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Recent extensions of the DMolocal orbital density functional method for band structure
calculations of insulating and metallic solids are described. Furthermore the method for calculating
semilocal pseudopotential matrix elements and basis functions are detailed together with other
unpublished parts of the methodology pertaining to gradient functionals and local orbital basis sets.
The method is applied to calculations of the enthalpy of formation of a set of molecules and solids.
We find that the present numerical localized basis sets yield improved results as compared to
previous results for the same functionals. Enthalpies for the formation of H, N, O, F, Cl, and C, Si,
S atoms from the thermodynamic reference states are calculated at the same level of theory. It is
found that the performance in predicting molecular enthalpies of formation is markedly improved
for the Perdew—Burke—Ernzerhidthys. Rev. Lett77, 3865(1996 | functional. © 2000 American
Institute of Physicg.S0021-960600)30342-7

INTRODUCTION applications of the Harris functional which use nonself-
consistent simple forms of the density, DMol is normally run
This article describes the local orbital density functionalto give accurate self-consistent fie(8CPH densities. It is
(DF) method DMof which evolved from a gas phase mo- possible, however, to use it for non-SCF Harris calculations,
lecular method to a method, which with its recent advanceshut the rest of this article is not concerned with this. Liquids
encompasses possibilities for state of the art calculations oand molecules in solution are examples of extended systems
insulating and metallic solids. In this article, solid state cal-without the translational symmetry of crystals. This can be
culations are applied to the calculation of enthalpies of atonaddressed in an approximate way within the conductor
formation for the elements C, Si, and S from their thermo-screening model of KlantThe DMol method relies fully on
dynamic reference states. numerical integration in 3D for all matrix elements. Numeri-
On the methodological side, the step from finite mol-cal integrations in 3D are also used at some point for calcu-
ecules and clusters to solids involves the necessity of dealinigting DF correlation matrix elements by all other current DF
appropriately with the infinite number of eigenstates of themethods. Projections as well as all space integrations involve
solid. This is done as usual, by idealizing to solid for perfectnumerical integrations on a sphere. This subject has been
translation symmetry with respect to a unit cell. The symme-discussed in more detail in Ref. 6. A generalization of the
try representations for the lattice translations require a conmethod to include scalar relativistic effects via a local pseu-
tinuum of labels, the vectors in reciprocal space inside thelopotential for all electron calculations has been given in
first Brillouin zone. The molecular sum over orbitals gener-Ref. 7. More flexibility and supression of core states can be
alizes into an integration over the first Brillouin zo(®Z). obtained with semilocal pseudopotentials. In a subsection be-
The basic description of the DMol method for moleculeslow, details are given about the implementation of such
can be found in Ref. 1. The localized numerical orbitals usedemilocal pseudopotentials in DMol
as basis sets are designed to give a maximum of accuracy for Extended systems with translational symmetry, crystal-
a given basis set siZeThis is done by treating the separated line solids, can be treated without further approximations
atom limit exactly with the numerical atomic basis functions.beyond the the density functional approximation, provided
The atomic response to the molecular or solid environmenthe translational symmetry group is used. The representa-
can be handled robustly to an excellent approximation by d@ions of this group are conveniently labeled by wave vectors.
relatively small number of additional numerical functidns. The wave vectors are vectors with dimensidgiength ],
With the increase of compute power available, a regime hakence the notion reciprocal space. Very often, however, the
been reached where the localized basis sets can be impleciprocal space representation vectors are expressed as di-
mented with linear scaling algorithms. This perspective hasnensionless fractions of the reciprocal lattice vectors. The
been addressed by introducing basis functions with a strictlyotion k-points is frequently used for wave vectors.
finite range. The pertinent details are given in the subsection A subsection of this article describes the generalization
on short tail localized basis functions below. The generalizaef the DMol method to use arbitrary reciprocal space repre-
tion of the method to calculate the static potential for peri-sentations needed for accurate summation over occupied or-
odic boundary conditions in a bulk system has been debitals, etc., in crystals. This now allows proper calculations
scribed in Ref. 2. In order to stabilize the total energy and thdéor smaller unit cells where band dispersion across the first
atomic dissociation energy on approaching self-consistencyBrillouin zone makes th&'-point approximation inappropri-
a Harris functional form is usetf! Contrary to the usual ate.
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The method for solids is applied to calculate the cohe-into a local partV|,; and a nonlocal part where the potential
sion and zero-point vibrations for the thermodynamic refer-V, acts only on the partial waves with angular momentum
ence states for graphite, Si, andS;. By calculating the projections numerically on the angular

subsets of points associated with each atom,

NEW METHOD FEATURES

Localized basis functions Al,m,a,j,lrfra\: J Yim(r— ra) ¢j(l’)dQ, |I’— ra| < Thonlocal

Localized basis functions almost automatically lead to
sparse one-electron Hamiltonian matrices for large systemd. is found that the use of the separable pseudopotentials
It is useful to review briefly some basic alternatives on howVpdrT") = Viodr) = Zim[{im) fi{¢im| (Refs. 9, 10 would not
the finite range can be expioited in Computations_ With theSlgnlflcantly accelerate the evaluation of the pseudopotential
commonly used Gaussian basis sets, usually a truncatighatrix elements. The pseudopotential matrix setup time is
threshold is set and matrix elements below that threshold ar@ominated by Eq(2). Exactly the same number and type of
approximated as exactly zero. Outside some radius this basigrms would have to be summed up for a single separable
is dominated by a single Gaussian. The actual truncatioRrojector. The compute time spent with pseudopotential ma-
radius at a given threshold can be reduced by raising thglx elements in the present implementation Usua”y remains
exponent of the Gaussian and thus reducing its range. If on small part of the total time spent on matrix elements.
desires to push the cutoff radius down as much as possible, At the present stage, effective core potenti@€P of
at a given radius one has to optimize accuracy by balancintie Stuttgart—Dresdéh?group, which have been derived in
the adverse effects of reducing the range of the outermodhe context of wave function approaches, have been adapted
Gaussian against the error from raising the truncation thresHor the use with DMol. The highest projector potential has
old. Raising the truncation threshold implies a discontinuityPeen incorporated into the local potential, and subtracted
of the matrix element as a function of distance. from the lower projector potentials. This reduces the projec-

Another possibility is to use numerical atomic functions tor expansion by one order. The scattering properties of the
and enforce a zero boundary condition at some radius. Thighgular momentum channels up to the original highest pro-
procedure implies a discontinuity of the derivative of thejector remain unchanged. But beyond, there is a difference.
radial function at the cutoff. The treatment of the secondigher angular momentum channels than the maximum pro-
derivative needed for the kinetic energy requires special cardector experience a simple ze/r potential in the original
Sankey and NiklevsRichose to treat the kinetic energy term ECP, while in the present work the scattering potential is the
in reciprocal space. Comparing the two methods it appearsame as for the highest projector of the original potential.
that the tails of a Gaussian basis are similar to ones obtainethe author expects that the effect of this modification is mi-
from an atomic confinement by a harmonic potential, whilenor, as the scattering properties for valence shell electrons
the other method uses a hard wall confinement. were not changed. Since relativistic effects are small for the

In the present method, advantages of the two other metHight elements, all electron calculations are used up to Ca for
ods are combined. A soft confining potential similar to thestandard ECP DMol calculations.
harmonic potential minimizes the effect of any discontinuity ~ Alternatively, averaged relativistic pseudopotentials
at the cutoff, and allows calculation of the kinetic energy partAREP)*® can be used. Like the ECP, the AREP have been
in real space. A hard wall boundary condition at the cutoffderived in the context of wave function methods. The AREP
radius puts the lowest discontinuity to the first derivative ahave been adopted without change for the present work.
in the second method. Since the present method uses basigeudopotentials for DFT have been developed mostly with
functions from numerical atoms or more general central field?lane wave convergence properties in mind. This has led to
systems, there is freedom to replace the harmonic potentiafoft” pseudopotentials with usually minimizedey. Nei-
by a higher power of the radius, and thus to extend the radigher ECP or AREP have been adapted specifically for DFT.
range where the basis functions closely follow the atomidf we regard Hartree—FockHF) and wave function theory
exponential behavior. As the method moves toward smallePeyond as an implementation of the density functional, this

cutoff radii, this soft confining potential will need to be op- becomes an issue of transferability of the pseudopotential
timized. from one functional to another. A similar issue exists also for

using a pseudopotential optimized for DFT with another

Semilocal pseudopotential matrix elements DFT.

Main motivations for the use of pseudopotentials ComeMatrix elements for k representations
from systems with heavy atoms. The pseudopotential allows P
to incorporate relativistic effects which can be described by  To calculate the DFT Hamiltonian and overlap matrices
scalar wave functions in a nonrelativistic framework. Thefor the k representations in a lattice there are two basic ap-
reduction of the number of basis functions helps to speed uproaches. In the first approach, thelependent phase factors

calculation of the Hamiltonian matrix and diagonalization.are done simultaneously with the calculation of the matrix

Semilocal pseudopotentials are usually decomposed as  elements:

Vps(rvr’)zvloc(r)—i'% [Tm)V(r){Im], 1) hi,j,k=§L: expliLK)(gi(r—L—ry)|h[¢j(r—rp)). (3
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L are the three indices for lattice summations. Obviously. ® T T T T T 7
this part of the calculation scales linearly with the number of
k points used in the Brillouin-zone integration. Alternatively, 10-!
the nonvanishing matrix elementfnite range of¢) on the
lattice can be calculated first and the sparse matrix, \ ™
o= (i(r—L=r )| gi(r—T ), @ 7 o e
stored. The lattice summation for mathx ; , is calculated
in a later step. For unit cells larger in diameter than twice th
cutoff radius, matrices Eqg3) and (4) contain the same
number of matrix elements and the same number of termgg ;-4 ®
For more than a singl& point, use of Eq.(4) is clearly °
advantageous. For a small unit cell, calculation of &J.is °
several times more time consuming than evaluation of Eq 1075} ° i
(3) for a singlek point, especially so, the larger the cutoff L]
radius is. Since accurate calculations for small unit cells in-
volve several to man¥k points, Eq.(4) often still is advan- 10791 o
tageous. For simplicity Eq4) is used in calculations con- ' '
taining otherk points than thd" point.
In analogy to the procedure of E@l), density matrices Order of K-Points Mesh
with L SUbSC”pt. are generate_d from thejepe_nd_ent clgen- FIG. 1. Convergence of total energy for Si primitive cell with order of
vectors for use in the calculation of the density in real SPaC&eciprocal space mesh. Full dots: meshes that cofitainint; empty dots:
and the Pulay derivative terms. shifted meshe$l Ha=27.2113961 eY.
The Brillouin-zone integrations over all occupied orbit-
als are done basically with equispaced Fourier meshes simi-
lar to the ones proposed by Monkhorst and F.ﬂﬁdkoracell lattice translations. The current method assumes standard
of insulating solid with k space integration order of ientation of the lattice. Furthermore, symmetry breaking,
N1,nz,ns the “intensive” quantities(eigenvalues, etccal-  \yhich may result from the start spin densities used to start up
culated with the equiweight equispaced mesh of ordeg,icyjations of magnetic structures, are also taken into ac-
N1,N2,Nz must be the same as the ones for the supercell of, 0t Automatic selection of a symmetry unidugoint set
size ny,ny,Ng. This Gedanken experiment shows that theig hart of the present approach. In passing, it should be noted
mesh spacing in reciprocal space is the basic variable goypat ysing symmetry uniquk-points requires symmetriza-
erning convergence in insulators. By providing sufficiention of the density, etc. This is done by symmetrizing the
mesh resolution to resolve the band curvatures that can ocCYbpulation matrices mentioned before.
in.pr.actice, it is possible to design a mesh for insulagrs Figure 1 shows convergence with mesh size in the case
priort. _ _ . of the Si primitive cell. Such exponential convergence is
As a default, meshes which contain theoint are used.  haracteristic for insulators. The same levels of convergence
Such meshes are guaranteed not to break the symmetry pfa, onio lower-order meshes, but with the same mesh spac-
the lattice. The default mesh is chosen as even order mesfy; for supercells. The default mesh is the order 6-mesh in
with ak-point spacing approximating a default target value,ine case of the Si primitive cell. The superior efficiency of
G| _ th.e higher-order shifted mesh.es is put in a different anq
2d,)’ 1=1,2,3, (5  slightly less favorable perspective by considering the associ-
ated specialor symmetry unique k-points: the unshifted
where N;,; denotes the nearest integer function,is the  mesh of order 14 has 104 special points and the shifted mesh
mesh order along the reciprocal lattice vec@r, and the of order 10 has 110 points.
resolution parameterd,=0.03a.u. for default. Shifted Brillouin-zone integrations for metals are complicated
meshes can be automatically generated and used too. If thy the presence of the Fermi surface, which divides occupied
usual translation into the first Brillouin zone is disregardedand unoccupied orbitals ik-space for the partially filled
for the moment, thek-vectors of the shifted mesh ale  bands. Such integrations can be done by dividing up space
=Ei3:1Gi(mi—1/2)/ni , Where eachm; are numbers running into tetrahedra, whithin which band energies and matrix ele-
from O ton;— 1. ments are linearized. Following Bloeclthe tetrahedra are
The I'-point approximation remains the fastest methodspanned on the full equidistant mesh. Symmetry is used
for diagonalization with larger cells, in particular when real again to identify the symmetry unique tetrahedra. As default,
diagonalizations are used. Thepoint method is obtained by the second-ordefFermi surface curvatuyecorrection$® are
the default if all lattice parameters exceed 1.76 nm. applied. A consequence of the second-order correction is the
Symmetry can be used to avoid calculations at redundardgppearance of negative integration weights at skrpeints
k points. This results then in a specialpoints method?  for a fractionally occupied band. Writing the integration
Automatic space group symmetry recognition is done basedeight at ak-point as a product of a Fourier-mesh weight
on the atomic positions in the cell and the correspondingand a band occupation leads to the appearance of negative
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T " — " " wherea, b, care machine and system-dependent parameters.
The linear scaling part can be and has been made running on
1071 L ] parallel machines with excellent load balanciid.is the
number of parallel machines. Diagonalizations with multiple
a k-points are distributed over the parallel processors;
102} A {1 (K/M)j means thak/M must be rounded up to the next
° A a . integer ifK is not an integer multiple of1. Parallel process-
> 5 A , ing entails communication overheads which scale logarith-
2, 19-3L O A i : . : :
— TN mically on a switched network. This and the granularity of
%D O o ° the k-points set a limit to the maximum number of parallel
N 104 0 oe | processors that is useful in the present implementation.
o] 8 ° . Gradient functionals
10-5 | fo) ) | The method is currently set up to handle local spin den-
® sity functional, and functionals with an explicit gradient de-
0 : " . . :
pendence in addition. Density, and gradients if necessary, are
10761 J  calculated on the full numerical integration mesh. If the
L 1 : —t— t o functional is written as
4 6 g8 10 12 14 18 24
Order of K-Points Mesh ExdPaipp:VPa:Vpgl
FIG. 2. Convergence of total energy for Cu primitive cell with order of _ 3
reciprocal space mesh. Full symbols: meshes that cofitginint; empty - fnumeC(pa ’pﬁ’yaa'yaﬁ’yﬁﬁ)d r (7)
symbols: shifted meshes; dots: tetrahedra with Bloechl corrections; tri-
angles: linear tétrahedron method. where[ ,,mis a numerically evaluated integral, ,p; are the

up and down spin densities, and;=Vp,Vpz. The varia-

_ . . tional derivative ofE,. leads to matrix elemerifs
band occupation numbers at sorkepoints. The integral

band occupation remains positive definite. Applied to an in- . of d

sulating crystal this tetrahedron method gives identical spe- <¢i"’“¢1>a:<a¢i ¢i+(2mvﬁ’a

cial points, weights, and fast convergence as the Fourier e

mesh_ method when applied to msul_ators. _ n —VPB)V(¢i ¢j)>. )
Figure 2 shows convergence with mesh size for copper IYap

metal. A power law is characteristic for integrations involv-

: : . . This approach does not need an analytical variational
ing a Fermi surface. The improvement of accuracy obtained, . _° . .

. . : S, derivative ofE,.. However, in generating problem-adapted
with the Bloechl curvature corrections is very significant.

The default mesh for the Cu primitive cell is the mesh Ofatom|c t.)aS'S sets b_y solving a _radlal dlffer_ent|a| équation fpr
order 8 a spherical atom V\_ntr_] that parltlcullar functlongl, it is expedi-
' ent to use the variational derivative Bf., which yields a

It may happen that an occupied or fractionally OCCLIpIedIocaI potential u(r). Rather than deducing the analytical

band becomes degenerate with an unoccupied band at some .. D .
. : : - variational derivative, one may use for the spherical atom
k-point. As a consequence the density associated with either,

of the orbitals becomes ill-defined. Since the total density of 2>

both orbitals is well-defined, we choose to populate both of d\(2 of dp, 1 Jf dpg
orbi.tals. equglly at thak-point to avoid gene.ra.ting spurious Hall)= a— 3 ra T EIVNT: + T TV ap ar |
oscillations in the SCF process. In metals it is found some- 9

times that a finek-mesh will not produce spurious oscilla- o )
tions while a more coardemesh does. Spurious SCF oscil- Normally, it is preferred in the present approach to actually

lations may alternatively be damped by finite temperaturéJ€nerate basis functions which are an exact solution of the
occupation or by Gaussian level broadening. spherical atom problem for the functional under consider-

The scaling of the present method with respect todtion. For some recent functionals it has been found, how-

system-dependent physical and computational parameters §¥€r, that the variations of,(r) turn out to be large for
discussed now. The computation tiffieof matrix elements, ~Certain atoms and lead to very high Fourier components in
density, and orbital derivative terms scales linearly with systh€ basis functions. Such kink-like features of the partial
tem sizeN. This is also true with a small caveat for the Waves make the molecular 3D integrations much slower con-
electrostaticd. The atom cutoff radiug, impacts with a  Verging. For the very fine atomic radial mesh this is no prob-
power of 2l asymptotically, where is the dimensionality of Ie_m. Reallz!ng, thqt such .functl_onals have been tested out
the lattice. The diagonalization part goes with the thirgWith Gaussian basis functions, it appears reasonable to use
power of the system size and is linear in the number ofasis functions from a functional which generates smooth

k-points used: partial waves.
The B88PW91 or short BP functional combines Becke’s

T~aNrZ/M+bN3(K/M);y+cNlogM, (6) 1988 exchange 17 with Perdew—Wang correlation 18. Like
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TABLE |. Calculated properties for Cu vs. cutoff radiis[a,] using PWC local functional, tetrahedra with
Bloechl corrections on shifted-mesh 1% 12X 12. For comparison calculations 11-d: all default®,
=11 a.u., unshifte-mesh 6x6X 6), 10-e: with pseudopotentiéRef. 35, BP: with BP functionalRefs. 17,
19), BP-e with BP functional and pseudopotentt].total energy shifted by 1637.938 Ha, total energy with
respect to spherical atom with confinement radiJs

Property vsR. 8 10 12 14 11-d 10-e BP BP-e
E; (mHa) 0.7 0.5 0.5 0.5 0.7
Es (mHa) 160 158 158 158 158 161 113 113
N(Eg) (eV'h) 0.30 0.30 0.30 0.30 0.29 0.30 0.30 0.30
a (%) -166 —-154 -150 -151 -148 —-367 +190 +0.14
B (GPa 153 174 173 175 174 178 113 110

most other functionals, it generates sufficiently smooth parby the specific pseudopotential. It was found that the
tial waves. However, in its original formulation, numerical AREP2° which also was developed for HF-based calcula-
underflow hampers evaluation at low densities. Perhaps thigons leads to a very similar extra lattice contraction for Cu.
most prominent underflow problem comes from the local  Since the ECP incorporates scalar relativistic effects on
part of the correlation functional. Perdew—Wang (PWC) bonding, one may ask if this contraction is a genuine relativ-
have defined istic effect or should be attributed to shortcomings of the
_ 112 302 2 pseudopotential. To sort this out, further calculations were
G1(rs) =2P1(Pal's “+ Pals Psl s+ Per's). 19 Gone with R.=10a.u. cutoff. With the all-electron scalar
and relativistic corrections a 2.30% shortened lattice constant
_ was found, indicating a relativistic contraction for bulk Cu of
Gz(rs) = log(1+1/a,(rs)), (1) 0.76%. The Stuttgart group also has a nonrelativistic version
wherer s= (3/4mp) 3. The functiongy(rs) enters the gradi-  of their ECP; this yields-2.73%, or a relativistic contraction
ent dependent part. In order to get improved accuracgjor of 0.94%. Such a relativistic contraction is indeed particu-

at small density the modified expression, larly pronounced for group IB elemerftse.g., for Cy con-
1 tractions from 2 to 6 pm are reported in Ref. 21. A contrac-
q2(r5)=min(m,ma>< log| 1+ NG )>, tion by 2 pm for the longer Cu—Cu bond in the bulk
1\'s 1\'s

corresponds to 0.8% contraction of the lattice constant.
1 1 While now 0.76%—0.94% contractions are attributed to a

(1— ))) : (12)  relativistic effect, the remainder about 1.2% has to be attrib-
a(rs) 20(rs)

uted to lack of portability and other deficiencies of the ECP
has been inserted. Some more modifications along these linggd AREP when used with DFT.

have been made. Use of a gradient functionaBP) leads to a reduction of
binding energy, a lattice expansion of order 2%, and a de-
RESULTS AND DISCUSSION crease of the bulk modulus below the observed value. This

The convergence of the Cu crystal total energy with re_effect is consistent with the trend generally observed on go-

spect to the local basis cutdi, can be seen from Table I. mgﬂgg:: iﬁﬁiltigﬁglssl ty approximatiofL.DA) to gradient de-
Already for a cutoff radius of 10 a.u~5.3 A) the total P : . . .
The results of calculations for the Si crystal as a function

energy appears to be converged to abouHa&. The bond- . .
. . : ?f computational parameters are put together in Table Il. The
ing energy with respect to the atom is affected more by smal
cutoff radii, because the same cutoff radius was used confin-
ing the “free” atom. The calculated equilibrium lattice con- _ _ _ _
stant is fixed within 0.1% foR.>9 a.u. The bulk modulus TABLE II. Calculated properties of Si vs. cutoff radit&[ay] using HL-

lcul d by the th . Cd'ff h f aiMW local functional, DNP basis includdgpolarization function for Si,
calculate y the t Ijee point l. erence scheme irom tOI_ hiftedk-mesh 8<8x 8. For comparison calculations 11-d: except for IMW
energy has a numerical uncertainty of order 1-2 GPa. It iyl defaults:(R,=11 a.u., DND basis set, unshiftéemesh 6<6x6), 10-g:
interesting to put these results in perspective with other calbasis set including g-polarization functionrLapw (Ref. 36, and Ref. 22,

culations. A calculation using defaults gives essentially an-9-BP: with BP functiona(Refs. 17, 19 E, total energy per cell shifted by

identical result as th&®.>9 a.u. results. The somewhat too >/ &:82 Ha.Es total energy per atom with respect to spherical atom with
. ¢ . . confinement radiug; . B,,=98.8 GPa.

short lattice constant is primarily a property of the PWC

density functional. It is consistent with the too short lattice Property

constant that the calculated bulk modulus is higher than the vs-Rc 8 10 12 11-d  10-g FAPw 10-BP
experimental value 137 GPa. The ECP, which was designedg, (mHa) 45 33 3.3 —0.280 40 38 2Ha
from first principles for Hartree—FockHF)-based calcula-  E;(mHa) 194 191 191 189 192 -~ 163
tions, gives results in fair agreement. However, the 2% Eg(eV) 052 053 053 059 050 0%0 0.67
smaller lattice constant as compared to the all electron cal-2 (%) —054 -0.53 -056 -0.38 -045 048  0.80
B (GP3 108 96 97 96 95 97 90

culation should be noted. This change of the energy surface
is due to the modification of the atomic scattering propertiesReference 22.
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TABLE lll. Calculated zero point vibrational energy per atom and thermal N
corrections fronT-point phonon frequencies in silicon supercell, energies in : .
kcal/mol. 4 | . 3 .- . |
Cell size(atoms Eyi(0) H(298 ~H(0) ;
2 1.10 0.20 2 [+ T - '
8 1.35 0.62 - RS
16 1.38 0.71 o b b
32 1.40 0.73 o 3 3
64 1.41 0.78 o, :
L%’ T +
calculated values for cutoff radius 8, 10, andad2ise an 6 | - -?"" T
extended basis set which includes fapolarization function
in the case of Si. It has been noted that the default DND basi P I
set, which includes a-polarization function for Si, misses 4 '5.7.. ’ "-.\ 5 )
up to about 1 kcal/mol per bond for tetrahedrally bonded VRS = | % b
silicon in compounds like in SiFand the Si crystal. This is 8 . , : RN P

also the major reason for the difference with respect to the
default calculation. With the extended basis set, electrostatic
was calculated using up to hexadecapole moments, and ti Wavevectors and Density of States
“xfine” mesh was used. Highelr polarization functions and
higher multipole moments reduce the calculated value of the
Kohn-Sham energy gap. Usirggpolarization functions in
addition further lowers the gap to near its converged valueof “Einstein model” discrete frequencies. Again it turns out
This converged value is also obtained from high qualitythat for the purpose of calculating enthalpies of formation
FLAPW calculations?® (For precise comparison withLAPw  accuracy on the order of 0.1 kcal/mol atom is obtained with
results the Hedin Lundqvist—Janak Moruzzi Williams funaell size of 16 atoms.
tional is used, difference with PWC is minor for bulk Si. The band structure and density of states of graphite are
is well-known that the Kohn—-ShartKS) energy gap for shown in Fig. 3. The bands become degenerate along the line
most semiconductors is significantly smaller than the opticaK—H in the BZ, making graphite an example of a semimetal.
gap. It is gratifying to see that two different all electron The density of states has been calculated with the tetrahedron
implementations of DFT like DMdland FLAPW come to  method using the unshifted ¥212x 4 mesh, the BP func-
agree to within a fraction of a mHartree for energies, 0.1%tional, and the experimental geometrya={246 pmg¢
for lattice constants, and 3% for the bulk modulus, when=680pm) from the Cerilfsdatabase. For themesh a mul-
using the same density functional. The agreement with extiple of 3 is required in the AB plane to actually hak«nesh
periment is by no means as good as the different densitpoints along the K—H linglFig. 4). Since the degenerate
functional results among themselves. The results are put ihands atEg can lead to the spurious occupation problem
perspective by using a very well tested functional involvingmentioned above, an>88Xx4 k-mesh, which avoids such
density gradients explicitly. It is significant and typical for problems, was chosen for most of the calculations. The effect
the present state of the art with “gradient” functionals, thaton calculated properties is minor except for optical proper-
the lattice constant is larger than measured experimentalfyes. Using the PWC local functional, the lattice constant
and that the bulk modulus is softened. The gradient func-
tional does not lead to much a larger KS bandgap. The KS
eigenvalue gap remains very significantly below the optical
gap.

Harmonic vibration frequencies in molecules and at the
I'-point in reciprocal space for solids are calculated by two- o
point numerical differentiation of forces. Symmetry is used
to diminish the number of calculations. The zero-point vibra-
tional energy and the thermal corrections in solids involve a
Brillouin zone integration for the phonons. This integration
can be approximated with increasing accuracy Ibpoint
sums for increasingly large supercells. Table Il shows the
convergence properties in the case of Si. Particularly by sam-
pling the acoustic phonons &tin a small cell leads to an
underestimation of the zero-point vibrational energy. Al-
ready at modest cell size a sufficient level of precision is o
reached. In the case of thermal corrections, Ithgoint SUM ki, 4. Unshifted &6xn mesh for hexagonal solid, projected oreb
approximates the acoustic phonon density of states by a sgiine. Special points are shown bold; circles: reciprocal lattice points.

K r M KH A L H

FIG. 3. Band structure and density of states for graphite.
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TABLE IV. Calculated binding energies (Ha) per atom for graphite and TABLE V. Deviations from experimental enthalpies of formatifkcal/
diamond at the experimental lattice constant for the PWC and the BP funcmol] at 298 K for G2 neutral molecule sefa) For energy, geometry and

tional. frequencies: functional B88PW91, basis DNP, frequencies scaled (@)98.
Energy: functional B88PW91, basis DNP, geometry MP2, frequencies: HF
Eou E, PWC Es BP scaled 0.86, all energies in kcal/mét) Same aga) but using calculated
- atomic enthalpies for formation from molecular reference states H, N, O, F,
Graphite 0.0062 0.3260 0.2824 ! P ' Y

Cl, and Solids C, Si, S(d) Same agc) but experimental atom formation
energy used for He) same aga) using PBE functional(f) PBE functional,

AE —0.0012 +0.0039 using calculated atomic enthalpies for formation from molecular reference
states H, N, O, F, Cl, and solids C, Si, S.

Diamond 0.0065 0.3275 0.2782

Number Mean rms Avgabs Min Max Minat Max at

=244.7 pm andct/a=2.694 is found, while experiment is at (@

a=246.4 or 247 pm and/a=2.724 or 2.806 according to ©21 55 02 58 46 -138 146 SH, O,

Refs. 23, 24. The best available experimental results involv§"2'2 93 22 90 6.7 125 252 Sig NO,

thus an uncertainty of about 3% for tledattice parameter.

The calculated bulk modulus is 297 GPa. Gradient-b _

dependent functionals remove some or all of the overbindin@z'1 5 00 56 45 -132 139 SHy, O,

found with local functionals. With the GGA functiorfaf®1° A"2'2 L 4983 11'05 78'77 5655 ~126 247 Sk NG,

a=246.5pm and a 13.8% enlargeda ratio is found. The ' ' '

PBE functional’ yields a=247.0 and 14.5% larger/a as  (© _

compared to experiment. The B88PW91 functional yields gg; gg _03;30 4554 37'54 :;2'2 12'?)’ ';.F 3 i

=246.7 pm and an about 25% enlargga ratio. The strik- A”' 148 18 79 60 ' 3 Sk pyricine

ing enhancement of the calculatedattice parameter in-

volves only a small energy lowering of the total energy by (@

about 1 mHa with respect to the experimental geometry. Th 21 gg 01 45 36 97 9.7 OH Z

L X . - 51 87 72 -155 236 SiC] CIF

weak graphite interlayer interaction makes the calculateq 148 32 74 59

c-parameter very sensitive to the choice of basis set. Better

basis sets tend to make calculateddrger. The present result g)z - 41 81 63 —90 210 SH co,

is in contradlctlon with Fhe GGA resullt frpm Ref.. 28. How- 92_2 93 158 188 161 -52 378 CljgiH3 pyridine

ever, the author is confident that qualitative confirmations ofy, 148 115 157 124

the present result could be found in a number of waste-paper

baskets already. While the present result is not documentefl

: . o . : G2-1 55 11 59 46 —-104 142 OH SHe

in the literature yet, it is not a complete surprise. It is knowng, , g3 54 102 86 -232 198 Sif pyridine

that gradient dependent functionals lead to dramatic weakeny) 148 38 89 71

ing of weak bonds. In particular, the B88 exchange part of

the functional, which is known to greatly improve calculated

dissociation energies of molecules, has been known for mak-

ing certain weak bonds turn out unboufid® Despite that spect to the reference statis an important intermediate

weakly bonded systems have been considered by design fquantity in a theoretical discussion of molecular enthalpies

the very recent HCTH-147 functiondl it nevertheless over- of formation. In previous discussions of molecular enthalpies

estimates graphite/a by ~20%. It is interesting to compare of formation experimental values were used for the atom

total energies of graphite and diamond, Table V. The zeroenthalpies.

point vibration energy of graphite was calculated with 16 and  For the discussion of bonding energetics the B88PW91

36 atom supercells, the one for diamond with a 16 atonfunctional is used’?°According to Curtis®t al>* this func-

supercell. Vibrational calculations were done at the experitional produces 7.85 kcal/mol average absolute deviations

mental lattice parameters using the PWC functional. Thérom well-established experimental enthalpies of formation

present calculations with the PWC functional yield diamond(A¢H?) at 298.15 K for their G2 test set consisting of 148

to be more stable by 1.2 mHa per atd®2 meV or 0.7 neutral molecules. The performance for that test obtained

kcal/mo). The slightly larger zero point vibration energy of with the present approach is summarized in Table V. Test

diamond is not sufficient to revert this ordeﬁ’ﬁg’n the  4(B) uses MP2 geometries and scaled HF frequer?éies.

present calculation. With the BP functional graphite is moreTests 4A) and 4B) are almost identical. The slightly off

stable by 3.9 mH&106 meV or 2.4 kcal/mol minimum geometries in @) reduce the small mean
Starting from the experimental structure of orthorhombicoverbinding of 4A) leading to a superficially improved re-

sulfur a-Sg,*® which is the thermodynamic reference statesult.

for S at low temperature, geometry optimizations for fixed  Table VI shows the enthalpy of formation for free atoms

lattice constants were done with the BP functional. Displacein their Hund’s rule ground stat&, is the binding energy of

ments with respect to the experimental geometry remainethe reference state with respect to the spin-unrestricted

all below 1 pm. Lattice vibrations were calculatedlapoint ~ spherical atom. The spherical DFT atom energy serves

vibrations of the primitive cell consisting of 32 sulfur atoms. merely as an easily accessible reference number, since
The formation energy of the gas phase at@mith re-  spherical atoms are used to construct the variational basis.

148 15 8.0 5.9
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TABLE VI. Calculated enthalpies of formatidical/mol] at 298 K for C, with functionals that have only explicit dependence on den-
Si, and S gaseous atoms from their respective reference state. Calculatiogﬁy and density gradients

using BP functional, reference stasolid) with experimental geometrfg . ﬁﬁ . .
denotes the calculated binding energy of the reference state with respect to 1€ performance of the PBE functiofalising experi-

spin-unrestricted spherical atonts,; is the calculated Hunds-rule energy mental atomic enthalpies of formation is impaired by over-
gain with respect to spin-unrestricted spherical atéy, is the zero-point  estimation of the atomic dissociation energy, TablgB).
vibrational energy calculated from 36, 64, and 32 atom cells, respe(:tivelyvvl,]en calculated atomic enthalpies of formation are used
E:, thermal correction. L - ’
Table V (F) results. This is very close in performance to the

Graphite Silicon a-S one by BP. The ability of the PBE functional to describe

E, (+) 177.18 102.89 66.76 differences in bonding among various compounds is very
Ens (+) —3.42 -1.12 —4.42 similar to BP, which remains the most performant-purely-
Eo, (=) 3.88 141 0.96 density plus gradient-dependent functional for the present
= (=) 0.25 0.78 1.05

test.
Calc. AH(298) 169.63 99.58 60.33
Exp. AH(298) 169.98 106.6 65.66

CONCLUSIONS

The atom calculation for the Hund’s rule ground state fre-  Recent extensions of the DMoldensity functional

quently involves nonSpherical densities. This is handled as method are described. This method is designed to do elec-
single atom calculation in the molecular framework. Theygnic structure calculations for local and gradient-dependent
Hurrd’s rule Iev_el o_ccupati_ons are cho_sen to maxin&e_ functionals. It uses numerical solutions of DFT-free atoms as
which formally implies a single determinant wave function. part of its basis set, and thus gives highly accurate DFT

tThe nortwspherlcal szmtdensrtles of Ithe Hubnd s rule ?fmllleaiolutions for the separated atoms limit. Typically a doubled
0 an atomic ground state energy lower by several KCalimop, o ica| basis set with-polarization functiongDND) is

than the one from our spin-unrestricted spherical atom. used for molecular and solids calculations. Basis sets with

It is apparent that the enthalpy of formation for Si and S . ) o
is underestimated. This is true for the BP functional. For theShorter tails than previously useable significantly speed up

PWC local functional the underestimate turns again into aﬁ:alculatiens for large molecules and solids. Se.m.ilo.cal pseu-
overestimate. Intermediate results in appealing agreemeHPpOtem'aIS help both to _mtroduce scalar _relatlv_lstlc effeets
with experiment for the solids are obtained from functionals@nd 0 speed up calculations. The extension with Brillouin
like GGA or PBE’ which have a smaller enhancement fac-Z0One integrations is specific for calculations with periodic
tor f(s) for exchange in the limit of |arge scaled gradisnt boundary conditions. The tetrahedron method for Brillouin
Unfortunately GGA or PBE have much inferior results com-zone integration deals with the complication arising from the
pared to BP when tested with the G2 neutral molecule enFermi surface in metals; it is designed to become a spectral
thalpies of formation. On the other hand the enthalpies ofmethod with exponential convergence in the case of semi-
formation for the atoms from the solid reference state remaionductors and insulating compounds. The method is used
in the range of expectations from G2 with the BP functional,here for solid state calculations of semiconductor Si and in-
i.e., on the order of 6 kcal/mol average deviation. One mayulatora Sulfur, the semimetal graphite, and metallic Cu. An
use the calculated enthalpies of formation for the elementgpshot of these benchmark calculations is that the larger part
H, N, O, F, and Cl from the diatomic reference states and fobf uncertainty in the results is due to limitations in the pres-
C, Si, and S from the solid calculations instead of potentiallyently available functionals, and not with limitations of the
less consistent, experimentally deduced values. C, Si, and ﬁ*esent method of calculation.

are the most frequently used solid state reference states for Si, S, and graphite are also standard thermodynamic ref-

;het G2ttestt§et. ngdXt_ In |m[;‘[)olrtance r:S V\ilh'te Ft)hoslf)g“;?- Lén'erence states. These were used together with the molecular
ortunately this solid Is crystallographically not well aelin€d. oo oo states for H, N, O, F, CI to reassess the perfor-

Therefore calculation of solid reference states for P and th?nance of two aradient dependent density functionals for the
less important Li, Be, B, Na, Al is disregarded for this work. 9 P y

As it turns out, using calculated reference states deteriorate(';'s2 neutral test set. If experimental atom formation energies

the BP-G2 performance Table {). Especially the spread are used together with calculated molecular diseociation en-
for the G2-2 subset increases unfavorably. This is mainlfrg'es to define the calculated molecular enthalpies of forma-
due to using the atom formation enthalpy from thenfol- tion, 888P91 turns out as the best performing frjnctional for
ecule. This reference state happens to be maximum deviatidMol- While B88P91 performance remains virtually un-
for the G2-1 subset Table YA) and (B). Without fluorine, ~ changed when using the calculated atom formation energies,
indeed, there is an improvement seen in the rms deviationd, is found that the performance of the PBE functional is
(D). Whether or not calculated reference states are used, thguch improved, coming close to the B88P91 performance. It
BP functional yields an average deviation of 6 kcal/mol, ands expected that the present method will prove useful and
maximum deviations exceeding 20 kcal/mol for the G2 testfficient in finding density functional results for molecules,
set. This appears to be the present state of the art obtainatselids, and in particular, surfaces with molecules.
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