Laryngorhinootologie 2012; 91(01): 6-12
DOI: 10.1055/s-0031-1291339
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Nanomedizin in der HNO-Heilkunde – ein Ausblick

Nanomedicine in Otorhinolaryngology – Future Prospects
S. Dürr
1   Hals-Nasen-Ohren-Klinik , Kopf- und Halschirurgie, Sektion für Experimentelle Onkologie und Nanomedizin (SEON) , Else Kröner-Fresenius-Stiftungsprofessur, Universitätsklinikum Erlangen
,
R. Tietze
1   Hals-Nasen-Ohren-Klinik , Kopf- und Halschirurgie, Sektion für Experimentelle Onkologie und Nanomedizin (SEON) , Else Kröner-Fresenius-Stiftungsprofessur, Universitätsklinikum Erlangen
,
S. Lyer
1   Hals-Nasen-Ohren-Klinik , Kopf- und Halschirurgie, Sektion für Experimentelle Onkologie und Nanomedizin (SEON) , Else Kröner-Fresenius-Stiftungsprofessur, Universitätsklinikum Erlangen
,
C. Alexiou
1   Hals-Nasen-Ohren-Klinik , Kopf- und Halschirurgie, Sektion für Experimentelle Onkologie und Nanomedizin (SEON) , Else Kröner-Fresenius-Stiftungsprofessur, Universitätsklinikum Erlangen
› Author Affiliations
Further Information

Publication History





Publication Date:
09 January 2012 (online)

Zusammenfassung

Hintergrund:

Die Nanotechnologie gewinnt in der heutigen Welt zunehmend an Bedeutung. In der Medizin im Allgemeinen und speziell in der Hals-Nasen-Ohrenheilkunde verhält es sich ebenso. Im Wesentlichen lassen sich die folgenden Bereiche unterscheiden: Diagnostik, neue Therapien und Wirkstoffe, Wirkstofftransport („drug delivery“) und medizinische Implantate.

Material und Methoden:

Es erfolgte eine umfangreiche Literaturrecherche in den Datenbanken „PubMed/Medline“ und „Web of Science“ zur Nanomedizin in der Hals-Nasen-Ohrenheilkunde. Darüber hinaus wird ein aktueller Überblick über die Arbeiten der an der Hals-Nasen-OhrenKlinik, Kopf- und Halschirurgie des Universitätsklinikums Erlangen angesiedelten Sektion für Experimentelle Onkologie und Nanomedizin (SEON) gegeben.

Ergebnisse:

Zahlreiche neue und innovative Arbeiten zur Nanotechnologie in Diagnostik und Therapie konnten gefunden werden. Aufgrund der großen Vielfalt in der Hals-Nasen-Ohrenheilkunde gibt es hier, je nach Teilgebiet, die unterschiedlichsten Ansätze. Der Hauptanteil umfasst Arbeiten zum Wirkstofftransport.

Schlussfolgerungen:

Die Bemühungen, das Potenzial der Nanotechnologie in der Hals-Nasen-Ohrenheilkunde zu nützen, sind vielfältig und zukunftsträchtig. Die größte Aussicht auf Erfolg wird dabei den nanopartikulären Drug-Delivery-Systemen zugeschrieben.

Abstract

Nanomedicine in Otorhinolaryngology – Future Prospects

Background:

Nanotechnology becomes more and more important in the world of today. Equally, it does generally in medicine and of course specifically in otorhinolaryngology. Essentially, there are the following fields: Diagnostics, new therapies and agents, drug delivery and medical implants.

Material and Methods:

An extensive literature research on nanomedicine in otorhinolaryngology was carried out in the standard online medical reference databases “PubMed/Medline” and “Web of Science”. Furthermore, we are giving an overview of the work of the Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital Erlangen.

Results:

A lot of new and innovative studies on nanotechnology in diagnostics and therapy were recovered. Depending on the variety in otorhinolaryngology, there are numerous versatile approaches, according to the different areas. The main part is engaged in drug delivery.

Conclusions:

The efforts to exploit the potential of nanotechnology in otorhinolaryngology are multifaceted, innovative and seminal. The best perspective of success is attributed to nanoparticulate drug delivery systems.

 
  • Literatur

  • 1 Feynman RP. There‘s plenty of room at the bottom. 1959 http://www.zyvex.com/nanotech/feynman.html
  • 2 Taniguchi N. On the basic concept of nanotechnology. In: Proc Intl Conf Prod Eng Part II. Tokyo: Japan Society of Precision Engineering; 1974: 5-10
  • 3 Krug HF, Wick P. Nanotoxikologie – eine interdisziplinäre Herausforderung. Angew Chem 2011; 123: 1294-1314
  • 4 Philpott CM, Gane S, McKiernan D. Nanomedicine in otorhinolaryngology: what does the future hold?. Eur Arch Otorhinolaryngol 2011; 268: 489-496
  • 5 Bawa R, Bawa SR, Maebius SB, Flynn T, Wei C. Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine 2005; 1: 150-158
  • 6 Wagner V, Wechsler D. Nanobiotechnologie II: Anwendungen in der Medizin und Pharmazie. Düsseldorf: VDI Technologiezentrum GmbH. ; 2004
  • 7 OECD/Allianz Group. Small sizes that matter: Opportunities and Risks of Nanotechnologies 2005;
  • 8 Praetorius M, Brunner C, Lehnert B, Klingmann C, Schmidt H, Staecker H, Schick B. Transsynaptic delivery of nanoparticles to the central auditory nervous system. Acta Otolaryngol 2007; 127: 486-490
  • 9 Thaler M, Roy S, Fornara A, Bitsche M, Qin J, Muhammed M, Salvenmoser W, Rieger G, Fischer AS, Glueckert R. Visualization and analysis of superparamagnetic iron oxide nanoparticles in the inner ear by light microscopy and energy filtered TEM. Nanomedicine 2011; 7: 360-369
  • 10 Roy S, Johnston AH, Newman TA, Glueckert R, Dudas J, Bitsche M, Corbacella E, Rieger G, Martini A, Schrott-Fischer A. Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin-derived peptide ligand: Potential tool for drug delivery. Int J Pharm 2010; 390: 214-224
  • 11 Scheper V, Wolf M, Scholl M, Kadlecova Z, Perrier T, Klok HA, Saulnier P, Lenarz T, Stöver T. Potential novel drug carriers for inner ear treatment: hyperbranched polylysine and lipid nanocapsules. Nanomedicine (Lond) 2009; 4: 623-635
  • 12 Chen G, Zhang X, Yang F, Mu L. Disposition of nanoparticle-based delivery system via inner ear administration. Curr Drug Metab 2010; 11: 886-897
  • 13 Zhang W, Zhang Y, Löbler M, Schmitz KP, Ahmad A, Pyykkö I, Zou J. Nuclear entry of hyperbranched polylysine nanoparticles into cochlear cells. Int J Nanomedicine 2011; 6: 535-546
  • 14 Mondalek FG, Zhang YY, Kropp B, Kopke RD, Ge X, Jackson RL, Dormer KJ. The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic field. J Nanobiotechnology 2006; 4: 4
  • 15 Shapiro B, Dormer K, Rutel IB. A Two-Magnet System to Push Therapeutic Nanoparticles. AIP Conf Proc 2010; 1311: 77-88
  • 16 Zou J, Sood R, Ranjan S, Poe D, Ramadan UA, Kinnunen PK, Pyykkö I. Manufacturing and in vivo inner ear visualization of MRI traceable liposome nanoparticles encapsulating gadolinium. J Nanobiotechnology 2010; 8: 32
  • 17 Stöver T, Lenarz T. Biomaterials in cochlear implants. Laryngo-Rhino-Otol 2009; 88: S12-S31
  • 18 Nair LS, Laurencin CT. Nanofibers and nanoparticles for orthopaedic surgery applications. J Bone Joint Surg Am 2008; 90: 128-131
  • 19 Dormer K, Seeney C, Lewelling K, Lian G, Gibson D, Johnson M. Epithelial internalization of superparamagnetic nanoparticles and response to external magnetic field. Biomaterials 2005; 26: 2061-2072
  • 20 Kopke RD, Wassel RA, Mondalek F, Grady B, Chen K, Liu J, Gibson D, Dormer KJ. Magnetic nanoparticles: inner ear targeted molecule delivery and middle ear implant. Audiol Neurootol 2006; 11: 123-133
  • 21 Srinivas A, Rao PJ, Selvam G, Murthy PB, Reddy PN. Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicol Lett 2011; 205: 105-115
  • 22 Hackenberg S, Friehs G, Froelich K, Ginzkey C, Koehler C, Scherzed A, Burghartz M, Hagen R, Kleinsasser N. Intracellular distribution, geno- and cytotoxic effects of nanosized titanium dioxide particles in the anatase crystal phase on human nasal mucosa cells. Toxicol Lett 2010; 195: 9-14
  • 23 Hackenberg S, Scherzed A, Technau A, Kessler M, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N. Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol In Vitro 2011; 25: 657-663
  • 24 Bilberg K, Døving KB, Beedholm K, Baatrup E. Silver nanoparticles disrupt olfaction in Crucian carp (Carassius carassius) and Eurasian perch (Perca fluviatilis). Aquat Toxicol 2011; 104: 145-152
  • 25 Griesenbach U, Geddes DM, Alton EW. Advances in cystic fibrosis gene therapy. Curr Opin Pulm Med 2004; 10: 542-546
  • 26 Lai SK, Suk JS, Pace A, Wang YY, Yang M, Mert O, Chen J, Kim J, Hanes J. Drug carrier nanoparticles that penetrate human chronic rhinosinusitis mucus. Biomaterials 2011; 32: 6285-6290
  • 27 Ellis-Behnke RG, Liang YX, Tay DK, Kau PW, Schneider GE, Zhang S, Wu W, So KF. Nano hemostat solution: immediate hemostasis at the nanoscale. Nanomedicine 2006; 2: 115-207
  • 28 Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 2006; 114: 1172-1178
  • 29 Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 2009; 379: 146-157
  • 30 Patel S, Chavhan S, Soni H, Babbar AK, Mathur R, Mishra AK, Sawant K. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J Drug Target 2011; 19: 468-474
  • 31 Kubek MJ, Domb AJ, Veronesi MC. Attenuation of kindled seizures by intranasal delivery of neuropeptide-loaded nanoparticles. Neurotherapeutics 2009; 6: 359-371
  • 32 Xu J, Dai W, Wang Z, Chen B, Li Z, Fan X. Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen a protects mice against nasopharyngeal colonization by Streptococcus pneumoniae. Clin Vaccine Immunol 2011; 18: 75-81
  • 33 Miranda OR, Creran B, Rotello VM. Array-based sensing with nanoparticles: “chemical noses” for sensing biomolecules and cell surfaces. Curr Opin Chem Biol 2010; 14: 728-736
  • 34 Allaker RP. The use of nanoparticles to control oral biofilm formation. J Dent Res 2010; 89: 1175-1186
  • 35 McCarron PA, Donnelly RF, Canning PE, McGovern JG, Jones DS. Bioadhesive, non-drug-loaded nanoparticles as modulators of candidal adherence to buccal epithelial cells: a potentially novel prophylaxis for candidosis. Biomaterials 2004; 25: 2399-2407
  • 36 Goel H, Rai P, Rana V, Tiwary AK. Orally disintegrating systems: innovations in formulation and technology. Recent Pat Drug Deliv Formul 2008; 2: 258-274
  • 37 Venugopalan P, Sapre A, Venkatesan N, Vyas SP. Pelleted bioadhesive polymeric nanoparticles for buccal delivery of insulin: preparation and characterization. Pharmazie 2001; 56: 217-219
  • 38 Kolachala VL, Henriquez OA, Shams S, Golub JS, Kim YT, Laroui H, Torres-Gonzalez E, Brigham KL, Rojas M, Bellamkonda RV, Johns MM. Slow-release nanoparticle-encapsulated delivery system for laryngeal injection. Laryngoscope 2010; 120: 988-994
  • 39 Xi J, Longest PW, Martonen TB. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J Appl Physiol 2008; 104: 1761-1777
  • 40 Henning A, Schneider M, Nafee N, Muijs L, Rytting E, Wang X, Kissel T, Grafahrend D, Klee D, Lehr CM. Influence of particle size and material properties on mucociliary clearance from the airways. J Aerosol Med Pulm Drug Deliv 2010; 23: 233-241
  • 41 Nauts HC, Fowler GA, Bogatko FH. A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man; a critical analysis of 30 inoperable cases treated by Coley’s mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med Scand 1953; 276: 1-103
  • 42 Johannsen M, Thiesen B, Wust P, Jordan A. Magnetic nanoparticle hyperthermia for prostate cancer. Int J Hyperthermia 2010; 26: 790-795
  • 43 Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011; 103: 317-324
  • 44 Huilgol NG, Gupta S, Sridhar CR. Hyperthermia with radiation in the treatment of locally advanced head and neck cancer: a report of randomized trial. J Cancer Res Ther 2010; 6: 492-496
  • 45 Schmidtner J, Distel LV, Ott OJ, Nkenke E, Sprung CN, Fietkau R, Lubgan D. Hyperthermia and irradiation of head and neck squamous cancer cells causes migratory profile changes of tumour infiltrating lymphocytes. Int J Hyperthermia 2009; 25: 347-354
  • 46 Hainfeld JF, Dilmanian FA, Zhong Z, Slatkin DN, Kalef-Ezra JA, Smilowitz HM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol 2010; 55: 3045-3059
  • 47 Damascelli B, Patelli G, Tichá V, Di Tolla G, Frigerio LF, Garbagnati F, Lanocita R, Marchianò A, Spreafico C, Mattavelli F, Bruno A, Zunino F. Feasibility and efficacy of percutaneous transcatheter intraarterial chemotherapy with paclitaxel in albumin nanoparticles for advanced squamous-cell carcinoma of the oral cavity, oropharynx, and hypopharynx. J Vasc Interv Radiol 2007; 18: 1395-1403
  • 48 French JT, Goins B, Saenz M, Li S, Garcia-Rojas X, Phillips WT, Otto RA, Bao A. Interventional therapy of head and neck cancer with lipid nanoparticle-carried rhenium 186 radionuclide. J Vasc Interv Radiol 2010; 21: 1271-1279
  • 49 El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006; 239: 129-135
  • 50 Pankhurst QA, Thanh NKT, Jones SK, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2009; 42: 224001-224016
  • 51 Gao Y. Biofunctionalization of magnetic nanoparticles. In: Kumar C (Hrsg) Biofunctionalization of nanomaterials. Weinheim: Wiley-VCH; 2005: 72-98 :
  • 52 Duerr S, Lyer S, Mann J, Janko C, Herrmann M, Tietze R, Schreiber E, Alexiou C. Real-Time Cell Analysis (RTCA) of human cancer cell lines after chemotherapy with functionalized magnetic nanoparticles. Anticancer Res 2011; 31: 1966-1967
  • 53 Alexiou C, Jurgons R, Seliger C, Iro H. Medical applications of magnetic nanoparticles. J Nanosci Nanotechnol 2006; 6: 2762-2768
  • 54 Moskovitz B, Meyer G, Kravtzov A, Gross M, Kastin A, Biton K, Nativ O. Thermo-chemotherapy for intermediate or high-risk recurrent superficial bladder cancer patients. Ann Oncol 2005; 16: 585-589
  • 55 Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliver Rev 1995; 17: 31-48
  • 56 Alexiou C, Tietze R, Schreiber E, Lyer S. Nanomedicine: Magnetic nanoparticles for drug delivery and hyperthermia – new chances for cancer therapy. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2010; 53: 839-845
  • 57 Alexiou C, Diehl D, Henninger P, Iro H, Rockelein R, Schmidt W, Weber H. A high field gradient magnet for magnetic drug targeting. IEEE Trans Appl Supercond 2006; 16: 1527-1530
  • 58 Alexiou C, Jurgons R, Schmid RJ, Bergemann C, Henke J, Erhardt W, Huenges E, Parak F. Magnetic drug targeting – biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target 2003; 11: 139-149
  • 59 Tietze R, Rahn H, Lyer S, Schreiber E, Mann J, Odenbach S, Alexiou C. Visualization of superparamagnetic nanoparticles in vascular tissue using XμCT and histology. Histochem Cell Biol 2011; 135: 153-158
  • 60 Seliger C, Jurgons R, Wiekhorst F, Eberbeck D, Trahms L, Iro H, Alexiou C. In vitro investigation of the behaviour of magnetic particles by a circulating artery model. J Magn Magn Mater 2007; 311: 358-362
  • 61 Alexiou C, Jurgons R, Schmid R, Erhardt W, Parak F, Bergemann C, Iro H. Magnetic Drug Targeting – a new approach in locoregional tumor therapy with chemotherapeutic agents. Experimental animal studies. HNO 2005; 53: 618-622
  • 62 Alexiou C, Arnold W, Hulin P, Klein RJ, Renz H, Parak FG, Bergemann C, Lübbe AS. Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. J Magn Magn Mater 2001; 225: 187-193
  • 63 Rahn H, Gomez-Morilla I, Jurgons R, Alexiou Ch, Odenbach S. Microcomputed tomography analysis of ferrofluids used for cancer treatment. J Phys Condens Matter 2008; 20: 204152-204156
  • 64 Alexiou C, Schmidt A, Klein RJ, Hulin P, Bergemann C, Arnold W. Magnetic drug targeting: biodistribution and dependency on magnetic field strength. J Magn Magn Mater 2002; 252: 363-366
  • 65 Lyer S, Tietze R, Jurgons R, Struffert T, Engelhorn T, Schreiber E, Dörfler A, Alexiou C. Visualisation of tumour regression after local chemotherapy with magnetic nanoparticles – a pilot study. Anticancer Res 2010; 30: 1553-1557
  • 66 Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lübbe AS. Locoregional cancer treatment with magnetic drug targeting. Cancer Res 2000; 60: 6641-6648
  • 67 WHO Cancer. Fact sheet N°297, 2011. http://www.who.int/mediacentre/factsheets/fs297/en/index.html
  • 68 Unal B, Critchley JA, Capewell S. Modelling the decline in coronary heart disease deaths in England and Wales, 1981–2000: comparing contributions from primary prevention and secondary prevention. BMJ 2005; 331: 614
  • 69 Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003; 348: 2491-2499