ¥'=702nm

kS N é %2 % v «'=59.6 nm

v % o «'=50.6 nm

IV. RESULTS AND DISCUSSION —_ W o ® % %9% % < x'=44.9nm
< 10 - ‘;o . £ > '=388nm

Figure 3 displays the measured total potenti@g,, = : v ; % ° K::T?Z.an

i.e., the sum of Eqg(17), (18), and(19), for the 10um PS s % Y e
sphere, for ten different Debye lengths ranging between 1C 5t “’%Q% -

nm and 100 nm. At higher salt concentrations the particles

stick to the surface due to attractive dispersion forces. All [ Mg o
potentials have a very similar shape: towards larger distance o 0 : )

they increase linearly, because gravity is the dominant force L. L

acting on the particl¢Eq. (17)]. At smaller distances repul- 5 * (?1-a) 7
sive dOUble_layer interaction and attractive dISperSIOn forceIEIG. 4. Effective double-layer potentials between a glass surface and a PS

bEtV_Veen th?_ particle and the _Wa” become importgnt._ Thephere, obtained from the data in Fig. 3 by subtractiFigdependent con-
vertical position of the potentials are not knovanpriori tributions due to dispersion and gravitation forces.
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FIG. 6. Potentials of Fig. 4 divided by, y. in a logarithmic plot. All
FIG. 5. Prefactors in the functionBe ("~ as obtained from a fit to  potentials collapse on the simple functiona®s“"~®/\y (solid straight
data like those of Fig. 4. Values f@ are divided by 168/\g so as to line).
facilitate a direct comparison to the theoretical functiggyc over 1 in
Eq. (11) (plotted as solid ling Shown are data for a PS sphere over silica,
and for a silica sphere over silicaset figurg. To demonstrate how sensi-

tive our method is, the functio is pl for three val f th ;
colloidal surface g:harge denzr)gzzo.ggggg, ;C:toi)%of, ut;idoact ® also de_pends OR.’ and !onlng back to EqS{Jfg) and(1D),
—0.00015. we realize that this additional dependence arises from tke
dependence of the twpfactors. In the following we use this
x dependence to determine surface charge densities.
which is plotted as a dashed line. Accordingly, if the poten-  To proceed we divided the prefactors obtained from fit-
tials are fitted to the function8Vgsy(h)+BVs(h) with  ting the curves in Fig. 3 by E\g and plotted them in Fig.
BVasfh) from Eq. (18) and gVy(h)=Be “(""¥+Gey(h 5 as a function ofx 1. According to Eq.(19), our data
—a)+ BV, usingB and BV, as fit parameters, then the values should be described by the functigg,(x 1) yc(x 1) [both
of V, can be used to relate the vertical positions of the podependent o1, see Eq.(11)]. Using oy and o in Eq.
tentials with respect to each other. Further below thée-  (11) as adjustable fitting parameters, we could in principle fit
pendence oB is discussed in detail. these data points to the functiopy(x 1) yc(x~1). This,

As expected, the mean colloid—wall distance decreaselsowever, would lead to surface charge densities with large
with decreasing Debye length. In addition we observe thaerror bars, and it would not be clear, which of the obtained
the left branch of each potential becomes steeper with deralues one has to attribute to the wall and which to the col-
creasing Debye length, a feature that is to be expected froieid. Alternatively, we replaced the PS spheres by particles
the exponential of Eq(19). To show that dispersion forces made of the same material as the glass surface, i.e., silica,
here play a rather marginal role, we compare our data ndtecause thenyy(x~ 1) and yc(x~ 1) are identical which
with BVgisf(h) + BVsi(h), but with the functionsgVg(h) simplifies the problem to a single fitting parameter. The re-
(solid lines in Fig. 3. For k" 1=30.6 nm, the solid curves of sulting surface charge density of the silica surface can then
the functiongBVy;(h) lie always on top of the data, and it is be used for the analysis of the PS data. We usgth3silica
thus clear that the dispersion forces are insignificant for thispheres, and analyzed the data in the same way as described
distance regime. Only for the two curves closest to the wallabove. The result is plotted as open symbols in the inset of
a small difference betweefiVy(h) and the data can be ob- Fig. 5. Fitting these four points to the functioyﬁv(xfl)
served. This now shows the contribution of the dispersiorgiven in Eq.(11), we determine the surface charge density of
forces, which is obviously small compared to all other con-the wall to oy=0.0007 C/m. Inserting this value in Eq.
tributions. Plotting B(Vgiss(h) + Vii(h)), we would obtain  (11), we obtain the solid line in the inset of Fig. 5. This value
curves that coincide also for the two curves closest to thés in excellent agreement with those obtained by Dundtein
wall. from electrophoresis measurements, who found a surface

Since in the following we will concentrate on the charge density ofr,=0.00065 C/rA.
double-layer repulsion, we subtracted gravitation and disper- ~ With the knowledge ofy,,, we now can determine the
sion contributions from our data, i.e., Eqd.7) and (18 surface charge density of the PS spheres using(EL).to
which contain no open parameter. As a result, we obtain Figoc=0.0001 C/mi. The fitted curveyyyc from Eq. (11) is
4 with the bare double-layer potentials, plotted as a functiordisplayed in Fig. 5 as a solid curve. To demonstrate how
of k(h—a). Provided that Eq(19) is the correct potential, sensitive our method is, we have added two curves of the
we expect the experimental potentials to have all the samsame  function with ¢¢=0.00015C/A and o
exponential factor exp{h—a)). If this were the onlyx de-  =0.00005C/mi. The theoretical and experimental data
pendence of the double-layer potential, all curves in Fig. 4how in particular at higher values af * good agreement
should fall on one common curve. However, as is evidenaaind indicate that in both experimerfBS and silica spheres
from the plot, this is not the case: Obviously the prefactorour data can be well described by Efj1). We conclude that



with the method proposed here, surface charge densities caharge densityr,,. To be distinguished from the OHP is the
be determined withint30% roughly. shear plane which separates the hydrodynamically immobile
The agreement observed in Fig. 5 also implies that ouliquid that moves together with the surface from the mobile
measurements are in good agreement with the theoreticiitjuid which has nonzero relative velocity with respect to the
double-layer potential of Eq.19). This can be seen by di- surface. The-potential refers to this shear plane and is thus
viding the potentials of Fig. 4 each by its value ¢f,yc  an useful approximation to the real surface potential only if
which is a quantity known now for every. It follows from  the OHP lies sufficiently close to the shear plane. That, how-
Eqg. (19 that the potentials scaled in this way, should all haveever, is not known. In our TIRM method, on the other hand,
the same prefactor &6\g. In a semilogarithmic represen- the position of the shear plane is insignificant. One might
tation, this means that all curves should appear as straiglrgue that also in our experiment, one cannot be sure if one
lines having the same slope and intersection. This is indeeaheasures the “true” surface charge density right at the OHP
confirmed by Fig. 6, where we see all potentials collapsingdr an apparent surface charge density at any other plane.
onto one common master-curve. This proves that &) However, the distinction between true and apparent charges
correctly describes the double-layer interaction between this of no importance, as long as we deal with those charges
wall and the colloid. The small deviations of the experimen-that determine the physical properties of the colloidal sus-
tal data from the master curve are attributed to an approxipension, i.e., those that are relevant to such effects as the
mate error of 5% in thex-values derived from our ionic formation of colloidal crystals, wall crystallization or the sta-
conductivity measurements. Another possible systematic epility of dispersions. These charges are, indeed, what we
ror enters through the determination gf, because it was have measured by the TIRM method proposed here; its main
assumed that the surface potentials of the silica substrate agdvantage thus lies in the fact that it measures an dynami-
the silica bead are equal. Even if the same material is used, ¢@lly unperturbed double-layer in equilibrium.
is possible that differences in the nanoscopic surface struc- The BVP in Eq.(3) is set up using constant-charge
ture of the optically polished substrate and the.® bead boundary conditions. Likewise, the effective interaction
can cause differences in the surface charge density. The sutotentials—the numerical one as well as the analytical one in
face charge densities found for the PS sphere are of the sarfiél: (19—are based on the assumption that the surface
order of magnitude as for silica. Since the surface charge dharge density on both wall and colloid is a constant and
PS strongly depends on the details of the production procesd0€es not depend on the salt content of the electrolyte. In
we cannot compare our result to the values found in literaPrinciple, there are two different ways by which the charge
ture. Relating information on the surface charge density hadensity at the surfaces can be affected: by adsorption of ei-
not been released by the manufactdrer. ther H" or Na" cations. Since the experiments were per-
Finally, we would like to make some general remarks onformed at fixedpH(pH=6.5+0.5) for all « values, the de-
the TIRM method and how it compares to conventional9'€€ of dissociation of the surface groups is always the same.
methods. The reason, TIRM achieves a higher resolution i#f? fact, at thepH value chosen here, the sulfate groups at the
force measurements than conventional AFM is largely due t§S surface are completely dissociatéQuite another point
the fact, that during TIRM experiments the system remaindS the adsorption of cations on'Fo th_e surfaces; while this is
under equilibrium conditions. Only then, the particle fluctua-likely to be true for polyvalent iont seems to be rather
tions allow the precise determination of the potential energy!Nlikely in case of the monovalent salt ions chosen in our
In contrast, during an AFM measurement, a piezo exerts §xPeriment. Therefore, the assumption okandependent
force onto a cantilever which then leads to nonequilibriumStrface charge density is fulfilled to a good approximation.
conditions. To obtain the force in an AFM experiment, one  Finally, we want to mention that the data plots of Fig. 4
has to measure the bending of the cantileeeg., by a light-  €an also be regarded as an indirect measurement of the old
deflection method The accuracy of such a measurement,GOUy—Chapman potential, Eqe) and Eq.(12). We have
however, is limited by thermal fluctuations which tend to S€€N that the potential of EQLY) is the product of the effec-

disturb the signal and thus limit the force resolution to abouf!Ve colloidal chargeZes=—4ayc eKah‘_B’ see Eﬂ;(zl‘_l)’ and

50 pN in conventional AFM® The resolution of TIRM, on  th€ Gouy—Chapman potentiaby(z) = —4ywe * in Eq.

the other hand, has been demonstrated to be as low as 10 fi2): @nd can thus be understood as resulting from the inter-
tion of a point-charge of effective chargg; with the

see Ref. 37. It should be mentioned, that very recently th&¢ . .
basic idea of using thermal fluctuations to obtain surfacé‘nperturbed Gouy—Chapman layer. The colloidal sphere is

potentials has been also applied to ARMt has been dem- therefore nothing but the “test charge” by means of which

onstrated that if a tip is brought close to a surface immersed® have pro'bed.the Gouy—Chapman potgntlal, and QeV|S|on
in an electrolyte, its movement is governed by the sum of thé)f the, data in Fig. 4 by t.he charge of this test particle re-
harmonic cantilever potential and the tip—surface interaction§lJItS n data measuring directly the famous Gouy—Chapman
To compare our method to thepotential measurements potential.
of surface potentials, we have to recall that the surfac
charge is created by ionized surface groups and by ion
tightly adsorbed in the Stern lay®iThe plane of closest A double-layer in front of a planar wall that has a sur-
approach of the ions from the diffuse part of the electricalface charge density af,,, creates a electrostatic mean-field
double-layer is called the outer Helmholtz plai@HP). All potential of—4yye™ %, wherey,, is a complicated function
ions on the wall-faced side of the OHP make up the surfaceef o/« [Eq. (11)]. Probing this potential with a colloidal

. SUMMARY



test charge at=h that itself has a double layer gives anotherlt is evident that the sum of these two BVP’s again result in
vc factor and one arrives at an interaction potential that goethe original BVP of Eq(3) (in its linearized form, and that
with ycywe “". The productycy, depends orry,/x and  the solutiond can accordingly be obtained from the sum of
oclk, i.e., on the surface charge densities of the colloidakb, and®,.

test charge and the wall. In this paper, we have carried outan What effect has the linearization approximation on the
accurate TIRM measurement of the wall—colloid interactiongrand potential, Eq5)? Using Green’s first identity to trans-
potential for a sequence of different Debye-lengths, and thutorm the volume integral ove¥ ®2 in Eq. (5) into a surface
determinedycy as a function ofk “1. We have done that integral plus a volume integral and realizing furthermore that
for two types of colloidal particles, silica and polystyrene, ® sinh®—2(coshd—1)~0 if ®<1, we obtain

and found good agreement between the experimental data
and the theoretical prediction for the functigg y,, with

f dS-V(I><D+f dS~V<DCI>}—,8WSE,
Gy G

ow ando¢ being the only two fit parameters. We have dis-  8m\g
cussed the numerical values of the obtained surface charge (A3)
Szgts;?iii’ and showed that they are in accord with one’s Xvhich by using the boundary conditions of E§) reduces to
The functional dependence of the colloid—wall interac- ow oc
tion potential has been measured with TIRM before. Here3{)=— TJ:;G dsSP— TJ[JG dSP — BWSE, (A4)
w C

we took thex dependence of the prefactor of the exponen-

tially decaying double layer repulsion explicitly into account we thus see that, in linear theory, the grand potential reduces
which then leads to a precise determination of surfaceo just the electrostatic energy of the system, that is the en-
charges. In the standard TIRM-data evaluation? how- ergy which the colloidal ¢¢) and interfacial chargesogy)
ever, this dependence is neglected, because the prefactor gfve in the mean-field potentidi. Placing now the sun®

Eq. (19) is typically expressed in terms of the position of the =@, + @, , with &, from the BVP of Eq(A1) and®, from
potential minimum formed by double layer and gravitationalthe BVP of Eq.(A2), into Eq.(A4), we find

forces. If that is done the dependence on the surface charges

ow and o is eliminated from the data, and valuable infor- Ow

mation about the surface is lost. pL==—" ﬁGWdS(‘DlJF ®,)

g
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symmetry about the line joining the centers of the colloidal
particle and its image, we have two spatial variables in our
problem. These variables azeands, with z being the coor-
APPENDIX A: LINEAR THEORY dinate along this symmetry line, arsdoerpendicular to i}.
The energy of the colloidal charges in the potential pro-

In th_e following we o!erive Eq(7), i.e., an approximate duced by the wall surface charges equals the energy of the
expression for the effective wall-sphere potential, from EqsWaII charges in the potential due to the colloidal charges.

(3) and(5). Let us consider the case when both the colloida _

and the interfacial charge density is small enoughlfdo be 'Thgrefore, UWI‘?GWdSqDZ_ GCI".GCd.S(.I)l' by means  of
everywhere smaller than one. This allows us to linearize thé‘vhICh Eq.(A5) can be further simplified to

PB equation, i.e., to replace sifhin Eq. (3) by ®. Since the ow oc

resulting Helmholtz equation is a linear equation, we can BQ=—— dsb,— — dS2d,+D,— D).

split the BVP of Eq.(3) into two separate BVP’s, namely, a 2 Jiow 2 Joee (A6)
BVP for a potentiald,
V20 ,(r)= k2D (r), reG, This expression is used further down to derive the interaction
potential.
NWV®,=4mhgoy, IedGy, Let us now discuss the solution of the BVP’s in Egs.

(A1) and(A2). With Eq. (A1), we have formulated the BVP
ncVad;=0, redGe, (A for an uncharged colloidal sphere of vanishing dielectric
and one for a potentiab.,, constant brought into and thus perturbing the ion double-
5 5 layer of a charged wall. We neglect these steric effects and
VEDy(r)=kDy(r), TreG, assume in the following that this perturbation has little effect
NV ®,=0, F e dGy, on our results,.\{vhiclh is equivalent to ignoring thg second

boundary condition in Eq(Al) (a good approximation for

NcV®,=4mhgoc, redGe. (A2)  reasonably largd). The solution of Eq(Al) then is



NgOw if the plates are a distancexapart from each other. As we
—KZ . . . .
e " (A7) have assumed that the interaction is small, the electric poten-
tial midway between the plates will also be small, so that

The second BVP, E4A2), is more difficult to solve. Only in ®i<1. Therefore, the pressure is approximately,
the limit ka— 0, there exists an analytical solutidh,

Py(2)=—4m

BP(X)=2p4(COSH P i) — 1)~ D7 (B3)
o0 I ~ ~
®h(s,2)= —Z)\Bxf dIJO(KSI)Tf(e”“Z’h‘I +e Kzrhly Inserting this in Eq(B1) and performing the integral gives
0
(A8) e—ZKD
- BF(2D)/ A= 64P572 PR (B4)
with T=(1+1%)Y? and J, being the Bessel function of the
first kind. To come from this plate-plate free energy to the effective

Note that®! depends on the position of the colloid sphere—plate interaction, we have to make use of the
while @, in our approximation does not. Returning now to Derjaguin approximation leading to
Eqg. (A6), we recognize that, due to this independence, the

first term of Eq.(A6) drops out when we calculaigV(h) ,8V(h):27rafx BE(Y)/A,Ldy= @yze"‘““a),
=B(Qy,—Q,). In the limit ka— 0, the interaction potential h-a Ag
then becomes (BS)
7 which is the interaction potential of Eq19). We thus see
BV(h)=— = (2d;+ Ph—df) 22529, (A9) that it is based not only on the Derjaguin approximation, but
also one the assumption that two unperturbed Gouy-—
which by using Eq(A8) reduces t& Chapman solutions for isolated walls can be superposed to
72\ g~ 2«h describe the electric potential between parallel plates.
BV(h)=—Zd,(2)|=" + B - (A10) If the surface charge density of the sphere differs from
2 2h that of the plate, i.e., ifyw# yc, this derivation must be
where®, is the potential given in Eq(A7). modified. The problem is that the electric field at the mid-

plane is no longer zero, but contributes to the pressure. An
alternative way is to calculat8F/A ¢, by

APPENDIX B: ALTERNATIVE DERIVATION BF(2D)/Arei= — oy®c(2D) — ocP(2D), (B6)

OF THE INTERACTION POTENTIAL which is the electrostatic energy of the colloidal charges in

It is instructive to recall the conventional way to derive the double layer potential of an isolated wall and vice versa,

the interaction potential of Eq19), given, for example, in  Pwic=—4Ywice KZE_)' To account for the entropic contri-
the book of Verwey and Overbeék We first consider the butions of the microions to the freg energy, we have to take
interaction of a sphere and a wall, both made of the sami€ apparent surface charge densify . instead of the real.
material and having the same surface charge density, whef'€ latter we obtain by identifying the potential in linearized
exposed to an aqueous electrolyte solution. Let us begin b{Pm Ed. (A7), ®yc= —Amhgaiyce 2Pk with Qe

writing down the free energy per ar@f/A., for two par- = —4ywice”*°, from which we obtain
allel plates made of this material. If these plates are a dis- , KYwic
tance D apart from each other, then TWe= TN (B7)

,8F(2D)/Area=2jwp(x)dx, (81)  The free energy per area then becomes

? 8K7W7C — 2D _ e_ZKD

wherep(x) is the pressure in the electrolyte solution when IBF(ZD)/Area:W—)\Be =64psywrc—
the plates have a relative distance of Zhe pressure of the (B8)
system in such a symmetric case, can most easily be calcy- . . .
lated at the midplane between both plates, because there tﬁgm which we finally obtain
electric field must be zero, and the pressure then is nothing o 16a
but the osmotic pressure, namely the sump of= p.e~® and IBV(h):zwajh_aﬁF(Y)/Aready: v yeywe <3,
p_=pse® minus two times the bulk pressure. Heng@p (B9)

=2ps(cosh,,q) —1). If the interaction is small, the elec-
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