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         Endocrinology of Adipose Tissue  –  An Update    

ures and of specifi c drugs that may be able to 
restore the dysregulated endocrine system of 
adipose tissue. It was hoped that through pre-
vention and intervention the deleterious seque-
lae of obesity and, in particular, of the visceral 
accumulation of body fat, might be avoided. 
 Five years later, more than one hundred adipose 
tissue secretion products have been described 
including fatty acids, prostaglandins, and ster-
oids, as well as complex proteins (    �  �     Fig. 1  ). Some 
of these factors primarily have local auto- or 
paracrine effects in adipose tissue, while others 
are released into the circulation and exert spe-
cifi c effects at target organs or systemic effects. In 
this review, we present an overview of the endo-
crine functions of adipose tissue with special 
focus on fi ndings obtained within the past 5 
years.   

 Old and new fi ndings of adipose tissue 
cellularity 
  &  
 Adipose tissue mass is determined by competing 
processes regulating both the volume and the 
number of adipocytes. For many years the dogma 
claimed that the number of adipocytes is fi xed 
during childhood, and remains constant through-
out life. According to this model, changes in size 
of adipose tissue could only be achieved by mod-
ulation of adipocyte volume, which in turn is bal-

 Introduction 
  &  
 For many years, adipose tissue was considered as 
a passive organ playing a metabolic role in total 
energy homeostasis. Its only function was 
believed to be the storage of excess energy as 
triglycerides, and its release according to need in 
the form of fatty acids. 
 Now, there has been a paradigm shift and it 
becomes increasingly clear that adipose tissue is 
an endocrine organ secreting a wide range of 
hormones and other factors  [1,   2] . These so-called 
adipokines contribute to the development of 
obesity-related disorders, particularly type-2 
diabetes (T2D) and cardiovascular disease. 
Thereby, adipose tissue itself participates in the 
pathogenesis of obesity-associated co-morbidi-
ties  [1, 2, 3] . 
 In 2002,  Hormone and Metabolic Research  pub-
lished a special issue on The Endocrinology of 
Adipose Tissue (Editorial  [4] ,). It summarized the 
20th century understanding of the hormonal 
cross-talk between fat cells and many other tis-
sues such as endothelium, muscle, liver, pan-
creas, adrenal glands, and central nervous 
structures. A central message in that issue was 
that obesity represents a state of chronic infl am-
mation, which may act as common soil for the 
development of insulin resistance and cardiovas-
cular dysfunction. By then scientists had only 
preliminary data on the effects of dietary meas-
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  Abstract 
  &  
 Adipose tissue is the body ’ s largest repository 
of energy and it plays an important role in total 
energy homeostasis. Moreover, it is now well 
recognized as an endocrine organ. A wide range 
of different factors including complex proteins 
as well as fatty acids, prostaglandins, and ster-
oids are either synthesized  de novo  or converted 

in adipose tissue and released into the blood 
stream. These so-called adipokines contribute 
to the development of obesity-related disorders, 
particularly type-2 diabetes (T2D) and cardio-
vascular disease. In this review, we present an 
overview on the endocrine functions of adi-
pose tissue with a special focus on discoveries 
reported within the past 5 years.         
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anced by storage of triglycerides (lipogenesis) and mobilization 
of fatty acids (lipolysis). 
 This model does not hold true any longer. In addition to changes 
in adipocyte volume, modulations of adipocyte number have 
been shown to occur throughout life  [5, 6, 7, 8, 9] . Adipose tissue 
contains a large pool of precursor cells  –  multipotent mesenchy-
mal stem cells and pre-determined preadipocytes  –  which are 
available for proliferation and differentiation into mature adi-
pocytes upon appropriate stimulation  [10] . These precursors can 
be detected in adipose tissue at all stages of life  [9] . A reduction 
of adipocyte number can be achieved by a de-lipidation and de-
differentiation of adipocytes  [11] . On the other hand, there is 
now growing evidence that apoptosis of fat cells occurs in adi-
pose tissue  [6, 7, 8] . Therapeutically, an enhancement of adi-
pocyte apoptosis during weight loss would be benefi cial since 
the post-obese state is characterized by vulnerability of the adi-
pose tissue for hyperplasia, associated with lower leptin produc-
tion  –  a relative hypoleptinemia  [12]  .  
 Thus, obesity is characterized by an enlargement of adipose 
mass by either fat cell hypertrophy or, in severe forms, by a com-
bination of hypertrophy and hyperplasia  [13] . Initially, an 
increase in body weight leads to hypertrophy of existing adi-
pocytes. Once these cells exceed a critical cell size, unknown fac-
tors trigger the differentiation of precursor cells into mature 
adipocytes. Recent fi ndings show that cell size seems to be criti-
cal for fat cell function  [14,   15] . Thus, large fat cells are less sensi-
tive to the metabolic effects of insulin and exert a higher basal 
rate of lipolysis in comparison to smaller fat cells  [16] . Interest-
ingly, there is also a marked difference in gene expression 
between small and large human adipocytes  [17] . 
 Besides mature, lipid-laden adipocytes and precursor cells, adi-
pose tissue contains endothelial cells, nerve cells, and immune 
cells  [5] . The latter are of special interest since it has become 
apparent that infl ammation may underlie the development of 
obesity-related disorders. The existence of an infl ammatory 
state of adipose tissue was proposed for the fi rst time by 
Hotamisligil et al.,  [18]  who showed constitutive production of 
TNF- �  (tumor necrosis factor- � ) by white adipose tissue. Recently, 
it has been shown that obesity is associated with macrophage 
accumulation in white adipose tissue  [19, 20, 21, 22] . The 
abundance of macrophages in the adipose tissue is positively 

correlated with increased BMI (body mass index)  [19,   22] , and it 
has been shown that these macrophages signifi cantly contribute 
to the secretion of pro-infl ammatory cytokines from adipose tis-
sue. At the clinical level, obese subjects show high serum levels 
of pro-infl ammatory adipokines and reactive proteins, which 
are reversed by weight loss  [23] . Thus, the so-called adipokines 
include not only adipocyte-specifi c factors but also secretion 
products derived from other cells types found in adipose tissue, 
such as preadipocytes or macrophages.   

 Recently discovered important adipokines 
  &   
 Leptin 
 The identifi cation of the leptin gene  [24]  and its cognate recep-
tor  [25, 26, 27]  started the endocrine era of the adipocyte. Mice 
with mutations in the leptin gene ( ob / ob  mice)  [24]  or the leptin 
receptor gene ( db / db  mice)  [25, 26, 27]  are massively obese. These 
data have been extensively reviewed by Campfi eld et al. [131] in 
a special issue of Hormone Metabolic Research in 1996. Like in 
mice, congenital leptin defi ciency in humans causes severe 
obesity, impaired thermogenesis, and insulin resistance; all are 
reversed by leptin treatment  [28] . Although leptin was fi rst 
regarded as a promising anti-obesity drug, administration of 
recombinant leptin to overweight and obese subjects was not 
effi cacious in terms of weight loss  [29]  due to central leptin 
resistance. Potential mechanisms for leptin resistance have been 
proposed and include defective transport of leptin across the 
blood-brain barrier, defects in leptin signaling and central antag-
onism of leptin physiological actions. In that respect, Socs3 was 
reported to be a molecular mediator of leptin resistance, sug-
gesting that strategies to lower or inhibit the action of Socs3 
may be of value in the prevention and treatment of human obes-
ity and associated insulin resistance  [30,   31] . 
 Besides its role in regulation of body weight, leptin regulates 
puberty and reproduction, placental and fetal function, immune 
response, and insulin sensitivity of muscle and liver. In hypolep-
tinemic patients with lipodystrophy, leptin replacement therapy 
resulted in a dramatic improvement in glucose metabolism, dys-
lipidemia, and hepatic steatosis  [32] . An overview on the various 
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  Fig. 1           Adipose tissue as an endocrine organ. 
More than one hundred adipose tissue secretion 
products have been described. Most factors are 
synthesized de novo while others are converted 
from precursor molecules. In mature adipocytes, 
11- � -hydroxysteroiddehydrogenase type 1 (11 � -
HSD1) catalyzes conversion of inactive cortisone 
into cortisol. Activity of P450 aromatase in 
preadipocytes results in conversion of male sex 
steroids (androstenedione, testosterone) into 
female sex steroids (estrone, estradiol). All factors 
might act locally in an auto- / paracrine manner 
or might exert systemic effects on metabolism, 
immunology, and endocrinology.  
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effects of the hormone has been given in a number of recent 
reviews  [33, 34, 35] . 
 Bouret et al. described an unanticipated regulatory role of leptin 
 –  that of a neurotrophic growth factor during development of 
the hypothalamus  [36] . Leptin promotes formation of hypotha-
lamic pathways that later convey leptin signals to brain regions 
regulating food intake and energy consumption. These observa-
tions are consistent with the concept that under- and over-nutri-
tion during critical periods of hypothalamic development may 
induce long-lasting and potentially irreversible effects into 
adulthood.   

 Adiponectin 
 Adipoenectin, also referred to as Acrp30  [37] , AdipoQ  [38] , apM1 
 [39] , or GBP28  [40] , was fi rst identifi ed by four independent 
groups using different approaches. It is specifi cally expressed in 
mature adipocytes with higher levels detected in subcutaneous 
rather than visceral fat  [41] . It is released into the blood stream 
and accounts for  ~  0.01    %  of all serum proteins  [42] . Adiponectin 
is a 30   kDa protein with an N-terminal collagen-like domain and 
a C-terminal globular domain. As such it structurally belongs to 
the collagen superfamily, which is known to form characteristic 
multimers  [43, 44, 45] . Indeed, after posttranslational modifi ca-
tion by glycosylation and hydroxylation  [46]  it creates, via its 
collagen domain, 3 major oligomeric forms: a low molecular 
weight (LMW) trimer, a middle molecular weight (MMW) hex-
amer, and a high molecular weight (HMW) 12 – 18-mer  [47,   48] . 
In addition, a smaller, globular fragment of adiponectin has been 
detected, which accounts for  ~ 1    %  of total circulating adiponec-
tin  [49,   50] . 
 Two receptors for adiponectin, AdipoR1 and AdipoR2 have been 
cloned  [51] . Both contain seven-transmembrane domains, but 
are functionally and structurally different from G protein-cou-
pled receptors  [51] . AdipoR1 is expressed in muscle and binds 
with high affi nity to globular adiponectin and with low affi nity 
to full-length adiponectin. AdipoR2 is expressed primarily in 
liver and binds full-length adiponectin and, with relatively low 
affi nity, the globular form. Thus, the biological effects of adi-
ponectin not only depend on relative circulating concentrations, 
but also on tissue-specifi c expression of its receptor subtypes. 
 In contrast to other adipokines, serum adiponectin is reduced 
with obesity, under conditions of insulin resistance and T2D, 
and cardiovascular disease in correlation with increasing sever-
ity  [52,   53] . This reduction seems to precede the disorders  [54] . 
Low levels of adiponectin, especially the HMW form, apparently 
predict the development of T2D and cardiovascular disease  [55,  
56, 57, 58, 59] . In addition, a close correlation of adiponectin lev-
els has been shown with risk factors and components of the 
metabolic syndrome  [53] . Weight loss results in an increase in 
adiponectin levels that is accompanied by an improvement in 
insulin sensitivity  [53] . These fi ndings demonstrate the impor-
tant role of adiponectin in the pathogenesis of the metabolic 
syndrome. It is further supported by adiponectin gene polymor-
phisms, which may result in hypoadiponectinemia, insulin 
resistance, T2D, and cardiovascular disease  [60,   61] . 
 Numerous experimental studies have been performed investi-
gating the effect of adiponectin and the underlying molecular 
mechanisms in several  in vitro  and  in vivo  models, as recently 
reviewed  [49,   62] . An insulin-sensitizing effect of adiponectin 
was fi rst identifi ed by three independent groups in 2001 
 [50,   63,   64] . Many subsequent studies rounded up a large picture 
of adiponectin action in different tissues, as reviewed  [49] . 

 Globular, trimeric adiponectin or the HMW multimer binds to 
AdipoR1, which in turn stimulates interaction of the N-terminal 
cytoplasmic domain with an intracellular adaptor protein (APPL), 
containing a pleckstrin homology domain, phosphotyrosine-
binding domain, and leucine zipper motif  [65] . AdipoR2 is 
mainly activated by multimers of full-length adiponectin. Bind-
ing of adiponectin to its receptors causes activation of specifi c 
intracellular pathways, which include p38 MAPK, AMPK, and 
PPAR � . Subsequently, this leads to a reduction of plasma glucose 
levels by an increased glucose uptake and increased fatty acid 
oxidation in muscle, where AdipoR1 is predominantly expressed, 
and by increased fatty acid oxidation and decreased gluconeo-
genesis in liver. 
 As another benefi cial aspect, adiponectin has been reported to 
exert antiatherosclerotic effects. It downregulates the expres-
sion of the vascular adhesion molecules: intracellular adhesion 
molecule-1, vascular cellular adhesion molecule-1, and E-selec-
tin  [66] . It inhibits endothelial NF � B signaling which might be a 
major mechanism for inhibiting monocyte adhesion to the vas-
cular wall  [67,   68] . Besides reduction of scavenger receptor class 
A-1 expression in macrophages  [69] , adiponectin inhibits prolif-
eration and migration of smooth muscle cells  [70] . 
 Several fi ndings suggest that adiponectin plays also an impor-
tant role in innate and adaptive immunity  [71] . It induces the 
production of important infl ammatory cytokines, such as IL-10 
and IL-10 receptor antagonist (IL-10 RA) by human monocytes, 
macrophages, and dentritic cells, and inhibits the generation of 
interferon- �  by lipopolysaccharide (LPS) stimulated macro-
phages  [72] . Adiponectin suppresses Toll-like receptor (TLR)-
induced activation of NF � B  [73] . It markedly reduces the 
phagocytic capacity of macrophages, decreased T-cell responses 
 [72] , and infl uences B-cell lymphopoesis  [74] . Taken together, 
these observations make adiponectin an important suppressor 
of infl ammation, linking the paradoxical decrease of adiponec-
tin levels in obesity to associated diseases such as insulin resist-
ance, T2D, and atherosclerosis.   

 Retinol binding protein 4 (RBP4) 
 In 2001, Abel et al. postulated the existence of an adipocyte-
secreted factor that cause insulin resistance when they found 
that mice with an adipose-specifi c GLUT4 knockout developed 
insulin resistance in muscle and liver  [75] . On the other hand, 
mice specifi cally overexpressing GLUT4 in adipose tissue exhib-
ited an increased effi ciency of glucose clearance  [76] . DNA arrays 
of these two mice identifi ed RBP4  [77] . RBP4 is a specifi c circu-
lating transport protein for retinol (Vitamin A)  [78] . RBP4 was 
upregulated in adipose tissue of adipose- Glut4       −     /     −       mice, and its 
serum levels were elevated in fi ve independent mouse models 
of obesity and insulin resistance. Treatment with the insulin 
sensitizing PPAR �  agonist rosiglitazone lowered RBP4 levels and 
normalized insulin sensitivity in mice lacking GLUT4, and injec-
tion of recombinant RBP4 to normal mice, or overexpression of 
RBP4, induced insulin resistance. On the other hand, mice with a 
heterozygous or homozygous RBP4 knockout showed increased 
insulin sensitivity. Most promising, fenretinide, a synthetic 
retinoid that is currently in trials as an antineoplastic agent, 
enhanced the urinary excretion of RBP4, lowered serum RBP4 in 
mice on a high-fat diet and markedly improved insulin sensitiv-
ity  [77] . The expression of GLUT4 is greatly reduced in adipocytes 
but not in muscle cells of obese and insulin resistant mice and 
humans  [79] . The recent study by Yang et al. suggests that adi-
pose tissue might act as a glucose sensor: adipocytes detect the 
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absence of glucose by GLUT4 and respond by secreting RBP4. 
The latter inhibits insulin signaling by decreasing PI-3 kinase 
activity and insulin receptor substrate-1 (IRS-1) phosphoryla-
tion in muscle, while expression of the gluconeogenic enzyme 
phosphoenolpyruvate carboxykinase (PEPCK) is upregulated in 
the liver  [77] . Consequently, this might cause an increase in cir-
culating blood glucose. Intensive research on the regulation of 
RBP4 secretion is necessary to support this interesting but still 
hypothetical model. 
 In human subjects retinol levels are elevated in patients with 
T2D  [80,   81] . A current genetic study has identifi ed an SNP in the 
RBP4 gene that is associated with T2D in Mongolians  [82] . RBP4 
levels correlated with the magnitude of insulin resistance among 
humans with obesity, impaired glucose tolerance, or T2D and 
among nonobese nondiabetic subjects with a strong family his-
tory of T2D  [83] . A confi rmatory report showed that plasma 
RBP4 concentrations were higher in impaired glucose tolerance 
(IGT) and T2D  [84] , and elevated serum RBP4 was associated 
with components of the metabolic syndrome, including 
increased BMI, waist-to-hip ratio, serum triglyceride levels, 
systolic blood pressure and decreased high-density lipoprotein 
(HDL) cholesterol  [83] . An association of exercise training with 
reduction of serum RBP4 was only observed in subjects with 
improved insulin resistance  [83] . 
 The observations concerning BMI are, however, controversial 
since two other groups found no correlation of serum RBP4 with 
BMI  [85]  or percentage of body fat  [84] . Moreover, Janke et al. 
did not see a relationship between adipose tissue mRNA expres-
sion and serum RBP4, which led them to suggest that an increase 
in systemic RBP4 in insulin-resistant subjects could not be 
explained by increased RBP4 production in adipose tissue  [85] . 
The same study found a reduced expression of GLUT4 in over-
weight or obese subjects, but a robust positive correlation 
between adipose GLUT4 and RBP4 expression that was com-
pletely independent of any other confounding variable, includ-
ing BMI  [85] . 
 Despite all controversy, RBP4 represents a curious new adipok-
ine in mice and humans. Further studies will help understand-
ing its role in the pathogenesis of obesity-related disorders and 
show whether RBP4 might serve as a potential therapeutic tar-
get for the treatment of T2D.   

 Visfatin 
 Searching for genes which are specifi cally expressed in visceral 
adipose tissue by differential display, Fukuhara et al.  [86]  
reported that pre-B cell colony enhancing factor (PBEF) is highly 
expressed in human visceral fat. PBEF was originally cloned and 
characterized as a 52   kDa protein primarily expressed in bone 
marrow, liver, and muscle  [87] . For years, it was considered a 
secreted cytokine whose levels increase during infection  [88] . 
Rongvaux et al. proposed that the protein is a nicotinamide 
phosphoribosyltransferase  [89] , which was confi rmed recently 
after determining its crystal structure  [90] . 
 PBEF was further referred to as  “ visfatin ”   [86] , because protein 
levels were increased in visceral adipose tissue of a mouse model 
for obese T2D, and correlated with visceral fat area (but not sub-
cutaneous fat area) in human subjects. Visfatin was upregulated 
during adipogenic differentiation, and plasma levels increased 
during the development of obesity. Visfatin exerts insulin-
mimetic effects in cultured cells, i.e., stimulation of glucose 
uptake and triglyceride incorporation, and intravenous injection 
of recombinant visfatin to mice lowered plasma glucose within 

30   minutes. This effect was accompanied by an increased expres-
sion of genes involved in adipogenesis, increased phosphoryla-
tion of IRS-1 and IRS-2 in liver, and activation of insulin signaling. 
Mice heterozygous for a targeted mutation in the visfatin gene 
had modestly higher levels of plasma glucose in comparison to 
wild-type littermates. The most intriguing fi nding was that vis-
fatin binds to and activates the insulin receptor. Further investi-
gations revealed that visfatin binds to the insulin receptor at a 
site distinct from insulin and with an affi nity similar to insulin 
 [86] . The insulin sensitizing effect of visfatin seems to be addi-
tive to the effect of insulin suggesting that visfatin may activate 
insulin-regulated pathways via a novel mechanism. 
 The original paper stimulated many groups to study the biology 
of visfatin, and several factors regulating visfatin synthesis have 
been identifi ed. In 3T3-L1 adipocytes, TNF- � , IL-6, growth hor-
mone, and  � -adrenergic receptor agonists inhibited visfatin syn-
thesis, while glucocorticoids had an opposite effect  [91,   92] . 
Studies in transgenic mice and humans have shown that cortisol 
might be locally synthesized from inactive cortisone by 11 � -
hydroxysteroiddehydrogenase type 1 (11 � -HSD1) in visceral 
adipose tissue  [93,   94] . Thus, glucocorticoids might contribute 
to the upregulation of visfatin found in visceral obesity  in vivo  
 [86] . In 3T3-L1 cells, the PPAR �  agonist troglitazone suppressed 
visfatin gene expression  [92] . In contrast, treatment with ros-
iglitazone in healthy human subjects and incubation of isolated 
human adipocytes with rosiglitazone increased plasma visfatin 
expression and its secretion into the medium, respectively  [95] . 
It has been shown that circulating visfatin concentrations are 
increased by hyperglycemia in healthy subjects and that this 
effect was blocked by exogenous hyperinsulinemia or somato-
statin infusion  [96] . 
 The work of Fukuhara et al. also stimulated many groups to eval-
uate visfatin in their well characterized group of patients. In line 
with the original paper, some groups found elevated visfatin lev-
els in patients with T2D  [97, 98, 99]   . Controversial results were 
found regarding a correlation of visfatin with the degree of obes-
ity  [97, 98, 99, 100, 101, 102] . Haider et al. detected elevated vis-
fatin concentrations in patients with T1D, which were lowered 
by exercise  [103] . Weight loss after gastric banding lowered 
increased plasma visfatin concentrations in morbidly obese 
patients  [102] . Genetic studies have revealed that variations in 
the visfatin gene might have a minor effect on its mRNA regula-
tion, but do not play a major role in the development of T2D 
 [104] . 
 Several open questions remain unanswered. It is not clear 
whether visfatin is regulated by thiazolidindiones. In 3T3-L1 
cells, troglitazone lowered visfatin mRNA expression  [92] , while 
it was upregulated in isolated human adipocytes  [95] . In patients 
with T2D, a 4-week treatment with rosiglitazone did not change 
plasma visfatin concentration  [99] . It is controversial whether 
visfatin is differentially regulated in subcutaneous and visceral 
adipose tissue  [100,   101] . An interesting twist suggested recently 
that visfatin is an infl ammatory protein, and is predominantly 
secreted by macrophages  [105] . 
 In conclusion, visfatin has recently been identifi ed as a new adi-
pokine. Its role in the modulation of whole body insulin sensi-
tivity and its contribution to the pathogenesis of insulin 
resistance still needs to be addressed carefully.   

 Angiotensinogen (ANG) / Angiotensin II (ANG II) 
 Adipose tissue is an important site of angiotensinogen or angi-
otensin II production. Higher levels of angiotensinogen mRNA 
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levels are detectable in adipose tissue of obese subjects in com-
parison to lean subjects  [106] . In addition, a positive association 
of BMI and circulating concentrations of angiotensinogen has 
been found in a clinical study  [107] . Angiotensin II is a very 
potent vasoconstrictor and the risk for hypertension increases 
with BMI. Thus, it has been assumed that an increased synthesis 
of angiotensin II by adipose tissue might contribute to obesity-
associated hypertension. In fact, overexpression of AGT in adi-
pose tissue in mice resulted in elevated plasma AGT and 
hypertension  [108] . In addition, ANG II seems to exert different 
pro-infl ammatory effects locally in adipose tissue. ANG II stimu-
lates production and secretion of PAI-1, leptin, IL-6 and IL8 in 
cultivated human adipocytes which can be abolished by block-
ing of angiotensin-receptor subtype 1 [AT(1)]  [109, 110, 111] . In 
addition, ANG II increases oxidative stress and activates NF � B as 
well as NAD(P)H oxidase  [112,   113] . 
 The clinical relevance of all these fi ndings is still not completely 
understood. However, in summary all these effects might help 
understand why lowering ANG II production by angiotensin-
converting enzyme inhibitors (ACEIs) and AT(1) receptor block-
ade leads to improvement of chronic infl ammation in practice 
 [112, 113, 114] .   

 Proinfl ammatory cytokines 
 Adipose tissue produces a plethora of other factors which have 
their origin from either mature adipocytes or other cell types. 
Pro-infl ammatory cytokines are coming to the fore, since obes-
ity has been recognized as a state of low-grade infl ammation, 
and adipose tissue has been accepted as a pathogenic site of 
obesity-related disorders  [115] . 
 In 1993, Hotamisligil et al.  [18]  showed an increased expression 
of TNF- �  in adipose tissue of genetically obese rats. The idea 
that a factor produced from white adipose tissue is involved 
in the development of insulin resistance was revolutionary 
at that time. Since then, many other factors were described 
to be secreted from adipose tissue, including transforming 
growth factor- �  (TGF- � ), interferon- �  (IFN- � ), interleukins (IL), 
such as IL-1, IL-6, IL-10, and IL-8, monocyte chemotactic protein-
1 (MCP-1), and factors of the complement cascade (complement 
factor 3, metallothionein, angiopoietin-related proteins, plamino-
gen activator inihibitor-1, fi brinogen)  [116, 117, 118, 119, 120] . 
 The circulating levels of these pro-infl ammatory factors increase 
with the enlargement of fat mass. Many of these pro-infl amma-
tory factors are produced by adipocytes and also by activated 
macrophages. The relative amount of each remains unknown so 
far. The increase of cytokines together with the fi nding that 
obesity is associated with macrophage infi ltration in adipose 
tissue suggests that obesity should be considered as a state of 
low-grade infl ammation. 
 Indeed, it has been shown that increasing adiposity activates 
two typical pro-infl ammatory pathways, c-jun NH 2 -terminal 
kinase (JNK) and IkappaB kinase- �  (IKK- � )  [121, 122, 123, 124] . 
Concordantly, chemical or genetic inhibition of JNK or IKK-
 �  / NF � B (nuclear factor-kappa  � ) improves insulin resistance. 
Several mechanisms have been hypothesized to explain how 
obesity activates these receptor pathways [TNF receptor, IL-1 
receptor, TLR, receptor for advanced glycation end products 
(RAGE)] and receptor-independent pathways (for example reac-
tive oxygen species, endoplasmatic reticulum stress)  [125] . 
 Obesity induced IKK- �  activation results in NF � B translocation to 
the nucleus and to increased expression of potential mediators 
that could cause insulin resistance. Obesity-induced JNK activa-

tion, on the other hand, promotes phosphorylation of IRS-2, which 
in turn prevents normal insulin signal transduction. 
 The initial events of how obesity might activate infl ammation in 
adipose tissue are not completely understood. One potential 
mechanism involves the initiation of a state of cellular stress by 
dietary excess and excess lipid accumulation in adipose tissue.   

 Wnt signaling 
 The Wnt family of secreted signaling molecules has profound 
effects on diverse developmental processes, including the fate of 
mesenchymal progenitors. Activation of Wnt signaling inhibits 
adipogenesis  [126] . Thus, transgenic mice in which Wnt10b is 
expressed from the FABP4 promoter show impaired develop-
ment of adipose tissue and a decline of total body fat  [127, 128] . 
Consistently, a non-functioning  WNT10B  allele was detected in a 
family affected by obesity  [129] . 
 Recently, Gustafson et al. have shown that IL-6 and TNF- �  aug-
mented Wnt signaling in 3T3-L1 preadipocytes thereby prevent-
ing adipogenic differentiation and lipid accumulation  [130] . 
Both cytokines increased the expression of infl ammatory genes 
in 3T3-L1 adipocytes  [130] . The authors concluded that these 
fi ndings might help understand the development of local and 
systemic infl ammation as well as ectopic lipid accumulation in 
obesity.    

 Concluding remarks 
  &  
 Endocrinology of adipose tissue remains an exciting research 
area in which epoch-making fi ndings are still expected. The 
recently discovered new functions of adipose tissue have eluci-
dated its important role in a complex cross-talk between organs 
regulating the body ’ s energy homeostasis, insulin sensitivity, 
lipid metabolism, and the immune system. Thus, adipose tissue 
and its secretion products have also become a target for drug 
development. Improved knowledge on the endocrinology of adi-
pose tissue will have implications for the treatment of obesity, 
diabetes, and cardiovascular diseases.     
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