Planta Med 2007; 73(6): 535-544
DOI: 10.1055/s-2007-967200
Pharmacology
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Gypenosides Induce Apoptosis in Human Hepatoma Huh-7 Cells through a Calcium/Reactive Oxygen Species-Dependent Mitochondrial Pathway

Qwa-Fun Wang1 , Chi-Wu Chiang2 , Chun-Chi Wu3 , Chi-Chih Cheng3 , Shur-Jong Hsieh3 , Jung-Chou Chen1 , Yun-Chih Hsieh5 , Shih-Lan Hsu3 , 4 , 5
  • 1School of Post-baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan, Republic of China
  • 2Institute of Molecular Medicine, National Cheng Kung University Medical College, Taichung, Taiwan, Republic of China
  • 3Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
  • 4Institute of Toxicology, Chung Shan Medical University, Taichung, Taiwan, Republic of China
  • 5Institute of Chinese Pharmaceutical Sciences, China Medical University, Taichung, Taiwan, Republic of China
Further Information

Publication History

Received: December 8, 2006 Revised: March 22, 2007

Accepted: March 24, 2007

Publication Date:
22 May 2007 (online)

Abstract

We have previously reported that gypenosides induce apoptosis in human hepatocarcinoma Huh-7 cells through a mitochondria-dependent caspase-9 activation cascade. In order to further explore the critical events leading to apoptosis in gypenosides-treated cells, the following effects of gypenosides on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration of the mitochondrial membrane potential (MPT), and the subcellular distribution of Bcl-2 and Bax. We show that gypenosides-induced apoptosis was accompanied by the generation of intracellular ROS, disruption of MPT, and inactivation of ERK, as well as an increase in mitochondrial Bax and a decrease of mitochondrial Bcl-2 levels. Ectopic expression of Bcl-2 or treatment with furosemide attenuated gypenosides-triggered apoptosis. Treatment with ATA caused a drastic prevention of apoptosis and the gypenosides-mediated mitochondrial Bcl-2 decrease and Bax increase, but failed to inhibit ROS generation and MPT dysfunction. Incubation with antioxidants significantly inhibited gypenosides-mediated ROS generation, ERK inactivation, MPT and apoptosis. Moreover, an increase of the intracellular calcium ion (Ca2+) concentration rapidly occurred in gypenosides-treated Huh-7 cells. Buffering of the intracellular Ca2+ increase with a Ca2+ chelator BAMTA/AM blocked the gypenosides-elicited ERK inactivation, ROS generation, Bcl-2/Bax redistribution, mitochondrial dysfunction, and apoptosis. Based on these results, we propose that the rise in intracellular Ca2+ concentration plays a pivotal role in the initiation of gypenosides-triggered apoptotic death.

References

  • 1 Aktan F, Henness S, Roufogalis B D, Ammit A J. Gypenosides derived from Gynostemma pentaphyllum suppress NO synthesis in murine macrophages by inhibiting iNOS enzymatic activity and attenuating NF-kappaB-mediated iNOS protein expression.  Nitric Oxide. 2003;  8 235-42.
  • 2 Wang Q F, Chen J C, Hsieh S J, Cheng C C, Hsu S L. Regulation of Bcl-2 family molecules and activation of caspase cascade involved in gypenosides-induced apoptosis in human hepatoma cells.  Cancer Lett. 2002;  183 169-78.
  • 3 Chen J C, Tsai C C, Chen L D, Chen H H, Wang W C. Therapeutic effect of gypenoside on chronic liver injury and fibrosis induced by CCl4 in rats.  Am J Chin Med. 2000;  28 175-85.
  • 4 Chiu T H, Chen J C, Chung J G. N-acetyltransferase is involved in gypenosides-induced N-acetylation of 2-aminofluorene and DNA adduct formation in human cervix epidermoid carcinoma cells (Ca Ski).  In Vivo. 2003;  17 281-8.
  • 5 Zhao K, Zhao G M, Wu D, Soong Y, Birk A V, Schiller P W. et al . Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury.  J Biol Chem. 2004;  279 34 682-90.
  • 6 Kowaltowski A J, Vercesi A E, Fiskum G. Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reduced pyridine nucleotides.  Cell Death Differ. 2000;  7 903-10.
  • 7 Murphy K M, Ranganathan V, Farnsworth M L, Kavallaris M, Lock R B. Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells.  Cell Death Differ. 2000;  7 102-11.
  • 8 Demaurex N, Distelhorst C. Cell biology. Apoptosis - the calcium connection.  Science. 2003;  300 65-7.
  • 9 Brookes P S, Yoon Y, Robotham J L, Anders M W, Sheu S S. Calcium, ATP, and ROS: a mitochondrial love-hate triangle.  Am J Physiol Cell Physiol. 2004;  287 C817-33.
  • 10 Ji Q S, Carpenter G. Role of basal calcium in the EGF activation of MAP kinases.  Oncogene. 2000;  19 1853-6.
  • 11 Gaestel M. MAPKAP kinases - MKs - two's company, three's a crowd.  Nat Rev Mol Cell Biol. 2006;  7 120-30.
  • 12 Tafani M, Cohn J A, Karpinich N O, Rothman R J, Russo M A, Farber J L. Regulation of intracellular pH mediates Bax activation in HeLa cells treated with staurosporine or tumor necrosis factor-alpha.  J Biol Chem. 2002;  277 49 569-76.
  • 13 Kuwana T, Newmeyer D D. Bcl-2-family proteins and the role of mitochondria in apoptosis.  Curr Opin Cell Biol. 2003;  15 691-9.
  • 14 Halestrap A P, Connern C P, Griffiths E J, Kerr P M. Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury.  Mol Cell Biochem. 1997;  174 167-72.
  • 15 Kowaltowski A J, Castilho R F, Vercesi A E. Mitochondrial permeability transition and oxidative stress.  FEBS Lett. 2001;  495 12-5.
  • 16 Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, Melendez J A. et al . Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.  J Biol Chem. 2003;  278 8516-25.
  • 17 de Vries S. The pathway of electron transfer in the dimeric QH2: cytochrome c oxidoreductase.  J Bioenerg Biomembr. 1986;  18 195-224.
  • 18 Meister A. Glutathione-ascorbic acid antioxidant system in animals.  J Biol Chem. 1994;  269 9397-400.
  • 19 Rizzuto R, Pinton P, Ferrari D, Chami M, Szabadkai G, Magalhaes P J. et al . Calcium and apoptosis: facts and hypotheses.  Oncogene. 2003;  22 8619-27.
  • 20 Vercesi A E, Kowaltowski A J, Oliveira H C, Castilho R F. Mitochondrial Ca2+ transport, permeability transition and oxidative stress in cell death: implications in cardiotoxicity, neurodegeneration and dyslipidemias.  Front Biosci. 2006;  11 2554-64.
  • 21 Crompton M, Ellinger H, Costi A. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress.  Biochem J. 1988;  255 357-60.
  • 22 Shimizu S, Ide T, Yanagida T, Tsujimoto Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c.  J Biol Chem. 2000;  275 12 321-5.

Shih-Lan Hsu, PhD

Department of Education and Research

Taichung Veterans General Hospital

No. 160, Section 3, Chung-Gang Road

40705 Taichung

Taiwan

Republic of China

Phone: +886-4-23592525 ext. 4037

Fax: +886-4-23592705

Email: h2326@mail.vghtc.gov.tw

>