Planta Med 2004; 70(12): 1123-1127
DOI: 10.1055/s-2004-835838
Original Paper
Pharmacology
© Georg Thieme Verlag KG Stuttgart · New York

Suppressive Effects of 3-O-Methylquercetin on Ovalbumin-Induced Airway Hyperresponsiveness

Wun-Chang Ko1 , Chwen-Ming Shih2 , Mei-Chun Chen1 , Ya-Hsin Lai1 , Jun-Hao Chen1 , Chien-Ming Chen3 , Chun-Nan Lin4
  • 1Graduate Institute of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
  • 2Department of Biochemistry, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
  • 3Department of Medical Technology, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
  • 4School of Pharmacy, Kaoshiung Medical University, Kaoshiung, Taiwan, ROC
Further Information

Publication History

Received: March 26, 2004

Accepted: June 13, 2004

Publication Date:
10 January 2005 (online)

Abstract

Rhamnus nakaharai Hayata (Rhamnaceae) has been used as a folk medicine in Taiwan for treating constipation, inflammation, tumors, and asthma. 3-O-Methylquercetin (3-MQ), a main constituent of the plant, has been reported to inhibit total cAMP- and cGMP-phosphodiesterase (PDE) of guinea pig trachealis at low concentrations. 3-MQ has been also reported to more selectively inhibit PDE3 than PDE4 with a low Km value. Therefore we were interested in investigating its suppressive effects on ovalbumin (OVA)-induced airway hyperresponsiveness in vivo and in vitro. 3-MQ (3 - 30 μmol/kg, i. p.) significantly suppressed the enhanced pause (Penh) value induced by aerosolized methacholine (50 mg/mL) in sensitized mice after secondary allergen challenge. 3-MQ (3 - 30 μmol/kg, i. p.) also significantly suppressed total inflammatory cells, macrophages, neutrophils, and eosinophils, but not lymphocytes. In addition, 3-MQ (3 μmol/kg, i. p.) significantly decreased the secretion of TNF-α, and at the highest dose (30 μmol/kg, i. p.) even decreased the secretions of IL-4, IL-5, and TNF-α. 3-MQ (1 - 10 μM) as well as Ro 20 - 1724 (3 - 30 μM), a selective PDE4 inhibitor, significantly attenuated OVA (100 μg/mL)-induced contractions. 3-MQ (30 μM) as well as milrinone (1 - 10 μM), a selective PDE3 inhibitor, significantly enhanced baseline contractions in isolated guinea pig left and right atria. However, neither 3-MQ nor milrinone significantly affected baseline beating rate in the right atria. 3-MQ (3 - 30 μmol/kg, i. p.) did not significantly affect systolic pressure in conscious mice. In conclusion, 3-MQ has both anti-inflammatory and bronchodilating effects, and has the potential for use in the treatment of asthma at a dose without affecting blood pressure.

Abbreviations

3-MQ:3-O-methylquercetin

Penh:enhanced pause

AHR:airway hyperresponsiveness

OVA:ovalbumin

PDE:phosphodiesterase

BALF:bronchoalveolar lavage fluid

IL:interleukine

TNF-α:tumor necrosis factor-α

IFN-γ :interferon-γ

CBA:cytomeric bead array

References

  • 1 Castrillo J L, Vanden Berghe D, Carrasco L. 3-Methylquercetin is a potent and selective inhibitor of poliovirus RNA synthesis.  Virology. 1986;  152 219-27
  • 2 Vrijsen R, Everaert L, Van Hoof L M, Vlietinck A J, Vanden Berghe D A, Boeye A. The poliovirus-induced shut-off of cellular protein synthesis persists in the presence of 3-methylquercetin, a flavonoid which blocks viral protein and RNA synthesis.  Antiviral Research. 1987;  7 35-42
  • 3 Laekeman G M, Claeys M, Rwangabo P C, Herman A G, Vlietinck A J. Cardiovascular effects of 3-methylquercetin.  Planta Medica. 1986;  52 433-7
  • 4 Ko W C, Wang H L, Lei C B, Shih C H, Chung M I, Lin C N. Mechanisms of relaxant action of 3-O-methylquercetin in isolated guinea pig trachea.  Planta Medica. 2002;  68 30-5
  • 5 Ko W C, Chen M C, Wang S H, Lai Y H, Chen J H, Lin C N. 3-O-Methylquercetin more selectively inhibits phosphodiesterase subtype 3.  Planta Medica. 2003;  69 310-5
  • 6 Chiu N Y, Chang K H. The illustrated medicinal plants of Taiwan. 5. Taipei; SMC 1998: pp 135-6
  • 7 Lin C N, Lu C M, Lin H C, Ko F N, Teng C M. Novel antiplatelet naphthalene from Rhamnus nakaharai .  Journal of Natural Products. 1995;  58 1934-40
  • 8 Harrison S A, Reifsnyder D H, Gallis B, Cadd G G, Beavo J A. Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs.  Molecular Pharmacology. 1986;  29 506-14
  • 9 Sheppard H, Wiggan G, Tsien W H. Structure-activity relationships for inhibitors of phosphodiesterase from erythrocytes and other tissues.  Advances in Cyclic Nucleotide Research. 1972;  1 103-12
  • 10 Kanehiro A, Ikemura T, Mäkelä M J, Lahn M, Joetham A, Dakhama A, Gelfand E W. Inhibition of phosphodiesterase 4 attenuates airway hyperresponsiveness and airway inflammation in a model of secondary allergen challenge.  American Journal of Respiratory and Critical Care Medicine. 2001;  163 173-84
  • 11 Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen G L, Irvin C G, Gelfand E W. Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography.  American Journal of Respiratory and Critical Care Medicine. 1997;  156 766-75
  • 12 Winterrowd G E, Chin J E. Flow cytometric detection of antigen-specific cytokine responses in lung T cells in a murine model of pulmonary inflammation.  Journal of Immunological Methods. 1999;  226 105-18
  • 13 Underwood D C, Kotzer C J, Bochnowicz S, Osborn R R, Luttmann M A, Hay D WP, Torphy T J. Comparison of phosphodiesterase III, IV and dual III/IV inhibitors on bronchospasm and pulmonary eosinophil influx in guinea pigs.  The Journal of Pharmacology and Experimental Therapeutics. 1994;  270 250-9
  • 14 Pfeffer J M, Pfeffer M A, Frohlich E D. Validity of an indirect tail-cuff method for determining systolic arterial pressure in unanesthetized normotensive and spontaneously hypertensive rats.  Journal of Laboratory Clinical Medicine. 1971;  78 957-62
  • 15 Azzawi M, Bradley B, Jeffery P K, Frew A J, Wardlaw A J, Knowles G, Assoufi B, Collins J V, Durham S, Kay A B. Identification of activated T lymphocytes and eosinophils in bronchial biopsies in stable atopic asthma.  American Review of Respiratory Disease. 1990;  142 1407-13
  • 16 Schneider H H, Schmiechen R, Brezinski M, Seidler J. Stereospecific binding of the antidepressant rolipram to brain protein structures.  European Journal of Pharmacology. 1986;  127 105-15
  • 17 Souness J E, Giembycz M A. Cyclic nucleotide phosphodiesterases in airway smooth muscle. In: Raeburn D, Giembycz MA, editors Airway smooth muscle: biochemical control of contraction and relaxation. Basel; Birkhäuser 1994: pp 271-308
  • 18 Wei B L, Lu C M, Tsao L T, Wang J P, Lin C N. In vitro anti-inflammatory effects of quercetin 3-O-methyl ether and other constituents from Rhamnus species.  Planta Medica. 2001;  67 745-7
  • 19 Schudt C, Winder S, Eltze M, Kilian U, Beume R. Zardaverine: A cyclic AMP-specific PDE III/IV inhibitor.  Agents Actions. 1991;  34 (suppl) 379-402
  • 20 Torphy T J, Burman M, Huang L BF, Tucker S S. Inhibition of the low Km cyclic AMP phosphodiesterase in intact trachealis by SK&F 94 836: mechanical and biochemical responses.  Journal of Pharmacology and Experimental Therapeutics. 1988;  246 843-50
  • 21 Akera T, Brody T M. Drugs to treat heart failure: Cardiac glycosides. In: Brody TM, Larner J, Minneman KP, editors Human Pharmacology. 3rd Edition St. Louis; Mosby 1998: pp 213-26

Prof. Dr. Wun-Chang Ko

Graduate Institute of Pharmacology

College of Medicine

Taipei Medical University

250 Wu-Hsing St.

Taipei 110

Taiwan

R.O.C.

Fax: +886-2-2377-7639

Email: wc_ko@tmu.edu.tw

    >