Synlett 2008(1): 94-96  
DOI: 10.1055/s-2007-1000834
LETTER
© Georg Thieme Verlag Stuttgart · New York

A Short Enantioselective Total Synthesis of (-)-Linderol A

Hatice Berber*, Pierre-Olivier Delaye, Catherine Mirand
FRE 2715/CNRS, UFR Pharmacie, 51 Rue Cognacq-Jay, 51096 Reims Cedex, France
Fax: +33(3)26918029; e-Mail: hatice.berber@univ-reims.fr;
Further Information

Publication History

Received 11 June 2007
Publication Date:
11 December 2007 (online)

Abstract

An efficient short enantioselective total synthesis of (-)-linderol A was achieved via a five-step reaction with 30% overall yield, starting from 4-methoxyphloroacetophenone.

    References and Notes

  • 1 Mimaki Y. Kameyama A. Sashida Y. Miyata Y. Fujii A. Chem. Pharm. Bull.  1995,  43:  893 
  • 2a Yamashita M. Ohta N. Kawasaki I. Ohta S. Org. Lett.  2001,  3:  1359 
  • 2b Yamashita M. Ohta N. Shimizu T. Matsumoto K. Matsuura Y. Kawasaki I. Tanaka T. Maezaki N. Ohta S. J. Org. Chem.  2003,  68:  1216 
  • 3a Yamashita M. Inaba T. Shimizu T. Kawasaki I. Ohta S. Synlett  2004,  1897 
  • 3b Yamashita M. Inaba T. Nagahama M. Shimizu T. Kosaka S. Kawasaki I. Ohta S. Org. Biomol. Chem.  2005,  3:  2296 
  • 3c Yamashita M. Shimizu T. Inaba T. Takada A. Takao I. Kawasaki I. Ohta S. Heterocycles  2005,  65:  1099 
  • 4 Crombie L. Crombie WML. Firth DF. J. Chem. Soc., Perkin Trans. 1  1988,  1251 
  • 5 4-Methoxyphloroacetophenone (4) was obtained from the commercially available phloroacetophenone and its synthesis has been previously described: Huang C. Da S. Li Y. Li Y. J. Nat. Prod.  1997,  60:  277 
  • 7 Uliss DB. Razdan RK. Dalzell HC. J. Am. Chem. Soc.  1974,  96:  7372 ; and cited references
  • 9 Yamashita M. Shimizu T. Kawasaki I. Ohta S. Tetrahedron: Asymmetry  2004,  15:  2315 
6

Selected Physical Properties for 5[α]D +14 (c 0.44, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 6.56 (s, 1 H, Har), 5.09 (s, 1 H, H2), 3.80 (m, 4 H, H3 and CH3O), 2.40 (s, 3 H, CH3), 2.31 (s, 3 H, CH3), 2.12 (s, 3 H, CH3), 2.03 (m, 2 H), 1.90 (m, 1 H), 1.78 (dt, 1 H, J = 2.3 Hz), 1.63 (s, 3 H, CH3), 1.36 (m, 2 H), 0.86 (d, 3 H, J = 6.8 Hz, CH3), 0.77 (d, 3 H, J = 6.8 Hz, CH3) ppm. 13C NMR (300 MHz, CDCl3): δ = 198.4 (C=O), 169.2 (C=O), 168.5 (C=O), 160.1 (Cq), 147.4 (Cq), 147.1 (Cq), 132.9 (Cq, C1), 124.9 (CH, C2), 124.3 (Cq), 102.6 (CHar), 55.9 (CH3O), 42.5 (CH), 36.0 (CH, C3), 30.8 (CH3), 30.6 (CH2), 28.0 (CH, C4), 23.4 (CH3), 22.3 (CH2), 21.5 (CH3), 21.1 (CH3), 20.8 (CH3), 15.9 (CH3) ppm. LRMS (EI): m/z (%) = 402 (0.1) [M+], 359(52), 317(99), 290(22), 248(100), 233(30). HRMS (EI): m/z calcd for C23H30O6: 402.2042; found: 402.2041.

8

Experimental Procedure for 6The mixture of epoxides 2 and 2′ (52.8 mg, 0.126 mmol with a ratio of 2.6:1) was treated at r.t. with 2 mL of a 2% NaOH solution in MeOH-H2O (1:1). The solution was stirred at r.t. for 1 h, then neutralized with 10% HCl. The mixture was extracted with CH2Cl2, the organic layer was washed with H2O and dried over MgSO4. The solvent was then removed under reduced pressure and the residue was purified by silica gel column chromatography (CH2Cl2-EtOAc, 90:10) to give 6 as a pale yellow solid (29 mg, 0.087 mmol, 69% or 87% from 2); mp 146-147 °C. IR (KBr): 3430, 2947, 2921, 1625, 1433, 1363, 1293, 1211, 1150, 1054, 831, 805 cm-1. 1H NMR (300 MHz, CDCl3): δ = 13.16 (s, 1 H, OH), 6.02 (s, 1 H, H2), 4.16 (dd, 1 H, J = 5.5, J = 1.0 Hz, H5a), 3.81 (s, 3 H, CH3O), 3.11 (dd, 1 H, J = 11.1, 5.5 Hz, H9a), 2.60 (s, 3 H, CH3), 1.80 (m, 3 H, H7 and CH i -Pr), 1.61 (s, 1 H, OH), 1.50 (s, 3 H, CH3), 1.40 (m, 2 H, H8), 1.10 (m, 1 H, H9), 0.90 (d, 3 H, J = 6.9 Hz, CH3), 0.83 (d, 3 H, J = 6.9 Hz, CH3) ppm. 13C NMR (300 MHz, CDCl3): δ = 201.8 (C=O), 165.0 (C3), 162.0 (Cqar), 161.8 (Cqar), 113.1 (C9b), 102.9 (C4), 92.5 (C2), 92.3 (C5a), 69.3 (CH, C6), 55.4 (CH3O), 46.5 (CH, C9), 39.6 (C9a), 35.2 (CH2, C7), 31.1 (CH3C=O), 28.2 (CH3), 27.1 (CH i -Pr), 21.7 (CH3), 17.1 (C8), 15.3 (CH3). LRMS (EI): m/z (%) = 334 (50) [M+], 318 (40), 249 (98), 233 (100), 207 (48), 195 (22). HRMS (EI): m/z calcd for C19H26O5: 334.1780; found: 334.1788.