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Nanomechanical resonators, machined out of Silicon-on-Insulator wafers, are operated in the non-
linear regime to investigate higher-order mechanical mixing at radio frequencies, relevant to signal
processing and nonlinear dynamics on nanometer scales. Driven by two neighboring frequencies
the resonators generate rich power spectra exhibiting a multitude of satellite peaks. This nonlinear
response is studied and compared to nth-order perturbation theory and nonperturbative numerical
calculations.
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Mechanical devices in combination with modern semi-
conductor electronics offer great advantages as for exam-
ple their robustness against electrical shocks and ioniza-
tion due to radiation. In outstanding work by Rugar and
Grütter [1] the importance for applications in scanning
probe microscopy of mechanical cantilevers was demon-
strated. Greywall et al. [2] investigated noise evasion
techniques for frequency sources and clocks with micro-
scopical mechanical resonators. The main disadvantage
of mechanical devices so far is the low speed of operation.
This has been overcome with the realization of nanome-
chanical resonators, which allow operation at frequencies
up to 500 MHz [3–7].
In the present work we realize such a nanomechan-

ical resonator to study its nonlinear dynamics and its
mechanical mixing properties. Mixing is of great impor-
tance for signal processing in common electronic circuits.
Combining signal mixing with the advantages of mechan-
ical systems, i.e. their insensitivity to the extremes of
temperature and radiation, is very promising, especially
when considering the high speed of operation currently
becoming available. Here we present measurements on
such a nonlinear nanomechanical resonator, forced into
resonance by application of two different but neighbor-
ing driving frequencies. We also present a theoretical
model, based on the Duffing equation, which accurately
describes the behavior of the mechanical resonator. The
model gives insight into the degree of nonlinearity of
the resonator and hence into the generation of higher-
harmonic mechanical mixing.
The starting materials are commercially available

Silicon-on-insulator (SOI) substrates with thicknesses of
the Si-layer and the SiO2 sacrificial layer of 205 nm and
400 nm, respectively (Smart-Cut wafers). The gate
leads connecting the resonator to the chip carrier are
defined using optical lithography. In a next step the
nanomechanical resonator is defined by electron beam
lithography. The sample is dry-etched in a reactive-ion
etcher (RIE) in order to obtain a mesa structure with
clear-cut walls. Finally, we perform a hydro-fluoric (HF)
wet-etch step in order to remove the sacrificial layer be-

low the resonators and the metallic etch mask. The last
step of processing is critical point drying, in order to
avoid surface tension by the solvents. The suspended
resonator is shown in a scanning electron beam micro-
graph in Fig 1(a): The beam has a length of l = 3 µm,
a width of w = 200 nm, and a height of h = 250 nm
and is clamped on both sides. The inset shows a close-
up of the suspended beam. The restoring force of this
Au/Si-hybrid beam is dominated by the stiffer Si sup-
porting membrane. The selection of the appropriate HF
etch allows for attacking only the Si and thus the minute
determination of the beam’s flexibility and in turn the
strength of the nonlinear response.
The chip is mounted in a sample holder and a small

amount of 4He exchange-gas is added (10 mbar) to en-
sure thermal coupling. The sample is placed at 4.2 K
in a magnetic field, directed in parallel to the sample
surface but perpendicular to the beam. When an alter-
nating current is applied to the beam a Lorentz force
arises perpendicular to the sample surface and sets the
beam into mechanical motion. For characterization we
employ a spectrum analyzer (Hewlett Packard 8594A):
The output frequency is scanning the frequency range of
interest (∼ 37 MHz), the reflected signal is tracked and
then amplified (setup α in Fig. 1(b), reflectance measured
in mV). The reflected power changes when the resonance
condition is met, which can be tuned by the gate voltages
Vg in a range of several 10 kHz. The mixing properties
of the suspended nanoresonators are probed with a dif-
ferent setup comprising two synthesizers (Marconi 2032
and Wavetek 3010) emitting excitations at constant, but
different, frequency (setup β in Fig. 1(b)). Here, the re-
flectance is measured in dBm for better comparison of
the driving amplitudes and the mixing products. The
reflected power is finally amplified and detected by the
spectrum analyzer.
In Fig. 2 the radio-frequency (rf) response of the beam

near resonance is depicted for increasing magnetic field
strength B=0, 1, 2, . . . , 12 T. The excitation power of the
spectrum analyzer was fixed at −50 dBm. The mechani-
cal quality factor, Q = f/δf , of the particular resonator
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under test in the linear regime is Q = 2330. As seen the
profile of the resonance curve changes from a symmet-
ric shape at moderate fields to an asymmetric, sawtooth
shape at large field values, characteristic of an oscillator
operated in the nonlinear regime.
This behavior can be described by the Duffing equation

ẍ(t) + µẋ(t) + ω2
0x(t) + αx3(t) = F (t) (1)

with a positive prefactor α of the cubic term being the pa-
rameter of the strength of the nonlinearity [8]. In Eq. (1)
µ is the damping coefficient of the mechanical system,
ω0 = 2πf0, where f0 is the mechanical eigenfrequency
of the beam, and x(t) its elongation. In our case the
external driving F (t) is given by the Lorentz force:

F (t) =
lB

meff

I(t) =
lB

meff

I0 cos(2πft) , (2)

where l=1.9 · 10−6 m is the effective length and meff =
4.3 · 10−16 kg is the effective mass of the resonator. B is
the magnetic field and I0 the input current corresponding
to the amplitude of the driving power.
Solving Eq. (1) and computing the amplitude of the os-

cillation as a function of the driving frequency f for sev-
eral excitation strengths reproduces the measured curves
shown in Fig. 2. The solutions at large power exhibit
a region where three different amplitude values coexist
at a single frequency. This behavior leads to a hys-
teretic response in the measurements at high powers (e.g.
−50 dBm) [7], as shown in the inset of Fig. 2, where
we used an external source (Marconi) to sweep the fre-
quencies in both directions. If the frequency is increased
(inverted triangles (▽) in the inset), the resonance first
follows the lower branch, and then suddenly jumps to the
upper branch. When sweeping downwards from higher to
lower frequencies (triangles (△)), the jump in resonance
occurs at a different frequency.
Turning now to the unique properties of the nonlinear

nanomechanical system: By applying two separate fre-
quency sources as sketched in Fig. 1(b) (setup β) it is
possible to demonstrate mechanical mixing, as shown in
Fig. 3(a). The two sources are tuned to f1 = 37.28 MHz
and f2 = 37.29 MHz with constant offset and equal out-
put power of −48 dBm, well in the nonlinear regime.
Without applying a magnetic field the two input signals
are simply reflected (upper left panel). Crossing a crit-
ical field of B ≃ 8 T higher-order harmonics appear.
Increasing the field strength further a multitude of satel-
lite peaks evolves. As seen the limited bandwidth of this
mechanical mixer allows effective signal filtering.
Variation of the offset frequencies leads to the data pre-

sented in Fig. 3(b): Excitation at−48 dBm and B = 12 T
with the base frequency fixed at f1 = 37.290 MHz and
varying the sampling frequency in 1 kHz steps from
f2 = 37.285 MHz to 37.290 MHz yields satellites at the

offset frequencies f1,2 ± n∆f , ∆f = f1 − f2. The dot-
ted line is taken at zero field for comparison, showing
only the reflected power when the beam is not set into
mechanical motion. At the smallest offset frequency of
1 kHz the beam reflects the input signal as a broad band
of excitations.
We model the nanomechanical system as a Duffing os-

cillator (1) with a driving force

F (t) = F1 cos(2πf1t) + F2 cos(2πf2t) , (3)

with two different, but neighboring, frequencies f1 and
f2 and amplitudes Fi = l B Ii/meff .
Before presenting our results of a numerical solution of

Eq. (1) for the driving forces (3) we perform an analysis
based on nth-order perturbation theory [9] to explain the
generation of higher harmonics. Expanding

x = x0 + ǫx1 + ǫ2x2 + . . . , (4)

where we assume that the (small) parameter ǫ is of order
of the nonlinearity α, and inserting this expansion into
Eq. (1) yields equations for the different orders in ǫ. In
zeroth order we have

ẍ0 + µẋ0 + ω2
0x0 = F1 cos(2πf1t) + F2 cos(2πf2t) , (5)

to first-order ẍ1 + µẋ1 + ω2
0x1 + αx3

0 = 0, and similar
equations for higher orders. After inserting the solu-
tion of Eq. (5) into the first-order equation and assuming
f1 ≈ f2 ≈ f0 = ω0/2π, two types of resonances can be ex-
tracted: One resonance is located at 3f0 which we, how-
ever, could not detect experimentally [10]. Resonances
of the other type are found at frequencies fi ±∆f . Pro-
ceeding along the same lines in second-order perturbation
theory we obtain resonances at 5f0 and fi ± 2∆f . Ac-
cordingly, owing to the cubic nonlinear term, nth-order
resonances are generated at (2n + 1)f0 and fi ± n∆f .
While the (2n + 1)f0-resonances could not be observed,
the whole satellite family fi ± n∆f is detected in the
experimental power spectra Fig. 3(a,b).
The perturbative approach yields the correct peak po-

sitions and, for B < 4 T, also the peak amplitudes. How-
ever, in the hysteretic, strongly nonlinear regime a non-
perturbative numerical calculation proves necessary to
explain quantitatively the measured peak heights. To
this end we determined the parameters entering into
Eq. (1) in the following way: The damping is esti-
mated from the quality factor Q = 2330 which gives
µ = 50265 Hz. The eigenfrequency is f0 = 37.26 MHz as
seen from Fig. 2 in the linear regime. The nonlinearity α
is estimated from the shift [9]

δf(B) = fmax(B)− f0 =
3α[Λ0(B)]2

32π2f0
(6)

in frequency fmax at maximum amplitude in Fig. 2. In
zero order the displacement of the beam is given by Λ0 =
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lI0B/(4πf0µ meff). Relation (6) yields with I0 = 1.9 ·

10−5A a value of α = 9.1 · 1028 (ms)−2.
We first computed x(t) by numerical integration of

the Duffing equation with driving (3) and F1 = F2 =
lBI0/meff , I0 = 2.9 · 10−5A. We then calculated the
power spectrum from the Fourier transform x̂(ω) of x(t)
for large times (beyond the transient regime). For a di-
rect comparison with the measured power P in Fig. 3 we
employ P ≃ RI2imp. Here R is the resistance of the elec-
tromechanical circuit and Iimp = [4πf0µ meff/(lB)]x̂(ω)
in close analogy to the zero-order relation between dis-
placement Λ0 and I0.
The numerically obtained power spectra are displayed

in Fig. 4: (a) shows the emitted power for the same pa-
rameters as in Fig. 3(a), but with B = 4, 8, 9, 10, 11, and
12 T. Corresponding curves are shown in Fig. 4(b) for
fixed B and various ∆f for the same set of experimental
parameters as in Fig. 3(b). The positions of the mea-
sured satellite peaks, fi±n∆f , and their amplitudes are
in good agreement with the numerical simulations for the
entire parameter range shown. Even small modulations
in the peak heights to the left of the two central peaks
in Fig. 3(b) seem to be reproduced by the calculations in
Fig. 4(b). (Note that the height of the two central peaks
in Fig. 3 cannot be reproduced by the simulations, since
they are dominated by the reflected input signal.)
The numerical results in Fig. 4(a) show clearly the

evolution of an increasing number of peaks with grow-
ing magnetic field, i.e. increasing driving amplitude. As
in the experiment, the spectra exhibit an asymmetry in
number and height of the satellite peaks which switches
from lower to higher frequencies by increasing the mag-
netic field from 8 T to 12 T. This behavior can be un-
derstood from Eq. (6) predicting a shift δf in resonance
frequency with increasing magnetic field. This shift is
reflected in the crossover in Figs. 3(a) and 4(a). For
B=8 T the amplitudes of the satellite peaks are larger
on the left than on the right side of the two central peaks.
As the field is increased the frequency shift drives the
right-hand-side satellites into resonance increasing their
heights.
The power spectra in Fig. 3(a) and 4(a) are rather

insensitive to changes in magnetic field for B < 8 T com-
pared to the rapid evolution of the satellite pattern for
8 T < B < 12 T. Our analysis shows that this regime
corresponds to scanning through the hysteretic part (in-
set Fig. 2) in the amplitude/frequency (or amplitude/B-
field) diagram, involving abrupt changes in the ampli-
tudes. The resonator studied is strongly nonlinear but
not governed by chaotic dynamics. Similar setups should
allow for entering into the truly chaotic regime.
In summary we have shown how to employ the non-

linear response of a strongly driven nanomechanical res-
onator as a mechanical mixer in the radio-frequency
regime. This opens up a wide range of applications, es-
pecially for signal processing. The experimental results

are in very good agreement with numerical calculations
based on a generalized Duffing equation, a prototype of a
nonlinear oscillator. Hence these mechanical resonators
allow for studying nonlinear, possibly chaotic dynamics
on the nanometer scale.
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FIG. 1. (a) Scanning electron beam micrograph of the
electromechanical resonator with a length l = 3 µm, width
w = 200 nm, and height h = 250 nm. The Si-supporting
structure is covered by a thin Au-sheet (50 nm thick); the
electrodes on the left and right allow tuning of the elastic
properties. Inset shows a magnification of the beam. (b) Ex-
perimental setup for sampling the mechanical properties of
the suspended beam: For characterization we employ a spec-
trum analyzer scanning the frequency range of interest (α).
Mechanical mixing is analyzed by combining two synthesizers
(f1, f2) and detecting the reflected power (β).

FIG. 2. Characterization of the nonlinear response of the
suspended beam by ramping the magnetic field from 0 T up to
12 T, obtained with the spectrum analyzer operated with out-
put power level of −50 dBm (setup α). Inset shows the mea-
sured hysteresis: ▽ correspond to an increase in frequency
and △ represent the lowering branch.

FIG. 3. (a) Two synthesizers (setup β in Fig. 1(b)) run-
ning at frequencies of f1 = 37.28 MHz and f1 = 37.29 MHz
with constant offset (output power −48 dBm) induce
higher-order harmonics as a result of mechanical mixing by
the nanoresonator in the nonlinear regime (B > 8 T). (b)
Excitation with two frequencies at −48 dBm and B = 12 T:
Base frequency is f1 = 37.290 MHz, while the sampling fre-
quency is varied in 1 kHz steps from f2 = 37.285 MHz to
37.290 MHz. As seen the spacing of the harmonics follows
the offset frequency ∆f = f1 − f2. The dotted line is taken
at B = 0 T showing pure reflectance of the beam without
excitation of mechanical motion.

FIG. 4. Calculation of the power spectra from the numeri-
cal solution of Eqs. (1), (3) for the same driving frequencies as
used in Fig. 3. (a) Variation of magnetic field B =4,8,9,10,11,
and 12 T. (b) Variation of offset frequency at B = 12 T. Note
that the two central peaks of Fig. 3 are not reproduced by the
theory, since they stem from the reflected input signal.
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