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Measurement of surface charge densities on Brownian particles using total
internal reflection microscopy

H. H. von Grünberg, L. Helden, P. Leiderer, and C. Bechinger
Fakultät für Physik, Universita¨t Konstanz, 78457 Konstanz, Germany

~Received 28 December 2000; accepted 21 March 2001!

Due to double-layer forces a charged colloid suspended in an electrolyte is repelled from a
like-charged planar wall. We demonstrate that and how a precise measurement of these double-layer
forces acting on a colloid near a glass surface can be used to determine surface charge densities. The
effective wall–colloid potentials are measured using the total internal reflection microscopy
technique, and a whole series of such potentials, taken for various different salt concentrations, are
then analyzed in terms of a given theoretical interaction potential, where the surface charge densities
are the only unknown parameters. We find reasonable values for the surface charge densities of
silica and polystyrene spheres in water, and compare the proposed method with other more
established techniques to measure surface charge densities on single particles. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1371556#
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I. INTRODUCTION

Interactions that occur between charged objects
mersed in an electrolytic solution, such as colloids, micel
vesicles, and proteins, play an important role in many b
logical and physicochemical systems.1,2 In the vicinity of
charged surfaces in solution, a diffuse layer of electrol
ions forms, with a thickness in the order of the Debye scre
ing length k21. Accordingly, if two such objects having
like-charged surfaces approach each other closely, t
double layers start to overlap which eventually leads to
increase of counter-ion density in the gap between them r
tive to the bulk solution. This results in a repulsive doub
layer force2,3 being—besides dispersion and ste
interactions—one of the principal long-range forces in su
systems.

Besides its importance for the stabilization of charg
colloidal suspensions, double-layer forces are also crucia
the interpretation of ion adsorption and ion permeation p
cesses~see, e.g., Ref. 4! and for the understanding of me
chanical properties of biological membranes, the latter be
important in, e.g., membrane–membrane interactions and
suing properties like bacterial adhesion.5 The details of such
double-layers depend crucially on the surface charge den
of the charged object. In addition, surface charge dens
are also interesting because they contain important struc
and chemical information of surfaces which might lead
conclusions about the composition of such interfaces. T
article therefore concentrates on surface charge densities
proposes a new and simple method how to determine s
charge densities.

Different methods have been suggested to measure
surface charge or the surface potential of an object. Meas
ments of the velocity of charged objects in the presence
electric fields, e.g., allow the determination of the so-cal
z-potential. Several methods to determine thez-potential like
electrophoresis, electro-osmosis, streaming potential
sedimentation potential are well established.6 Common to all
10090021-9606/2001/114(22)/10094/11/$18.00

Downloaded 07 Nov 2005 to 134.34.142.23. Redistribution subject to AIP
-
s,
-

e
n-

ir
n
a-
-

h

d
or
-

g
n-

ity
es
ral

is
nd

ch

he
re-
of
d

nd

these techniques, however, is that considerable theore
input is required; in particular, one needs the relation
tween the velocity response of the particle to an exter
field and its surface potential, which usually requires a so
tion of the Smoluchowski equation. Another disadvantage
dynamical measurements in general is that, since the hy
dynamic radius of the particle is not knowna priori, the
exact relationship between the static surface potential and
dynamically determinedz potential is often not clear.

Other approaches utilize the fact that surface charges
be obtained from a measurement of double-layer forc
Probably the best known technique to study double la
repulsion forces is the surface force apparatus~SFA! which
has been developed by Israelachvili and Adams.1 However,
while this technique has been very successful in the dete
nation of double-layer, solvation and steric forces, it is e
perimentally limited to macroscopic bodies, i.e., typica
two crossed mica cylinders. In contrast, the direct meas
ment of interaction forces between a single colloidal parti
and a wall is difficult if not impossible to achieve with th
SFA. To overcome that limitation, it has been suggested
measure double-layer forces close to a flat surface by att
ing a colloidal sphere to the tip of an atomic force micr
scope~AFM! cantilever, see Refs. 7–9. In the first expe
ment of this kind Duckeret al.7 measured the forces betwee
a 3.5mm silica sphere attached to an AFM cantilever and
silicon wafer in aqueous solutions for various concentratio
of NaCl salt and showed consistency with DLVO-theory
the regime of 5–40 nm distance to the surface. Common
all AFM-based techniques is the restriction to very sm
separations where forces are strong enough to cause a d
able bending of the cantilever. At larger separations, ho
ever, ~where dispersion forces are negligible! double-layer
forces are too weak to be measured with AFM.

Another method that allows measurements on single
perturbed Brownian particles is total internal reflection m
croscopy~TIRM! which has been introduced by the group
4 © 2001 American Institute of Physics
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Prieve.10–12TIRM is based on the scattering of a single pa
ticle that moves inside an evanescent field which is forme
an interface by total reflection of a laser beam. It has b
demonstrated by several groups that TIRM allows the p
cise determination of double-layer repulsion potentials
tween a particle and a flat wall. For thin, slightly overlappi
ion clouds, the double-layer interaction potential of a sph
cal particle at a distanceh above a charged planar wall,
given by a simple exponential functione2kh, with the
screening parameterk given by the salt concentration in th
system. Indeed, such an exponential dependence of
double-layer repulsion has been found in several experim
employing TIRM.33–35 A precise determination of surfac
charges or surface potentials, however, is difficult when
ing the standard data evaluation of TIRM.

In the present paper we introduce a more elabo
method to analyze TIRM data which additionally conside
that the prefactor of the exponential function in the wa
colloid interaction potential is not constant, but a comp
function of k. The purpose of this paper is to show th
accurate values for surface charge densities can be obta
if the kappa dependence is carefully analyzed. This open
a convenient way to measure surface charges via dou
layer forces on a single particle which may complem
other more established methods like those mentioned ab
Besides a good estimate of the surface charges of wall
colloid, our data represent a direct experimental confirma
of the theoretical wall–colloid interaction potential whic
has been originally suggested by Verwey and Overbeek.13 In
the theoretical section of this paper, we interpret this wa
colloid potential as resulting from the interaction of a poin
charge with the unperturbed double-layer in front of t
charged wall. The point-charge representing the colloid
thus be regarded as a test charge which probes the un
turbed double-layer. Seen in this way, our measuremen
the effective wall–colloid interaction potential can also
understood as an indirect measurement of the unpertu
double-layer. This double-layer in front of a planar wall c
be calculated from the nonlinear Poisson–Boltzmann eq
tion, one of the very few cases where this can be done a
lytically. This approach, known as the Gouy–Chapm
solution,14 belongs to the fundamental building blocks of t
classical theory on double-layer forces.

The paper is organized as follows: First we derive
effective interaction between a colloidal sphere and a
wall from the grand canonical potential. Applying approx
mations suitable for our experimental range of parame
results in an analytic expression for the interaction poten
as a function of surface charges, Debye length, and sep
tion distance. Then the principles of TIRM are reviewed a
the relation between surface charge and measured pote
is clarified. Next the experimental results are presented
compared with our theoretical predictions. It follows the ce
tral idea of this work, the determination of surface char
densities from interaction potentials. After a brief discuss
of our results, we conclude with a short summary of the m
points of this paper.
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II. EFFECTIVE WALL–COLLOID INTERACTION

A. Poisson–Boltzmann theory

In this theory section, we seek to calculate the effect
interaction between two like charged objects, a spherical
loid and a planar wall, both immersed in an unbounded
electrolyte solution. The sphere of radiusa bearsZ negative
chargese at its surface, while the confining wall has a su
face charge density of2esW . The distance from the cente
of the sphere to the surface of the wall ish. In the vicinity of
these objects, the net charge density distributionr(r )
5r1(r )2r2(r ) of the electrolyte ions is inhomogeneous.
a mean-field approach, the density distribution of both
positive and negative~monovalent! ionsr6 are related to the
normalized electrostatic potentialF through r65rse

7F.
Far away from both surfaces,r6 approach their bulk value
rs so thatr(r ) then vanishes. The potentialF is the solution
to the Poisson–Boltzmann~PB! equation15

¹2F5k2 sinhF, ~1!

wherek258plBrs is the screening parameter character
ing the electrolyte solution,lB5e2b/e the Bjerrum length
(b51/kT), ande the dielectric constant of the solvent.

The charges on the surface of the sphere and the in
face enter the calculation through the boundary conditio
Let us call]Gw the boundary given by the interfacial wall a
z50, ]GC the surface of our colloid andG the region of the
electrolytic solution between both surfaces. At]GC we then
require the normal component of the electric field to be eq
to the colloidal surface-charge densitysC5Z/4pa2

~constant-charge boundary condition!, while at ]GW we are
faced with the more complicated boundary condition,

e]zFuz5012e8]zFuz50254pelBsW , ~2!

wheree8 is the dielectric constant of the wall material atz
<0. In general, this boundary condition is not easy to sati
in a PB problem, even in a full numerical treatment.16 Since
we are here concerned with an aqueous electrolyte solu
having a dielectric constant (e578) that is more than an
order of magnitude larger than the dielectric constante8 of
practically every possible wall material, we may assu
e8/e→0. We then know the absolute value of the elect
field at z50 to be given bysW . Using this approximation,
we here consider a limit where image charges are fu
switched on.17 Our first task thus is to solve the followin
boundary value problem~BVP!,

¹2F~r !5k2 sinhF~r !, rPG,

nW¹F54plBsW , rP]GW ,

nC¹F54plBsC , rP]GC , ~3!

wherenW andnC are two unit vectors directed normal to th
surfaces of wall and colloidal sphere, respectively, and po
ing into the regionG. The position of the boundary]GC in
Eq. ~3! still depends on the distanceh between the colloid
and the wall. For one specific value ofh, we have one BVP
to solve. In the following, we writeFh whenever we want to
stress thatF depends on the parameterh. Once we know
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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10096 J. Chem. Phys., Vol. 114, No. 22, 8 June 2001 von Grünberg et al.
Fh , we can compute the grand potential of our system~since
the electrolyte solution is unbounded we work in the gra
canonical ensemble!,

bVh5
1

8plB
E

G
dr ~¹Fh!2

1 (
a56

E
G

drra~ lograL321!

2E
G

dr ~bms~r11r2!22rs!2bWSE, ~4!

which by substitution ofr65rse
7Fh and bms5 logrsL3

becomes

bVh5
1

8plB
E

G
dr @~¹Fh!2

12k2~Fh sinhFh2coshFh11!#2bWSE. ~5!

The last term,bWSE5Z2lB/2a, is the Coulomb self-energy
of the colloidal charges, which we have subtracted for la
convenience. ThroughFh the grand potential is, of course
also dependent on the parameterh. The effective wall–
colloid interaction potentialbV(h) can now be defined a
the total change of the grand potential when the colloi
sphere is brought from̀ to a finite distanceh. Hence,

bV~h!5b~Vh2V`!. ~6!

With the numerical solution of Eq.~3! inserted in Eqs.~5!
and ~6!, we have thus arrived at the effective interacti
potential in full nonlinear PB theory. Our technique to sol
Eq. ~3! ~subtraction of Gouy–Chapman solution, bispheri
coordinates! is described elsewhere.18

B. Approximate interaction potentials

If the normalized potentialF is smaller than one every
where, we may linearize the differential equation in Eq.~3!.
The resulting BVP can be solved in the limitka→0 ~point-
like colloid!, and Eqs.~5! and~6! then result in the effective
interaction potential in linear theory~see Appendix!,

bV~h!52ZF1~z!uz5`
z5h 1

Z2lB

2

e22kh

2h
. ~7!

HereF1 is the potential of a double-layer of an isolated wa
which in linear theory is

F1~z!524p
lBsW

k
e2kz ~8!

@see Eq.~A7!#. The interpretation of Eq.~7! is obvious: The
first term, dominating for largeh and strong interfacia
charges, is just the electrostatic energy of a point-cha
2Ze interacting with the unperturbed double-layer of t
charged wall, while the second term is the screened inte
tion between the point-charge2Ze at the positionz5h and
its own image charge being located atz52h. Their distance
hence is 2h which explains the factor 2 in front of the wall
sphere distanceh in Eq. ~7!, see Ref. 19 for the explanatio
of the prefactor.
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For our purposes, Eq.~7! cannot be used as it stands, b
requires two modifications. The first of these concerns
~8!, the potential of the isolated wall in linear approximatio
This is correct ifF,1, which is valid in a very small region
of the parameter space only. A simple remedy for this d
ciency is to replaceF1 of Eq. ~8! by the well-known Gouy–
Chapman solution to the nonlinear PB problem of a doub
layer near a planar charged wall,2

F1~z!54 arctanh~e2kz tanh~FW/4!!, ~9!

whereFW is the wall surface potential. The derivative of th
potential with respect toz at z50 is, 22k sinhFW/2, which
according to Eq.~3! must be equal to 4plBsW . This leads
to the Graham-equation2,1 relating surface charge densities
surface potentials,

4plBsW/C522k sinh~FW/C/2!. ~10!

The two subscriptC andW are introduced, because this e
pression will be used for the surface-charge/surface-pote
relation of both the colloidal~subscriptC! and the wall~sub-
scriptW! surface. For a convenient notation, we use Eq.~10!
to define the following twog factors:

gW/C5utanhFW/C/4u5tanhF1

2
arcsinhS 2plBsW/C

k D G ,
~11!

which we will view as a function ofk21, further below. If
kz.1, Eq. ~9! becomes

F1~z!524gWe2kz, ~12!

becausegW cannot be larger than one.
The second modification concerns the limitka→0

which is certainly not realized in our experiment. We he
may replace the bare colloidal charge by a renormalized~or
effective! charge, a heuristic procedure which is well-know
from the theory of effective colloid-colloid interaction i
bulk.20 Equation~7! may then be used also for finite value
of ka provided one replaces the bareZ by

Zeff5
Zeka

11ka
. ~13!

If in addition to this finite size effect, the surface char
density of the colloidal particle is too high for the lineariz
tion approximation to hold, one may hope to capture so
nonlinear effects by representing the spherical double-la
around the colloid by that of a planar wall, Eq.~12!. For-
mally, this can be done by renormalizing the charge yet
other time, thus replacingZ by

Zeff5
a

lB
4gCeka, ~14!

see Ref. 21.
Inserting now the effective charges of Eqs.~13! and~14!

and the potential of Eq.~12! into Eq. ~7!, we finally obtain
two expressions for the effective wall–colloid interactio
which are valid in different regions of the (ka,kh)-plane.
These are
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



iz

ia
re
ce
p
t

qs
te
o
s

-
q

B
o

a

ials
f
tial

-
q.

ac-
s

r

qs.
he
n
r

q.
our
may

he
ion
re
nd
the

of
n-

on,
er
ion

ir
h-

r
ter-
is

:

ion.
r
ted,
en-

fo
po

ea

10097J. Chem. Phys., Vol. 114, No. 22, 8 June 2001 Surface charge densities on Brownian particles
bV~h!5
Zeka

11ka F4gWe2kh1
Zeka

11ka

lB

2

e22kh

2h G ~15!

and

bV~h!54
aeka

lB
gC@4gWe2kh1gCekae22kh#. ~16!

The conventional way to derive Eq.~16!—briefly outlined in
the appendix—is more direct13 making use of the well-
known Derjaguin approximation. However, we emphas
that this derivation gives only the first term in Eq.~16!, while
ours leads also to the image-charge interaction terms@second
term in Eqs.~15! and ~16!#.

C. Experimentally accessible interaction potentials

We give a more elaborate derivation of these potent
in Ref. 18, where we have also carefully tested in what
gion of the four-dimensional parameter spa
(ka,kh,sW ,sC) these potentials represent a reliable a
proximation of the potentials based on the exact solution
the nonlinear PB equation. To check if and how good E
~15! and ~16! work in our specific case, let us concentra
here on a set of parameters that are typically realized in
experiments~cf. data plots further below!. These parameter
are: lB50.72 nm, k215100 nm, sW50.0007 C/m2, sC

50.0001 C/m2, and k(h2a) ranging approximately be
tween 2 and 10 in our experiment. Using these values in E
~3!, ~5!, and~6!, we calculate the interaction potential in P
theory and compare it with the approximate potentials
Eqs.~15! and ~16! in Fig. 1.

Shown in this figure are the interaction potentials in
logarithmic plot for three different values ofka. To facilitate
a direct comparison, we have dividedbV(h) by the prefactor
of the first term of the potential in Eq.~16!, 16agCgW /lB ,
and plotted it as a function ofk(h2a). Plotted in this way,
the potentials of Eq.~16! for all three values ofka collapse
onto the same straight line~line with filled circles in Fig. 1!,
which shows that the image-charge term of Eq.~16! is insig-

FIG. 1. Colloid–wall interaction potentials in reduced units, calculated
three different colloidal sphere radii. The accuracy of two approximate
tentials Eqs.~15! ~dashed lines! and~16! ~line with filled circles!, are tested
against the potential that is based on the solution to the full nonlin
Poisson–Boltzmann equation~thick solid line!.
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nificant in our parameter regime. Without this term Eq.~16!,
divided by the factor 16agCgW /lB , then reduces to the
same exponential functione2k(h2a) for all three values of
ka. The dashed lines in Fig. 1 are the interaction potent
obtained from Eq.~15!, which show for all three values o
ka good agreement with the PB based interaction poten
over a remarkably largek(h2a) range. It is evident from
this figure that with increasingka both the PB based inter
action potential as well as the interaction potential of E
~15! approach the straight line corresponding to the inter
tion potential in Eq.~16!. Closer inspection of the prefactor
in Eqs. ~15! and ~16! show that for our value ofsC both
interaction potentials become identical in the limitka→`.

We can draw two conclusions from Fig. 1. First, fo
ka.10 andk(h2a).2, the difference between the full PB
interaction potential and the approximate expressions of E
~15! and~16! is marginal. Since, in all our measurements t
value ofka remains always well above 10, both interactio
potentials Eqs.~15! and~16!, are reasonably good under ou
experimental conditions. In the following, we will use E
~16!. We, secondly, realize that image charge effects in
parameter regime are not to be expected; we therefore
drop the second term in Eq.~16!.

So far, we have only considered the contribution of t
double-layer force to the effective wall–sphere interact
potential. In our experiment we study a colloidal sphe
which is located at the bottom of a glass container, a
which is thus pressed by gravitational forces against
double-layer. The gravitation potential reads

bVgrav~h!5
4pa3

3
g~rsph2rw!~h2a!5Geff~h2a!,

~17!

with rsph and rw being the density of the sphere and
water, respectively. Another contribution to the total pote
tial comes from the short-ranged dispersion interacti
which in our experiment, however, is important only und
high salt conditions. We take Hamaker’s linear superposit
formula,1

bVdisp~h!52
A~h!

6 H 2a

h

h1a

h12a
2 log

h12a

h J , ~18!

which Bevan and Prieve22 successfully used to interpret the
TIRM data of sphere–wall interaction potentials in the hig
salt limit. The retarded, screened Hamaker constantA(h) has
been calculated according to Bevan and Prieve.22 Both con-
tributions, Eqs.~18! and ~17!, are to be subtracted from ou
measured potential in order to extract the double layer in
action potential which—after all the considerations of th
section—we expect to obey the following simple relation

bV~h!5
16a

lB
gCgWe2k~h2a!. ~19!

The prefactor of the exponential in Eq.~19! depends onk
and thus on the salt concentration of the electrolyte solut
We see from Eq.~11! that the prefactors of double-laye
potentials at different salt concentrations are interconnec
with the only open parameter being the surface charge d

r
-

r
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10098 J. Chem. Phys., Vol. 114, No. 22, 8 June 2001 von Grünberg et al.
sity of the wall and the sphere,sW andsC . This brings us to
the main point: If we measure a sequence of interaction
tentials for a variety of different salt concentrations and
tract the double layer contribution, we can determinesW and
sC by a systematic analysis of thek dependence of the pre
factors in Eq.~19!. This is the central idea of this paper.

III. THE EXPERIMENT

Double-layer potentials have been measured by us
TIRM, which has been described and reviewed in a num
of previous publications and will here discussed only
brief.10–12 When light is totally reflected at an interface a
evanescent field is created whose intensityI decays exponen
tially with distancez perpendicular to the interface,

I ~z!5I 0e2jz, ~20!

whereI 0 is the intensity of the evanescent wave at the int
face (z50) and j is the inverse characteristic penetrati
depth of the evanescent wave,

j5F l/n1

4p~sin2 Q2~n2 /n1!2!1/2G21

~21!

with l the wavelength of light in vacuum,Q the angle of
incidence, andn1 andn2 being the refractive indices of th
solvent–glass interface. If a colloidal sphere of radiusa is
brought to the positionz5h inside this evanescent field,
scatters the evanescent wave with an intensity which
I 08e

2j(h2a), see Refs. 23, 24. Thus the scattered intens
which fluctuates owing to Brownian motion, determines s
sitively and instantaneously the wall–colloid distanceh. In
order to obtain the spatial dependence of the potential en
of the particle one has to measure the separation dista
sampled by the colloidal sphere for a statistically long per
of time. From this, the probability distribution of finding th
particle at any separation distance can be calculated whic
directly related to the potential energy via the Boltzma
distribution. To determine the origin of the distance scale,
have referred the measured intensities to the scattering in
sity of a particle that stuck to the substrate.

Since the experimental setup, see Fig. 2, is similar to
described earlier,31 we will refer to the technical issues he
only in brief. As a light source we used a 10 mW HeNe la
with a wavelength ofl5633 nm. The angle of incidenc
was chosen in a way that the characteristic decay lengthj of
the evanescent field was 250 nm. The sample cell which
composed of two parallel optical flats of silica with a
O-ring in between was optically matched to a glass prism
order to control the salt concentration in the cell, it was co
nected to a closed circuit with Teflon tubes. This circuit co
tained also a conductivity meter, a storage container, a p
staltic pump and a vessel with ion exchange resin wh
allowed to control the Debye length in the system.32 As par-
ticles we used surfactant free monodisperse polystyrene~PS!
latex spheres25 of 10 mm diam and 3mm diam silica
spheres26 which were suspended in water. In order to gu
antee that only a single particle was in the field of vie
during the measurement, only highly diluted suspensi
were used. Prior to the measurement the solution was c
Downloaded 07 Nov 2005 to 134.34.142.23. Redistribution subject to AIP
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pletely deionized corresponding to a conductivity of 0.
mS/cm which is close to the theoretically expected value
pure water.

In addition to our conventional TIRM-setup we used tw
optical tweezers27 which were directed onto the particle from
the top and the bottom of the cell, see Fig. 2. The idea
using light forces to control the movement of the particle h
been introduced to the TIRM method by Brownet al.28 and
Walz et al.29 In our case both tweezers were formed by a 2
mW frequency doubled Nd:YAG laser (l5532 nm). As the
upper tweezer we employed a strongly focused laser b
with an adjustable intensity of 50–150 mW. This tweez
served to hold the particle tightly in the view-field whil
exchanging the solvent in the sample cell and allowed u
perform measurements at different salt concentration w
the same particle. The other optical tweezer coming from
bottom was only moderately focused by anf 540 mm lens
and operated at much weaker intensities,200 mW. It only
served to restrict the lateral movement of the particle dur
the measurement but was too weak to induce a notice
vertical light pressure on the particle. The latter was co
firmed by measuring potentials at various laser intensi
and comparing them to measurements without the twee
Measurements at different salt concentrations were p
formed by adding small amounts of NaCl solutions to t

FIG. 2. Sketch of the experimental setup. The scattered light of the co
is imaged onto a CCD camera and focused onto a photomultiplier b
microscope optics. An upper and a lower optical tweezer are focused
additional lenses on the particle and serve to manipulate the colloid.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 3. Total interaction energybVtot(h) for a 10 mm charged polystyrene~PS! particle in front of a silica surface as obtained by TIRM. Plotted are
measured interaction potentialsbVtot(h) as a function of the wall–particle distanceh2a, for ten different salt concentrations betweenk21510 nm and
k215100 nm ~symbols!. Since each potential is a sum of ak-dependent double-layer contribution at short distances and ak-independent gravitationa
contribution at larger distances, all potentials approach the same limiting straight line~dashed! given byGeff(h2a). Fitted curves~solid lines! arebVfit(h) as
explained in the text.
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a PS
circuit and gently pumping until the conductivity meter ind
cated a constant distribution of the salt. The value of
conductivity meter agreed to the amount of added salt
allowed to calculate the Debye screening length within
error of 5%. After equilibration the upper optical tweez
was turned off and the particle was held in the middle of
field of view during the measurement with the lower twe
zer. In order to exclude effects due the possible inhomo
neity of the substrate, all potentials were measured at
same position over the substrate.

IV. RESULTS AND DISCUSSION

Figure 3 displays the measured total potentialsbVtot ,
i.e., the sum of Eqs.~17!, ~18!, and~19!, for the 10mm PS
sphere, for ten different Debye lengths ranging between
nm and 100 nm. At higher salt concentrations the partic
stick to the surface due to attractive dispersion forces.
potentials have a very similar shape: towards larger distan
they increase linearly, because gravity is the dominant fo
acting on the particle@Eq. ~17!#. At smaller distances repul
sive double-layer interaction and attractive dispersion for
between the particle and the wall become important. T
vertical position of the potentials are not knowna priori
Downloaded 07 Nov 2005 to 134.34.142.23. Redistribution subject to AIP
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since TIRM determines potentials relative to an arbitrary r
erence value. However, since at very large distances dou
layer forces are insignificant, all potentials in Fig. 3 have
converge to the sheer gravitational contribution@Eq. ~17!#

FIG. 4. Effective double-layer potentials between a glass surface and
sphere, obtained from the data in Fig. 3 by subtractingk-independent con-
tributions due to dispersion and gravitation forces.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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which is plotted as a dashed line. Accordingly, if the pote
tials are fitted to the functionbVdisp(h)1bVfit(h) with
bVdisp(h) from Eq. ~18! and bVfit(h)5Be2k(h2a)1Geff(h
2a)1bV0 usingB andbV0 as fit parameters, then the valu
of V0 can be used to relate the vertical positions of the
tentials with respect to each other. Further below thek de-
pendence ofB is discussed in detail.

As expected, the mean colloid–wall distance decrea
with decreasing Debye length. In addition we observe t
the left branch of each potential becomes steeper with
creasing Debye length, a feature that is to be expected f
the exponential of Eq.~19!. To show that dispersion force
here play a rather marginal role, we compare our data
with bVdisp(h)1bVfit(h), but with the functionsbVfit(h)
~solid lines in Fig. 3!. For k21>30.6 nm, the solid curves o
the functionbVfit(h) lie always on top of the data, and it i
thus clear that the dispersion forces are insignificant for
distance regime. Only for the two curves closest to the w
a small difference betweenbVfit(h) and the data can be ob
served. This now shows the contribution of the dispers
forces, which is obviously small compared to all other co
tributions. Plottingb(Vdisp(h)1Vfit(h)), we would obtain
curves that coincide also for the two curves closest to
wall.

Since in the following we will concentrate on th
double-layer repulsion, we subtracted gravitation and disp
sion contributions from our data, i.e., Eqs.~17! and ~18!
which contain no open parameter. As a result, we obtain
4 with the bare double-layer potentials, plotted as a funct
of k(h2a). Provided that Eq.~19! is the correct potential
we expect the experimental potentials to have all the sa
exponential factor exp(k(h2a)). If this were the onlyk de-
pendence of the double-layer potential, all curves in Fig
should fall on one common curve. However, as is evid
from the plot, this is not the case: Obviously the prefac

FIG. 5. PrefactorsB in the functionBe2k(h2a), as obtained from a fit to
data like those of Fig. 4. Values forB are divided by 16a/lB so as to
facilitate a direct comparison to the theoretical functiongWgC over k21 in
Eq. ~11! ~plotted as solid line!. Shown are data for a PS sphere over silic
and for a silica sphere over silica~inset figure!. To demonstrate how sens
tive our method is, the functiongWgC is plotted for three values of the
colloidal surface charge density,sC50.00005, sC50.0001, and sC

50.00015.
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also depends onk, and looking back to Eqs.~19! and ~11!,
we realize that this additionalk dependence arises from thek
dependence of the twog factors. In the following we use this
k dependence to determine surface charge densities.

To proceed we divided the prefactors obtained from
ting the curves in Fig. 3 by 16a/lB and plotted them in Fig.
5 as a function ofk21. According to Eq.~19!, our data
should be described by the functiongW(k21)gC(k21) @both
dependent onk21, see Eq.~11!#. Using sW and sC in Eq.
~11! as adjustable fitting parameters, we could in principle
these data points to the functiongW(k21)gC(k21). This,
however, would lead to surface charge densities with la
error bars, and it would not be clear, which of the obtaineds
values one has to attribute to the wall and which to the c
loid. Alternatively, we replaced the PS spheres by partic
made of the same material as the glass surface, i.e., s
because then,gW(k21) and gC(k21) are identical which
simplifies the problem to a single fitting parameter. The
sulting surface charge density of the silica surface can t
be used for the analysis of the PS data. We used 3mm silica
spheres, and analyzed the data in the same way as desc
above. The result is plotted as open symbols in the inse
Fig. 5. Fitting these four points to the functiongW

2 (k21)
given in Eq.~11!, we determine the surface charge density
the wall to sW50.0007 C/m2. Inserting this value in Eq.
~11!, we obtain the solid line in the inset of Fig. 5. This valu
is in excellent agreement with those obtained by Dunste30

from electrophoresis measurements, who found a sur
charge density ofsW50.000 65 C/m2.

With the knowledge ofgW , we now can determine the
surface charge density of the PS spheres using Eq.~11! to
sC50.0001 C/m2. The fitted curvegWgC from Eq. ~11! is
displayed in Fig. 5 as a solid curve. To demonstrate h
sensitive our method is, we have added two curves of
same function with sC50.000 15 C/m2 and sC

50.000 05 C/m2. The theoretical and experimental da
show in particular at higher values ofk21 good agreemen
and indicate that in both experiments~PS and silica spheres!
our data can be well described by Eq.~11!. We conclude that

FIG. 6. Potentials of Fig. 4 divided bygwgc in a logarithmic plot. All
potentials collapse on the simple function 16ae2k(h2a)/lB ~solid straight
line!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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with the method proposed here, surface charge densities
be determined within630% roughly.

The agreement observed in Fig. 5 also implies that
measurements are in good agreement with the theore
double-layer potential of Eq.~19!. This can be seen by di
viding the potentials of Fig. 4 each by its value ofgWgC

which is a quantity known now for everyk. It follows from
Eq. ~19! that the potentials scaled in this way, should all ha
the same prefactor 16a/lB . In a semilogarithmic represen
tation, this means that all curves should appear as stra
lines having the same slope and intersection. This is ind
confirmed by Fig. 6, where we see all potentials collaps
onto one common master-curve. This proves that Eq.~19!
correctly describes the double-layer interaction between
wall and the colloid. The small deviations of the experime
tal data from the master curve are attributed to an appr
mate error of 5% in thek-values derived from our ionic
conductivity measurements. Another possible systematic
ror enters through the determination ofgW because it was
assumed that the surface potentials of the silica substrate
the silica bead are equal. Even if the same material is use
is possible that differences in the nanoscopic surface st
ture of the optically polished substrate and the 3mm bead
can cause differences in the surface charge density. The
face charge densities found for the PS sphere are of the s
order of magnitude as for silica. Since the surface charg
PS strongly depends on the details of the production proc
we cannot compare our result to the values found in lite
ture. Relating information on the surface charge density
not been released by the manufacturer.25

Finally, we would like to make some general remarks
the TIRM method and how it compares to convention
methods. The reason, TIRM achieves a higher resolutio
force measurements than conventional AFM is largely du
the fact, that during TIRM experiments the system rema
under equilibrium conditions. Only then, the particle fluctu
tions allow the precise determination of the potential ener
In contrast, during an AFM measurement, a piezo exer
force onto a cantilever which then leads to nonequilibriu
conditions. To obtain the force in an AFM experiment, o
has to measure the bending of the cantilever~e.g., by a light-
deflection method!. The accuracy of such a measureme
however, is limited by thermal fluctuations which tend
disturb the signal and thus limit the force resolution to ab
50 pN in conventional AFM.36 The resolution of TIRM, on
the other hand, has been demonstrated to be as low as 1
see Ref. 37. It should be mentioned, that very recently
basic idea of using thermal fluctuations to obtain surfa
potentials has been also applied to AFM.38 It has been dem-
onstrated that if a tip is brought close to a surface immer
in an electrolyte, its movement is governed by the sum of
harmonic cantilever potential and the tip–surface interact

To compare our method to thez-potential measurement
of surface potentials, we have to recall that the surf
charge is created by ionized surface groups and by
tightly adsorbed in the Stern layer.6 The plane of closes
approach of the ions from the diffuse part of the electri
double-layer is called the outer Helmholtz plane~OHP!. All
ions on the wall-faced side of the OHP make up the surfa
Downloaded 07 Nov 2005 to 134.34.142.23. Redistribution subject to AIP
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charge densitysW . To be distinguished from the OHP is th
shear plane which separates the hydrodynamically immo
liquid that moves together with the surface from the mob
liquid which has nonzero relative velocity with respect to t
surface. Thez-potential refers to this shear plane and is th
an useful approximation to the real surface potential only
the OHP lies sufficiently close to the shear plane. That, ho
ever, is not known. In our TIRM method, on the other han
the position of the shear plane is insignificant. One mig
argue that also in our experiment, one cannot be sure if
measures the ‘‘true’’ surface charge density right at the O
or an apparent surface charge density at any other pl
However, the distinction between true and apparent cha
is of no importance, as long as we deal with those char
that determine the physical properties of the colloidal s
pension, i.e., those that are relevant to such effects as
formation of colloidal crystals, wall crystallization or the st
bility of dispersions. These charges are, indeed, what
have measured by the TIRM method proposed here; its m
advantage thus lies in the fact that it measures an dyna
cally unperturbed double-layer in equilibrium.

The BVP in Eq. ~3! is set up using constant-charg
boundary conditions. Likewise, the effective interacti
potentials—the numerical one as well as the analytical on
Eq. ~19!—are based on the assumption that the surf
charge density on both wall and colloid is a constant a
does not depend on the salt content of the electrolyte
principle, there are two different ways by which the char
density at the surfaces can be affected: by adsorption o
ther H1 or Na1 cations. Since the experiments were pe
formed at fixedpH(pH56.560.5) for all k values, the de-
gree of dissociation of the surface groups is always the sa
In fact, at thepH value chosen here, the sulfate groups at
PS surface are completely dissociated.39 Quite another point
is the adsorption of cations onto the surfaces; while this
likely to be true for polyvalent ions,1 it seems to be rathe
unlikely in case of the monovalent salt ions chosen in o
experiment. Therefore, the assumption of ak-independent
surface charge density is fulfilled to a good approximatio

Finally, we want to mention that the data plots of Fig.
can also be regarded as an indirect measurement of the
Gouy–Chapman potential, Eqs.~9! and Eq.~12!. We have
seen that the potential of Eq.~19! is the product of the effec-
tive colloidal chargeZeff524agC eka/lB , see Eq.~14!, and
the Gouy–Chapman potentialF1(z)524gWe2kz in Eq.
~12!, and can thus be understood as resulting from the in
action of a point-charge of effective chargeZeff with the
unperturbed Gouy–Chapman layer. The colloidal spher
therefore nothing but the ‘‘test charge’’ by means of whi
we have probed the Gouy–Chapman potential, and devi
of the data in Fig. 4 by the charge of this test particle
sults in data measuring directly the famous Gouy–Chapm
potential.

V. SUMMARY

A double-layer in front of a planar wall that has a su
face charge density ofsW , creates a electrostatic mean-fie
potential of24gWe2kz, wheregW is a complicated function
of sW /k @Eq. ~11!#. Probing this potential with a colloida
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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test charge atz5h that itself has a double layer gives anoth
gC factor and one arrives at an interaction potential that g
with gCgWe2kh. The productgCgW depends onsW /k and
sC /k, i.e., on the surface charge densities of the colloi
test charge and the wall. In this paper, we have carried ou
accurate TIRM measurement of the wall–colloid interact
potential for a sequence of different Debye-lengths, and t
determinedgCgW as a function ofk21. We have done tha
for two types of colloidal particles, silica and polystyren
and found good agreement between the experimental
and the theoretical prediction for the functiongCgW , with
sW andsC being the only two fit parameters. We have d
cussed the numerical values of the obtained surface ch
densities, and showed that they are in accord with one’s
pectation.

The functional dependence of the colloid–wall intera
tion potential has been measured with TIRM before. He
we took thek dependence of the prefactor of the expone
tially decaying double layer repulsion explicitly into accou
which then leads to a precise determination of surf
charges. In the standard TIRM-data evaluation,10–12 how-
ever, this dependence is neglected, because the prefact
Eq. ~19! is typically expressed in terms of the position of t
potential minimum formed by double layer and gravitation
forces. If that is done the dependence on the surface cha
sW andsC is eliminated from the data, and valuable info
mation about the surface is lost.
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APPENDIX A: LINEAR THEORY

In the following we derive Eq.~7!, i.e., an approximate
expression for the effective wall-sphere potential, from E
~3! and~5!. Let us consider the case when both the colloi
and the interfacial charge density is small enough forF to be
everywhere smaller than one. This allows us to linearize
PB equation, i.e., to replace sinhF in Eq. ~3! by F. Since the
resulting Helmholtz equation is a linear equation, we c
split the BVP of Eq.~3! into two separate BVP’s, namely,
BVP for a potentialF1 ,

¹2F1~r !5k2F1~r !, rPG,

nW¹F154plBsW , rP]GW ,

nC¹F150, rP]GC , ~A1!

and one for a potentialF2 ,

¹2F2~r !5k2F2~r !, rPG,

nW¹F250, rP]GW ,

nC¹F254plBsC , rP]GC . ~A2!
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It is evident that the sum of these two BVP’s again result
the original BVP of Eq.~3! ~in its linearized form!, and that
the solutionF can accordingly be obtained from the sum
F1 andF2 .

What effect has the linearization approximation on t
grand potential, Eq.~5!? Using Green’s first identity to trans
form the volume integral over¹F2 in Eq. ~5! into a surface
integral plus a volume integral and realizing furthermore t
F sinhF22(coshF21)'0 if F,1, we obtain

bV5
1

8plB
F E

]GW

dS•¹FF1E
]GC

dS•¹FFG2bWSE,

~A3!

which by using the boundary conditions of Eq.~3! reduces to

bV52
sW

2 E
]GW

dSF2
sC

2 E
]GC

dSF2bWSE. ~A4!

We thus see that, in linear theory, the grand potential redu
to just the electrostatic energy of the system, that is the
ergy which the colloidal (sC) and interfacial charges (sW)
have in the mean-field potentialF. Placing now the sumF
5F11F2 , with F1 from the BVP of Eq.~A1! andF2 from
the BVP of Eq.~A2!, into Eq. ~A4!, we find

bV52
sW

2 E
]GW

dS~F11F2!

2
sC

2 E
]GC

dS~F11F22F0!, ~A5!

where F052ZlB /((z2h)21s2)1/2 is the bare Coulomb
potential of theZ colloidal charges, which, when integrate
over the colloid surface and multiplied bysC/2, results in the
self-energybWSE5Z2lB/2a. ~Since there is still a rotationa
symmetry about the line joining the centers of the colloid
particle and its image, we have two spatial variables in
problem. These variables arez ands, with z being the coor-
dinate along this symmetry line, ands perpendicular to it.!

The energy of the colloidal charges in the potential p
duced by the wall surface charges equals the energy of
wall charges in the potential due to the colloidal charg
Therefore, sW*]GW

dSF25sC*]GC
dSF1 , by means of

which Eq.~A5! can be further simplified to

bV52
sW

2 E
]GW

dSF12
sC

2 E
]GC

dS~2F11F22F0!.

~A6!

This expression is used further down to derive the interac
potential.

Let us now discuss the solution of the BVP’s in Eq
~A1! and~A2!. With Eq. ~A1!, we have formulated the BVP
for an uncharged colloidal sphere of vanishing dielect
constant brought into and thus perturbing the ion doub
layer of a charged wall. We neglect these steric effects
assume in the following that this perturbation has little effe
on our results, which is equivalent to ignoring the seco
boundary condition in Eq.~A1! ~a good approximation for
reasonably largeh!. The solution of Eq.~A1! then is
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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F1~z!524p
lBsW

k
e2kz. ~A7!

The second BVP, Eq.~A2!, is more difficult to solve. Only in
the limit ka→0, there exists an analytical solution,40

F2
h~s,z!52ZlBkE

0

`

dlJ0~ksl!
l̃
¯
l
~e2kuz2hu l̃ 1e2k~z1h! l̃ !,

~A8!

with l̃ 5(11 l 2)1/2 and J0 being the Bessel function of th
first kind.

Note that F2
h depends on the position of the collo

while F1 in our approximation does not. Returning now
Eq. ~A6!, we recognize that, due to this independence,
first term of Eq.~A6! drops out when we calculatebV(h)
5b(Vh2V`). In the limit ka→0, the interaction potentia
then becomes

bV~h!52
Z

2
~2F11F2

h2F0
h!uz5`,s50

z5h,s50 , ~A9!

which by using Eq.~A8! reduces to18

bV~h!52ZF1~z!uz5`
z5h 1

Z2lB

2

e22kh

2h
, ~A10!

whereF1 is the potential given in Eq.~A7!.

APPENDIX B: ALTERNATIVE DERIVATION
OF THE INTERACTION POTENTIAL

It is instructive to recall the conventional way to deriv
the interaction potential of Eq.~19!, given, for example, in
the book of Verwey and Overbeek.13 We first consider the
interaction of a sphere and a wall, both made of the sa
material and having the same surface charge density, w
exposed to an aqueous electrolyte solution. Let us begin
writing down the free energy per areabF/Area for two par-
allel plates made of this material. If these plates are a
tance 2D apart from each other, then

bF~2D !/Area52E
D

`

p~x!dx, ~B1!

wherep(x) is the pressure in the electrolyte solution wh
the plates have a relative distance of 2x. The pressure of the
system in such a symmetric case, can most easily be ca
lated at the midplane between both plates, because ther
electric field must be zero, and the pressure then is noth
but the osmotic pressure, namely the sum ofr15rse

2F and
r25rse

F minus two times the bulk pressure. Hence,bp
52rs(cosh(Fmid)21). If the interaction is small, the elec
tric potential due to one double layer will be negligible at t
surface of the second plate. We may therefore assume
the electric potential in the neighborhood of the midplane
built up additively from the electric potentials due to the tw
unperturbed double layers separately, which we know fr
Eq. ~12! to be F(z)524ge2kz with k58plBrs . There-
fore,

Fmid528ge2kz, ~B2!
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if the plates are a distance 2x apart from each other. As we
have assumed that the interaction is small, the electric po
tial midway between the plates will also be small, so th
Fmid,1. Therefore, the pressure is approximately,

bp~x!52rs~cosh~Fmid!21!'rsFmid
2 . ~B3!

Inserting this in Eq.~B1! and performing the integral gives

bF~2D !/Area564rsg
2

e22kD

k
. ~B4!

To come from this plate-plate free energy to the effect
sphere–plate interaction, we have to make use of
Derjaguin approximation,1 leading to

bV~h!52paE
h2a

`

bF~y!/Aready5
16a

lB
g2e2k~h2a!,

~B5!

which is the interaction potential of Eq.~19!. We thus see
that it is based not only on the Derjaguin approximation, b
also one the assumption that two unperturbed Gou
Chapman solutions for isolated walls can be superpose
describe the electric potential between parallel plates.

If the surface charge density of the sphere differs fro
that of the plate, i.e., ifgWÞgC , this derivation must be
modified. The problem is that the electric field at the m
plane is no longer zero, but contributes to the pressure.
alternative way is to calculatebF/Area by

bF~2D !/Area52sW8 FC~2D !2sC8 FW~2D !, ~B6!

which is the electrostatic energy of the colloidal charges
the double layer potential of an isolated wall and vice ver
FW/C524gW/Ce2k2D. To account for the entropic contri
butions of the microions to the free energy, we have to ta
the apparent surface charge densitysW/C8 instead of the real.
The latter we obtain by identifying the potential in linearize
form Eq. ~A7!, FW/C

in 524plBsW/C8 e2k2D/k with FW/C

524gW/Ce2k2D, from which we obtain

sW/C8 5
kgW/C

plB
. ~B7!

The free energy per area then becomes

bF~2D !/Area5
8kgWgC

plB
e2k2D564rsgWgC

e22kD

k
,

~B8!

from which we finally obtain

bV~h!52paE
h2a

`

bF~y!/Aready5
16a

lB
gCgWe2k~h2a!.

~B9!
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