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From molecules to solids with the DMol 3 approach
B. Delley
Paul Scherrer Institut, WHGA/123, CH-5232 Villigen PSI, Switzerland

~Received 6 June 2000; accepted 17 August 2000!

Recent extensions of the DMol3 local orbital density functional method for band structure
calculations of insulating and metallic solids are described. Furthermore the method for calculating
semilocal pseudopotential matrix elements and basis functions are detailed together with other
unpublished parts of the methodology pertaining to gradient functionals and local orbital basis sets.
The method is applied to calculations of the enthalpy of formation of a set of molecules and solids.
We find that the present numerical localized basis sets yield improved results as compared to
previous results for the same functionals. Enthalpies for the formation of H, N, O, F, Cl, and C, Si,
S atoms from the thermodynamic reference states are calculated at the same level of theory. It is
found that the performance in predicting molecular enthalpies of formation is markedly improved
for the Perdew–Burke–Ernzerhof@Phys. Rev. Lett.77, 3865~1996!# functional. © 2000 American
Institute of Physics.@S0021-9606~00!30342-7#
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INTRODUCTION

This article describes the local orbital density function
~DF! method DMol3 which evolved from a gas phase m
lecular method to a method, which with its recent advanc
encompasses possibilities for state of the art calculation
insulating and metallic solids. In this article, solid state c
culations are applied to the calculation of enthalpies of at
formation for the elements C, Si, and S from their therm
dynamic reference states.

On the methodological side, the step from finite m
ecules and clusters to solids involves the necessity of dea
appropriately with the infinite number of eigenstates of
solid. This is done as usual, by idealizing to solid for perf
translation symmetry with respect to a unit cell. The symm
try representations for the lattice translations require a c
tinuum of labels, the vectors in reciprocal space inside
first Brillouin zone. The molecular sum over orbitals gen
alizes into an integration over the first Brillouin zone~BZ!.

The basic description of the DMol method for molecul
can be found in Ref. 1. The localized numerical orbitals u
as basis sets are designed to give a maximum of accurac
a given basis set size.1 This is done by treating the separat
atom limit exactly with the numerical atomic basis function
The atomic response to the molecular or solid environm
can be handled robustly to an excellent approximation b
relatively small number of additional numerical functions1

With the increase of compute power available, a regime
been reached where the localized basis sets can be im
mented with linear scaling algorithms. This perspective
been addressed by introducing basis functions with a stri
finite range. The pertinent details are given in the subsec
on short tail localized basis functions below. The generali
tion of the method to calculate the static potential for pe
odic boundary conditions in a bulk system has been
scribed in Ref. 2. In order to stabilize the total energy and
atomic dissociation energy on approaching self-consiste
a Harris functional form is used.3,4,1 Contrary to the usua
7750021-9606/2000/113(18)/7756/9/$17.00
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applications of the Harris functional which use nonse
consistent simple forms of the density, DMol is normally ru
to give accurate self-consistent field~SCF! densities. It is
possible, however, to use it for non-SCF Harris calculatio
but the rest of this article is not concerned with this. Liqui
and molecules in solution are examples of extended syst
without the translational symmetry of crystals. This can
addressed in an approximate way within the conduc
screening model of Klamt.5 The DMol method relies fully on
numerical integration in 3D for all matrix elements. Nume
cal integrations in 3D are also used at some point for ca
lating DF correlation matrix elements by all other current D
methods. Projections as well as all space integrations invo
numerical integrations on a sphere. This subject has b
discussed in more detail in Ref. 6. A generalization of t
method to include scalar relativistic effects via a local ps
dopotential for all electron calculations has been given
Ref. 7. More flexibility and supression of core states can
obtained with semilocal pseudopotentials. In a subsection
low, details are given about the implementation of su
semilocal pseudopotentials in DMol3.

Extended systems with translational symmetry, crys
line solids, can be treated without further approximatio
beyond the the density functional approximation, provid
the translational symmetry group is used. The represe
tions of this group are conveniently labeled by wave vecto
The wave vectors are vectors with dimensions@ length21#,
hence the notion reciprocal space. Very often, however,
reciprocal space representation vectors are expressed a
mensionless fractions of the reciprocal lattice vectors. T
notion k-points is frequently used for wave vectors.

A subsection of this article describes the generalizat
of the DMol method to use arbitrary reciprocal space rep
sentations needed for accurate summation over occupied
bitals, etc., in crystals. This now allows proper calculatio
for smaller unit cells where band dispersion across the
Brillouin zone makes theG-point approximation inappropri-
ate.
6 © 2000 American Institute of Physics
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The method for solids is applied to calculate the co
sion and zero-point vibrations for the thermodynamic ref
ence states for graphite, Si, anda-S8.

NEW METHOD FEATURES

Localized basis functions

Localized basis functions almost automatically lead
sparse one-electron Hamiltonian matrices for large syste
It is useful to review briefly some basic alternatives on h
the finite range can be exploited in computations. With
commonly used Gaussian basis sets, usually a trunca
threshold is set and matrix elements below that threshold
approximated as exactly zero. Outside some radius this b
is dominated by a single Gaussian. The actual trunca
radius at a given threshold can be reduced by raising
exponent of the Gaussian and thus reducing its range. If
desires to push the cutoff radius down as much as poss
at a given radius one has to optimize accuracy by balan
the adverse effects of reducing the range of the outerm
Gaussian against the error from raising the truncation thre
old. Raising the truncation threshold implies a discontinu
of the matrix element as a function of distance.

Another possibility is to use numerical atomic functio
and enforce a zero boundary condition at some radius. T
procedure implies a discontinuity of the derivative of t
radial function at the cutoff. The treatment of the seco
derivative needed for the kinetic energy requires special c
Sankey and Niklevski8 chose to treat the kinetic energy ter
in reciprocal space. Comparing the two methods it appe
that the tails of a Gaussian basis are similar to ones obta
from an atomic confinement by a harmonic potential, wh
the other method uses a hard wall confinement.

In the present method, advantages of the two other m
ods are combined. A soft confining potential similar to t
harmonic potential minimizes the effect of any discontinu
at the cutoff, and allows calculation of the kinetic energy p
in real space. A hard wall boundary condition at the cut
radius puts the lowest discontinuity to the first derivative
in the second method. Since the present method uses
functions from numerical atoms or more general central fi
systems, there is freedom to replace the harmonic pote
by a higher power of the radius, and thus to extend the ra
range where the basis functions closely follow the atom
exponential behavior. As the method moves toward sma
cutoff radii, this soft confining potential will need to be op
timized.

Semilocal pseudopotential matrix elements

Main motivations for the use of pseudopotentials co
from systems with heavy atoms. The pseudopotential allo
to incorporate relativistic effects which can be described
scalar wave functions in a nonrelativistic framework. T
reduction of the number of basis functions helps to speed
calculation of the Hamiltonian matrix and diagonalizatio
Semilocal pseudopotentials are usually decomposed as

Vps~r ,r 8!5Vloc~r !1(
lm

u lm&Vl~r !^ lmu, ~1!
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into a local partVloc and a nonlocal part where the potenti
Vl acts only on the partial waves with angular momentuml.
By calculating the projections numerically on the angu
subsets of points associated with each atom,

Al ,m,a, j ,ur2rau5E Ylm~r2ra!f j~r !dV, ur2rau,tnonlocal,

~2!

it is found that the use of the separable pseudopoten
Vps(r ,r 8)2Vloc(r )5( lmuz lm& f l^z lmu ~Refs. 9, 10! would not
significantly accelerate the evaluation of the pseudopoten
matrix elements. The pseudopotential matrix setup time
dominated by Eq.~2!. Exactly the same number and type
terms would have to be summed up for a single separa
projector. The compute time spent with pseudopotential m
trix elements in the present implementation usually rema
a small part of the total time spent on matrix elements.

At the present stage, effective core potentials~ECP! of
the Stuttgart–Dresden11,12group, which have been derived i
the context of wave function approaches, have been ada
for the use with DMol. The highest projector potential h
been incorporated into the local potential, and subtrac
from the lower projector potentials. This reduces the proj
tor expansion by one order. The scattering properties of
angular momentum channels up to the original highest p
jector remain unchanged. But beyond, there is a differen
Higher angular momentum channels than the maximum p
jector experience a simple2zeff /r potential in the original
ECP, while in the present work the scattering potential is
same as for the highest projector of the original potent
The author expects that the effect of this modification is m
nor, as the scattering properties for valence shell electr
were not changed. Since relativistic effects are small for
light elements, all electron calculations are used up to Ca
standard ECP DMol calculations.

Alternatively, averaged relativistic pseudopotentia
~AREP!13 can be used. Like the ECP, the AREP have be
derived in the context of wave function methods. The AR
have been adopted without change for the present w
Pseudopotentials for DFT have been developed mostly w
plane wave convergence properties in mind. This has le
‘‘soft’’ pseudopotentials with usually minimizedzeff . Nei-
ther ECP or AREP have been adapted specifically for D
If we regard Hartree–Fock~HF! and wave function theory
beyond as an implementation of the density functional, t
becomes an issue of transferability of the pseudopoten
from one functional to another. A similar issue exists also
using a pseudopotential optimized for DFT with anoth
DFT.

Matrix elements for k representations

To calculate the DFT Hamiltonian and overlap matric
for the k representations in a lattice there are two basic
proaches. In the first approach, thek-dependent phase factor
are done simultaneously with the calculation of the mat
elements:

hi , j ,k5(
L

exp~ iLK !^f i~r2L2ra!uhuf j~r2rb!&. ~3!
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L are the three indices for lattice summations. Obvious
this part of the calculation scales linearly with the number
k points used in the Brillouin-zone integration. Alternative
the nonvanishing matrix elements~finite range off! on the
lattice can be calculated first and the sparse matrix,

hi , j ,L5^f i~r2L2ra!uhuf j~r2rb!&, ~4!

stored. The lattice summation for matrixhi , j ,k is calculated
in a later step. For unit cells larger in diameter than twice
cutoff radius, matrices Eqs.~3! and ~4! contain the same
number of matrix elements and the same number of ter
For more than a singlek point, use of Eq.~4! is clearly
advantageous. For a small unit cell, calculation of Eq.~4! is
several times more time consuming than evaluation of
~3! for a singlek point, especially so, the larger the cuto
radius is. Since accurate calculations for small unit cells
volve several to manyk points, Eq.~4! often still is advan-
tageous. For simplicity Eq.~4! is used in calculations con
taining otherk points than theG point.

In analogy to the procedure of Eq.~4!, density matrices
with L subscript are generated from thek-dependent eigen
vectors for use in the calculation of the density in real sp
and the Pulay derivative terms.

The Brillouin-zone integrations over all occupied orb
als are done basically with equispaced Fourier meshes s
lar to the ones proposed by Monkhorst and Pack.14 For a cell
of insulating solid with k space integration order o
n1 ,n2 ,n3 the ‘‘intensive’’ quantities~eigenvalues, etc.! cal-
culated with the equiweight equispaced mesh of or
n1 ,n2 ,n3 must be the same as the ones for the superce
size n1 ,n2 ,n3 . This Gedanken experiment shows that t
mesh spacing in reciprocal space is the basic variable g
erning convergence in insulators. By providing sufficie
mesh resolution to resolve the band curvatures that can o
in practice, it is possible to design a mesh for insulatora
priori .

As a default, meshes which contain theG point are used.
Such meshes are guaranteed not to break the symmet
the lattice. The default mesh is chosen as even order m
with a k-point spacing approximating a default target valu

ni52NintS uGi u
2dk

D , i 51,2,3, ~5!

where Nint denotes the nearest integer function,ni is the
mesh order along the reciprocal lattice vectorGi , and the
resolution parameterdk50.03 a.u. for default. Shifted
meshes can be automatically generated and used too. I
usual translation into the first Brillouin zone is disregard
for the moment, thek-vectors of the shifted mesh arek
5( i 51

3 Gi(mi21/2)/ni , where eachmi are numbers running
from 0 to ni21.

The G-point approximation remains the fastest meth
for diagonalization with larger cells, in particular when re
diagonalizations are used. TheG-point method is obtained by
the default if all lattice parameters exceed 1.76 nm.

Symmetry can be used to avoid calculations at redund
k points. This results then in a specialk-points method.14

Automatic space group symmetry recognition is done ba
on the atomic positions in the cell and the correspond
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lattice translations. The current method assumes stand
orientation of the lattice. Furthermore, symmetry breakin
which may result from the start spin densities used to start
calculations of magnetic structures, are also taken into
count. Automatic selection of a symmetry uniquek-point set
is part of the present approach. In passing, it should be no
that using symmetry uniquek-points requires symmetriza
tion of the density, etc. This is done by symmetrizing t
population matrices mentioned before.

Figure 1 shows convergence with mesh size in the c
of the Si primitive cell. Such exponential convergence
characteristic for insulators. The same levels of converge
map onto lower-order meshes, but with the same mesh s
ing, for supercells. The default mesh is the order 6-mesh
the case of the Si primitive cell. The superior efficiency
the higher-order shifted meshes is put in a different a
slightly less favorable perspective by considering the ass
ated special~or symmetry unique! k-points: the unshifted
mesh of order 14 has 104 special points and the shifted m
of order 10 has 110 points.

Brillouin-zone integrations for metals are complicate
by the presence of the Fermi surface, which divides occup
and unoccupied orbitals ink-space for the partially filled
bands. Such integrations can be done by dividing up sp
into tetrahedra, whithin which band energies and matrix e
ments are linearized. Following Bloechl,15 the tetrahedra are
spanned on the full equidistant mesh. Symmetry is us
again to identify the symmetry unique tetrahedra. As defa
the second-order~Fermi surface curvature! corrections15 are
applied. A consequence of the second-order correction is
appearance of negative integration weights at somek-points
for a fractionally occupied band. Writing the integratio
weight at ak-point as a product of a Fourier-mesh weig
and a band occupation leads to the appearance of neg

FIG. 1. Convergence of total energy for Si primitive cell with order
reciprocal space mesh. Full dots: meshes that containG-point; empty dots:
shifted meshes~1 Ha527.2113961 eV!.
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band occupation numbers at somek-points. The integral
band occupation remains positive definite. Applied to an
sulating crystal this tetrahedron method gives identical s
cial points, weights, and fast convergence as the Fou
mesh method when applied to insulators.

Figure 2 shows convergence with mesh size for cop
metal. A power law is characteristic for integrations invol
ing a Fermi surface. The improvement of accuracy obtain
with the Bloechl curvature corrections is very significan
The default mesh for the Cu primitive cell is the mesh
order 8.

It may happen that an occupied or fractionally occupi
band becomes degenerate with an unoccupied band at s
k-point. As a consequence the density associated with ei
of the orbitals becomes ill-defined. Since the total density
both orbitals is well-defined, we choose to populate b
orbitals equally at thatk-point to avoid generating spuriou
oscillations in the SCF process. In metals it is found som
times that a finerk-mesh will not produce spurious oscilla
tions while a more coarsek-mesh does. Spurious SCF osc
lations may alternatively be damped by finite temperat
occupation or by Gaussian level broadening.

The scaling of the present method with respect
system-dependent physical and computational paramete
discussed now. The computation timeT of matrix elements,
density, and orbital derivative terms scales linearly with s
tem sizeN. This is also true with a small caveat for th
electrostatics.2 The atom cutoff radiusr c impacts with a
power of 2d asymptotically, whered is the dimensionality of
the lattice. The diagonalization part goes with the th
power of the system size and is linear in the number
k-points used:

T'aNrc
2d/M1bN3~K/M ! int1cN logM , ~6!

FIG. 2. Convergence of total energy for Cu primitive cell with order
reciprocal space mesh. Full symbols: meshes that containG-point; empty
symbols: shifted meshes; dots: tetrahedra with Bloechl corrections;
angles: linear tetrahedron method.
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wherea, b, care machine and system-dependent parame
The linear scaling part can be and has been made runnin
parallel machines with excellent load balancing.M is the
number of parallel machines. Diagonalizations with multip
k-points are distributed over the parallel processo
(K/M ) int means thatK/M must be rounded up to the nex
integer ifK is not an integer multiple ofM. Parallel process-
ing entails communication overheads which scale logar
mically on a switched network. This and the granularity
the k-points set a limit to the maximum number of parall
processors that is useful in the present implementation.

Gradient functionals

The method is currently set up to handle local spin d
sity functional, and functionals with an explicit gradient d
pendence in addition. Density, and gradients if necessary
calculated on the full numerical integration mesh. If t
functional is written as

Exc@ra ,rb ,¹ra ,¹rb#

5E
num

f xc~ra ,rb ,gaa ,gab ,gbb!d3r , ~7!

where*num is a numerically evaluated integral,ra ,rb are the
up and down spin densities, andgab5¹ra¹rb . The varia-
tional derivative ofExc leads to matrix elements16

^f im̂f j&a5 K ] f

]ra
f if j1S 2

] f

]gaa
¹ra

1
] f

]gab
¹rbD¹~f if j !L . ~8!

This approach does not need an analytical variatio
derivative ofExc . However, in generating problem-adapte
atomic basis sets by solving a radial differential equation
a spherical atom with that particular functional, it is expe
ent to use the variational derivative ofExc , which yields a
local potentialm(r ). Rather than deducing the analytic
variational derivative, one may use for the spherical at
case,

ma~r !5
] f

]ra
2S 31r

d

dr D S 2

r

] f

]gaa

dra

dr
1

1

r

] f

]gab

drb

dr D .

~9!

Normally, it is preferred in the present approach to actua
generate basis functions which are an exact solution of
spherical atom problem for the functional under consid
ation. For some recent functionals it has been found, h
ever, that the variations ofma(r ) turn out to be large for
certain atoms and lead to very high Fourier components
the basis functions. Such kink-like features of the par
waves make the molecular 3D integrations much slower c
verging. For the very fine atomic radial mesh this is no pro
lem. Realizing, that such functionals have been tested
with Gaussian basis functions, it appears reasonable to
basis functions from a functional which generates smo
partial waves.

The B88PW91 or short BP functional combines Beck
1988 exchange 17 with Perdew–Wang correlation 18. L
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TABLE I. Calculated properties for Cu vs. cutoff radiusRc@a0# using PWC local functional, tetrahedra wit
Bloechl corrections on shiftedk-mesh 12312312. For comparison calculations 11-d: all defaults,~Rc

511 a.u., unshiftedk-mesh 63636!, 10-e: with pseudopotential~Ref. 35!, BP: with BP functional~Refs. 17,
19!, BP-e with BP functional and pseudopotential.Et total energy shifted by 1637.938 Ha,Es total energy with
respect to spherical atom with confinement radiusRc .

Property vsRc 8 10 12 14 11-d 10-e BP BP-e

Et (mHa) 0.7 0.5 0.5 0.5 0.7 ¯ ¯ ¯

Es (mHa) 160 158 158 158 158 161 113 11
N(EF) (eV21) 0.30 0.30 0.30 0.30 0.29 0.30 0.30 0.3
a ~%! 21.66 21.54 21.50 21.51 21.48 23.67 11.90 10.14
B ~GPa! 153 174 173 175 174 178 113 11
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most other functionals, it generates sufficiently smooth p
tial waves. However, in its original formulation, numeric
underflow hampers evaluation at low densities. Perhaps
most prominent underflow problem comes from the lo
part of the correlation functional. Perdew–Wang 19~PWC!
have defined

q1~r s!52p1~p3r s
1/21p4r s1p5r s

3/21p6r s
2!, ~10!

and

q2~r s!5 log~111/q1~r s!!, ~11!

wherer s5(3/4pr)1/3. The functionq2(r s) enters the gradi-
ent dependent part. In order to get improved accuracy foq2

at small density the modified expression,

q2~r s!5minS 1

q1~r s!
,maxS logS 11

1

q1~r s!
D ,

1

q1~r s!
S 12

1

2q1~r s!
D D D , ~12!

has been inserted. Some more modifications along these
have been made.

RESULTS AND DISCUSSION

The convergence of the Cu crystal total energy with
spect to the local basis cutoffRc can be seen from Table I
Already for a cutoff radius of 10 a.u.~'5.3 Å! the total
energy appears to be converged to about 10mHa. The bond-
ing energy with respect to the atom is affected more by sm
cutoff radii, because the same cutoff radius was used con
ing the ‘‘free’’ atom. The calculated equilibrium lattice con
stant is fixed within 0.1% forRc.9 a.u. The bulk modulus
calculated by the three point difference scheme from to
energy has a numerical uncertainty of order 1–2 GPa.
interesting to put these results in perspective with other
culations. A calculation using defaults gives essentially
identical result as theRc.9 a.u. results. The somewhat to
short lattice constant is primarily a property of the PW
density functional. It is consistent with the too short latti
constant that the calculated bulk modulus is higher than
experimental value 137 GPa. The ECP, which was desig
from first principles for Hartree–Fock~HF!-based calcula-
tions, gives results in fair agreement. However, the
smaller lattice constant as compared to the all electron
culation should be noted. This change of the energy sur
is due to the modification of the atomic scattering proper
r-
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by the specific pseudopotential. It was found that t
AREP,20 which also was developed for HF-based calcu
tions leads to a very similar extra lattice contraction for C

Since the ECP incorporates scalar relativistic effects
bonding, one may ask if this contraction is a genuine rela
istic effect or should be attributed to shortcomings of t
pseudopotential. To sort this out, further calculations w
done with Rc510 a.u. cutoff. With the all-electron scala
relativistic corrections a 2.30% shortened lattice const
was found, indicating a relativistic contraction for bulk Cu
0.76%. The Stuttgart group also has a nonrelativistic vers
of their ECP; this yields22.73%, or a relativistic contraction
of 0.94%. Such a relativistic contraction is indeed partic
larly pronounced for group IB elements,21 e.g., for Cu2 con-
tractions from 2 to 6 pm are reported in Ref. 21. A contra
tion by 2 pm for the longer Cu–Cu bond in the bu
corresponds to 0.8% contraction of the lattice consta
While now 0.76%–0.94% contractions are attributed to
relativistic effect, the remainder about 1.2% has to be att
uted to lack of portability and other deficiencies of the EC
and AREP when used with DFT.

Use of a gradient functional~BP! leads to a reduction o
binding energy, a lattice expansion of order 2%, and a
crease of the bulk modulus below the observed value. T
effect is consistent with the trend generally observed on
ing from local density approximation~LDA ! to gradient de-
pendent functionals.

The results of calculations for the Si crystal as a funct
of computational parameters are put together in Table II. T

TABLE II. Calculated properties of Si vs. cutoff radiusRc@a0# using HL-
JMW local functional, DNP basis includesf-polarization function for Si,
shiftedk-mesh 83838. For comparison calculations 11-d: except for JM
all defaults:~Rc511 a.u., DND basis set, unshiftedk-mesh 63636!, 10-g:
basis set including ag-polarization function,FLAPW ~Ref. 36!, and Ref. 22,a

10-BP: with BP functional~Refs. 17, 19!. Et total energy per cell shifted by
576.82 Ha,Es total energy per atom with respect to spherical atom w
confinement radiusRc . Bexp598.8 GPa.

Property
vs. Rc 8 10 12 11-d 10-g FLAPW 10-BP

Et (mHa) 4.5 3.3 3.3 20.280 4.0 3.3a 2 Ha
Es (mHa) 194 191 191 189 192 ¯ 163
Eg (eV) 0.52 0.53 0.53 0.59 0.50 0.50a 0.67
a ~%! 20.54 20.53 20.56 20.38 20.45 20.48 0.80
B ~GPa! 108 96 97 96 95 97 90

aReference 22.
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calculated values for cutoff radius 8, 10, and 12a0 use an
extended basis set which includes anf-polarization function
in the case of Si. It has been noted that the default DND b
set, which includes ad-polarization function for Si, misse
up to about 1 kcal/mol per bond for tetrahedrally bond
silicon in compounds like in SiF4 and the Si crystal. This is
also the major reason for the difference with respect to
default calculation. With the extended basis set, electrosta
was calculated using up to hexadecapole moments, and
‘‘xfine’’ mesh was used. Higherl polarization functions and
higher multipole moments reduce the calculated value of
Kohn–Sham energy gap. Usingg-polarization functions in
addition further lowers the gap to near its converged va
This converged value is also obtained from high qua
FLAPW calculations.22 ~For precise comparison withFLAPW

results the Hedin Lundqvist–Janak Moruzzi Williams fu
tional is used, difference with PWC is minor for bulk Si.! It
is well-known that the Kohn–Sham~KS! energy gap for
most semiconductors is significantly smaller than the opt
gap. It is gratifying to see that two different all electro
implementations of DFT like DMol3 and FLAPW come to
agree to within a fraction of a mHartree for energies, 0.
for lattice constants, and 3% for the bulk modulus, wh
using the same density functional. The agreement with
periment is by no means as good as the different den
functional results among themselves. The results are pu
perspective by using a very well tested functional involvi
density gradients explicitly. It is significant and typical fo
the present state of the art with ‘‘gradient’’ functionals, th
the lattice constant is larger than measured experimen
and that the bulk modulus is softened. The gradient fu
tional does not lead to much a larger KS bandgap. The
eigenvalue gap remains very significantly below the opti
gap.

Harmonic vibration frequencies in molecules and at
G-point in reciprocal space for solids are calculated by tw
point numerical differentiation of forces. Symmetry is us
to diminish the number of calculations. The zero-point vib
tional energy and the thermal corrections in solids involv
Brillouin zone integration for the phonons. This integrati
can be approximated with increasing accuracy byG-point
sums for increasingly large supercells. Table III shows
convergence properties in the case of Si. Particularly by s
pling the acoustic phonons atG in a small cell leads to an
underestimation of the zero-point vibrational energy. A
ready at modest cell size a sufficient level of precision
reached. In the case of thermal corrections, theG-point sum
approximates the acoustic phonon density of states by a

TABLE III. Calculated zero point vibrational energy per atom and therm
corrections fromG-point phonon frequencies in silicon supercell, energies
kcal/mol.

Cell size~atoms! Evib(0) H~298!–H~0!

2 1.10 0.20
8 1.35 0.62

16 1.38 0.71
32 1.40 0.73
64 1.41 0.78
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of ‘‘Einstein model’’ discrete frequencies. Again it turns ou
that for the purpose of calculating enthalpies of formati
accuracy on the order of 0.1 kcal/mol atom is obtained w
cell size of 16 atoms.

The band structure and density of states of graphite
shown in Fig. 3. The bands become degenerate along the
K–H in the BZ, making graphite an example of a semimet
The density of states has been calculated with the tetrahe
method using the unshifted 1231234 mesh, the BP func-
tional, and the experimental geometry (a5246 pm,c
5680 pm) from the Cerius2 database. For thek-mesh a mul-
tiple of 3 is required in the AB plane to actually havek-mesh
points along the K–H line~Fig. 4!. Since the degenerate
bands atEF can lead to the spurious occupation proble
mentioned above, an 83834 k-mesh, which avoids such
problems, was chosen for most of the calculations. The ef
on calculated properties is minor except for optical prop
ties. Using the PWC local functional, the lattice constanta

l

FIG. 3. Band structure and density of states for graphite.

FIG. 4. Unshifted 6363n mesh for hexagonal solid, projected ontoab
plane. Special points are shown bold; circles: reciprocal lattice points.
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5244.7 pm andc/a52.694 is found, while experiment is a
a5246.4 or 247 pm andc/a52.724 or 2.806 according to
Refs. 23, 24. The best available experimental results invo
thus an uncertainty of about 3% for thec-lattice parameter.
The calculated bulk modulus is 297 GPa. Gradie
dependent functionals remove some or all of the overbind
found with local functionals. With the GGA functional25,26,19

a5246.5 pm and a 13.8% enlargedc/a ratio is found. The
PBE functional27 yields a5247.0 and 14.5% largerc/a as
compared to experiment. The B88PW91 functional yielda
5246.7 pm and an about 25% enlargedc/a ratio. The strik-
ing enhancement of the calculatedc-lattice parameter in-
volves only a small energy lowering of the total energy
about 1 mHa with respect to the experimental geometry.
weak graphite interlayer interaction makes the calcula
c-parameter very sensitive to the choice of basis set. Be
basis sets tend to make calculatedc larger. The present resu
is in contradiction with the GGA result from Ref. 28. How
ever, the author is confident that qualitative confirmations
the present result could be found in a number of waste-pa
baskets already. While the present result is not docume
in the literature yet, it is not a complete surprise. It is kno
that gradient dependent functionals lead to dramatic wea
ing of weak bonds. In particular, the B88 exchange part
the functional, which is known to greatly improve calculat
dissociation energies of molecules, has been known for m
ing certain weak bonds turn out unbound.29,30 Despite that
weakly bonded systems have been considered by desig
the very recent HCTH-147 functional,31 it nevertheless over
estimates graphitec/a by '20%. It is interesting to compar
total energies of graphite and diamond, Table IV. The ze
point vibration energy of graphite was calculated with 16 a
36 atom supercells, the one for diamond with a 16 at
supercell. Vibrational calculations were done at the exp
mental lattice parameters using the PWC functional. T
present calculations with the PWC functional yield diamo
to be more stable by 1.2 mHa per atom~32 meV or 0.7
kcal/mol!. The slightly larger zero point vibration energy o
diamond is not sufficient to revert this ordering32 in the
present calculation. With the BP functional graphite is mo
stable by 3.9 mHa~106 meV or 2.4 kcal/mol!.

Starting from the experimental structure of orthorhom
sulfur a-S8,

33 which is the thermodynamic reference sta
for S at low temperature, geometry optimizations for fix
lattice constants were done with the BP functional. Displa
ments with respect to the experimental geometry remai
all below 1 pm. Lattice vibrations were calculated asG-point
vibrations of the primitive cell consisting of 32 sulfur atom

The formation energy of the gas phase atom~with re-

TABLE IV. Calculated binding energiesEs ~Ha! per atom for graphite and
diamond at the experimental lattice constant for the PWC and the BP f
tional.

E0v Es PWC Es BP

Graphite 0.0062 0.3260 0.2824
Diamond 0.0065 0.3275 0.2782

DE 20.0012 10.0039
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spect to the reference state! is an important intermediate
quantity in a theoretical discussion of molecular enthalp
of formation. In previous discussions of molecular enthalp
of formation experimental values were used for the at
enthalpies.

For the discussion of bonding energetics the B88PW
functional is used.17,25According to Curtisset al.34 this func-
tional produces 7.85 kcal/mol average absolute deviati
from well-established experimental enthalpies of format
(D fH

0) at 298.15 K for their G2 test set consisting of 14
neutral molecules. The performance for that test obtai
with the present approach is summarized in Table V. T
4~B! uses MP2 geometries and scaled HF frequencie34

Tests 4~A! and 4~B! are almost identical. The slightly of
minimum geometries in 4~B! reduce the small mean
overbinding of 4~A! leading to a superficially improved re
sult.

Table VI shows the enthalpy of formation for free atom
in their Hund’s rule ground state.Eb is the binding energy of
the reference state with respect to the spin-unrestric
spherical atom. The spherical DFT atom energy ser
merely as an easily accessible reference number, s
spherical atoms are used to construct the variational ba

c-
TABLE V. Deviations from experimental enthalpies of formation@kcal/
mol# at 298 K for G2 neutral molecule set:~a! For energy, geometry and
frequencies: functional B88PW91, basis DNP, frequencies scaled 0.98~b!
Energy: functional B88PW91, basis DNP, geometry MP2, frequencies:
scaled 0.86, all energies in kcal/mol.~c! Same as~a! but using calculated
atomic enthalpies for formation from molecular reference states H, N, O
Cl, and Solids C, Si, S.~d! Same as~c! but experimental atom formation
energy used for F.~e! same as~a! using PBE functional.~f! PBE functional,
using calculated atomic enthalpies for formation from molecular refere
states H, N, O, F, Cl, and solids C, Si, S.

Number Mean rms Avg abs Min Max Min at Max at

~a!
G2-1 55 0.2 5.8 4.6 213.8 14.6 Si2H6 O2

G2-2 93 2.2 9.0 6.7 212.5 25.2 SiF4 NO2

All 148 1.5 8.0 5.9

~b!
G2-1 55 0.0 5.6 4.5 213.2 13.9 Si2H6 O2

G2-2 93 1.5 8.7 6.5 212.6 24.7 SiF4 NO2

All 148 1.0 7.7 5.8

~c!
G2-1 55 20.3 4.5 3.5 210.3 9.4 LiF S2
G2-2 93 3.0 9.4 7.4 231.4 18.3 SiF4 pyridine
All 148 1.8 7.9 6.0

~d!
G2-1 55 0.1 4.5 3.6 29.7 9.7 OH F2
G2-2 93 5.1 8.7 7.2 215.5 23.6 SiCl4 ClF5

All 148 3.2 7.4 5.9

~e!
G2-1 55 4.1 8.1 6.3 29.0 21.0 Si2H6 CO2

G2-2 93 15.8 18.8 16.1 25.2 37.8 CH3SiH3 pyridine
All 148 11.5 15.7 12.4

~f!
G2-1 55 1.1 5.9 4.6 210.4 14.2 OH Si2H6

G2-2 93 5.4 10.2 8.6 223.2 19.8 SiF4 pyridine
All 148 3.8 8.9 7.1
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The atom calculation for the Hund’s rule ground state f
quently involves nonspherical densities. This is handled a
single atom calculation in the molecular framework. T
Hund’s rule level occupations are chosen to maximizeSz ,
which formally implies a single determinant wave functio
The nonspherical spin densities of the Hund’s rule atom l
to an atomic ground state energy lower by several kcal/
than the one from our spin-unrestricted spherical atom.

It is apparent that the enthalpy of formation for Si and
is underestimated. This is true for the BP functional. For
PWC local functional the underestimate turns again into
overestimate. Intermediate results in appealing agreem
with experiment for the solids are obtained from function
like GGA or PBE27 which have a smaller enhancement fa
tor f (s) for exchange in the limit of large scaled gradients.
Unfortunately GGA or PBE have much inferior results co
pared to BP when tested with the G2 neutral molecule
thalpies of formation. On the other hand the enthalpies
formation for the atoms from the solid reference state rem
in the range of expectations from G2 with the BP function
i.e., on the order of 6 kcal/mol average deviation. One m
use the calculated enthalpies of formation for the eleme
H, N, O, F, and Cl from the diatomic reference states and
C, Si, and S from the solid calculations instead of potentia
less consistent, experimentally deduced values. C, Si, a
are the most frequently used solid state reference state
the G2 test set. Next in importance is white phosporus.
fortunately this solid is crystallographically not well define
Therefore calculation of solid reference states for P and
less important Li, Be, B, Na, Al is disregarded for this wor
As it turns out, using calculated reference states deterior
the BP-G2 performance Table V~C!. Especially the spread
for the G2-2 subset increases unfavorably. This is ma
due to using the atom formation enthalpy from the F2 mol-
ecule. This reference state happens to be maximum devia
for the G2-1 subset Table V~A! and ~B!. Without fluorine,
indeed, there is an improvement seen in the rms deviati
~D!. Whether or not calculated reference states are used
BP functional yields an average deviation of 6 kcal/mol, a
maximum deviations exceeding 20 kcal/mol for the G2 t
set. This appears to be the present state of the art obtain

TABLE VI. Calculated enthalpies of formation@kcal/mol# at 298 K for C,
Si, and S gaseous atoms from their respective reference state. Calcul
using BP functional, reference state~solid! with experimental geometry.Es

denotes the calculated binding energy of the reference state with resp
spin-unrestricted spherical atoms.Ens is the calculated Hunds-rule energ
gain with respect to spin-unrestricted spherical atom.E0v is the zero-point
vibrational energy calculated from 36, 64, and 32 atom cells, respectiv
Eth thermal correction.

Graphite Silicon a-S8

Es ~1! 177.18 102.89 66.76
Ens ~1! 23.42 21.12 24.42
E0v ~2! 3.88 1.41 0.96
Eth ~2! 0.25 0.78 1.05

Calc. DH f(298) 169.63 99.58 60.33
Exp. DH f(298) 169.98 106.6 65.66
-
a

.
d

ol

e
n
nt

s
-

-
-
f

in
l,
y
ts
r

y
S

for
-

e

es

ly

on

s,
he
d
t
ble

with functionals that have only explicit dependence on d
sity and density gradients.

The performance of the PBE functional27 using experi-
mental atomic enthalpies of formation is impaired by ov
estimation of the atomic dissociation energy, Table V~E!.
When calculated atomic enthalpies of formation are us
Table V ~F! results. This is very close in performance to t
one by BP. The ability of the PBE functional to describ
differences in bonding among various compounds is v
similar to BP, which remains the most performant-pure
density plus gradient-dependent functional for the pres
test.

CONCLUSIONS

Recent extensions of the DMol3 density functional
method are described. This method is designed to do e
tronic structure calculations for local and gradient-depend
functionals. It uses numerical solutions of DFT-free atoms
part of its basis set, and thus gives highly accurate D
solutions for the separated atoms limit. Typically a doub
numerical basis set withd-polarization functions~DND! is
used for molecular and solids calculations. Basis sets w
shorter tails than previously useable significantly speed
calculations for large molecules and solids. Semilocal ps
dopotentials help both to introduce scalar relativistic effe
and to speed up calculations. The extension with Brillou
zone integrations is specific for calculations with period
boundary conditions. The tetrahedron method for Brillou
zone integration deals with the complication arising from t
Fermi surface in metals; it is designed to become a spec
method with exponential convergence in the case of se
conductors and insulating compounds. The method is u
here for solid state calculations of semiconductor Si and
sulatora Sulfur, the semimetal graphite, and metallic Cu. A
upshot of these benchmark calculations is that the larger
of uncertainty in the results is due to limitations in the pre
ently available functionals, and not with limitations of th
present method of calculation.

Si, S, and graphite are also standard thermodynamic
erence states. These were used together with the mole
reference states for H, N, O, F, Cl to reassess the per
mance of two gradient dependent density functionals for
G2 neutral test set. If experimental atom formation energ
are used together with calculated molecular dissociation
ergies to define the calculated molecular enthalpies of for
tion, B88P91 turns out as the best performing functional
DMol. While B88P91 performance remains virtually un
changed when using the calculated atom formation energ
it is found that the performance of the PBE functional
much improved, coming close to the B88P91 performance
is expected that the present method will prove useful a
efficient in finding density functional results for molecule
solids, and in particular, surfaces with molecules.
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