Exp Clin Endocrinol Diabetes 2001; Vol. 109(4): 516-526
DOI: 10.1055/s-2001-15114
Symposium Proceeding

© Johann Ambrosius Barth

Triglycerides, fatty acids and insulin resistance - hyperinsulinemia

E. W. Kraegen, G. J. Cooney, J. Ye, A. L. Thompson
  • Garvan Institute of Medical Research, St Vincent's Hospital, Sydney NSW 2010, Australia
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Summary:

There is now much interest in the mechanisms by which altered lipid metabolism might contribute to insulin resistance as is found in Syndrome X or in Type II diabetes. This review considers recent evidence obtained in animal models and its relevance to humans, and also likely mechanisms and strategies for the onset and amelioration of insulin resistance. - A key tissue for development of insulin resistance is skeletal muscle. Animal models of Syndrome X (eg high fat fed rat) exhibit excess accumulation of muscle triglyceride coincident with development of insulin resistance. This seems to also occur in humans and several studies demonstrate increased muscle triglyceride content in insulin resistant states. Recently magnetic resonance spectroscopy has been used to demonstrate that at least some of the lipid accumulation is inside the muscle cell (myocyte). Factors leading to this accumulation are not clear, but it could derive from elevated circulating free fatty acids, basal or postprandial triglycerides, or reduced muscle fatty acid oxidation. Supporting a link with adipose tissue metabolism, there appears to be a close association of muscle and whole body insulin resistance with the degree of abdominal obesity. While causal relationships are still to be clearly established, there are now quite plausible mechanistic links between muscle lipid accumulation and insulin resistance, which go beyond the classic Randle glucose-fatty acid cycle. In animal models, dietary changes or prior exercise which reduce muscle lipid accumulation also improve insulin sensitivity. It is likely that cytosolic accumulation of the active form of lipid in muscle, the long chain fatty acyl CoAs, is involved, leading to altered insulin signalling or enzyme activities (eg glycogen synthase) either directly or via chronic activation of mediators such as protein kinase C. Unless there is significant weight loss, short or medium term dietary manipulation does not alter insulin sensitivity as much in humans as in rodent models, and there is considerable interest in pharmacological intervention. Studies using PPARgamma receptor agonists, the thiazolidinediones, have supported the principle that reduced muscle lipid accumulation is associated with increased insulin sensitivity. Other potent systemic lipid-lowering agents such as PPARalpha receptor agonists (eg fibrates) or anti-lipolytic agents (eg nicotinic acid analogues) might improve insulin sensitivity but further work is needed, particularly to clarify implications for muscle metabolism. In conclusion, evidence is growing that excess muscle and liver lipid accumulation causes or exacerbates insulin resistance in Syndrome X and in Type II diabetes; development of strategies to prevent this seem very worthwhile.

References

  • 1 McGarry J D. What if Minkowski had been ageusic? An alternative angle on diabetes.  Science. 258 766-770 1992; 
  • 2 Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM.  Diabetes. 46 3-10
  • 3 Kraegen E W, Carey D GP, Campbell L V. Effects of lipids on blood glucose regulation and insulin action. In Clinical Research in Diabetes and Obesity, Part 1: Methods, Assessment and Metabolic Regulation Draznin B, Rizza R Eds. Totowa, NJ Humana Press 305-320
  • 4 Randle P J. Regulatory interactions between lipids and carbohydrates: The glucose fatty acid cycle after 35 years.  Diabetes Metab Rev. 14 263-283 1998; 
  • 5 Storlien L H, Jenkins A B, Chisholm D J, Pascoe W S, Khouri S, Kraegen E W. Influence of dietary fat composition on development of insulin resistance in rats.  Diabetes. 40 280-289 1991; 
  • 6 Kraegen E W, Clark P W, Jenkins A B, Daley E A, Chisholm D J, Storlien L H. Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats.  Diabetes. 40 1397-1403 1991; 
  • 7 Saltiel A R, Olefsky J M. Thiazolidinediones in the treatment of insulin resistance and Type II diabetes.  Diabetes. 45 1661-1669 1996; 
  • 8 Smith S A. Peroxisome proliferator-activated receptors and the regulation of lipid oxidation and adipogenesis.  Biochem Soc Trans. 25 1242-1248 1997; 
  • 9 Spiegelman B M. PPAR-Gamma - Adipogenic regulator and thiazolidinedione receptor.  Diabetes. 47 507-514 1998; 
  • 10 Schoonjans K, Martin G, Staels B, Auwerx J. Peroxisome proliferator-activated receptors, orphans with ligands and functions.  Current Opin Lipidol. 8 159-166 1997; 
  • 11 Gylling H, Miettinen T A. Treatment of lipid disorders in non-insulin dependent diabetes mellitus.  Current Opin Lipidol. 8 342-347 1997; 
  • 12 Bocos C, Herrera E. Comparative study on the in vivo and in vitro antilipolytic effects of etofibrate, nicotinic Acid and clofibrate in the rat.  Environ Toxicol Pharm. 2 351-357 1996; 
  • 13 Farmer J A, Gotto A M. Choosing the right lipid-regulating agent - a guide to selection.  Drugs. 52 649-661 1996; 
  • 14 Randle P J, Garland P B, Hales C N, Newsholme E A. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus.  Lancet. i 785-789 1963; 
  • 15 Ruderman N B, Saha A K, Vavvas D, Witters L A. Malonyl-CoA, fuel sensing, and insulin resistance.  Am J Physiol. 39 E1-E18 1999; 
  • 16 Prentki M, Corkey B E. Are the beta -cell signalling molecules malonyl-CoA and cytosolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM.  Diabetes. 45 273-283 1996; 
  • 17 Hotamisligil G S, Spiegelman B M. Tumor necrosis factor alpha - a key component of the obesity - diabetes link.  Diabetes. 43 1271-1278 1994; 
  • 18 Shimabukuro M, Koyama K, Chen G X, Wang M Y, Trieu F, Lee Y, Newgard C B, Unger R H. Direct antidiabetic effect of Leptin through triglyceride depletion of tissues.  Proc Nat Acad Sci. 94 4637-4641 1997; 
  • 19 Liu Y L, Emilsson V, Cawthorne M A. Leptin inhibits glycogen synthesis in the isolated soleus muscle of obese (ob/ob) mice.  FEBS Lett. 411 351-355 1997; 
  • 20 Muoio D M, Dohn G L, Fiedorek F T, Tapscott E B, Coleman R A. Leptin directly alters lipid partitioning in skeletal muscle.  Diabetes. 46 1360-1363 1997; 
  • 21 Chalkley S, Hettiarachchi M, Chisholm D J, Kraegen E W. Five hour fatty acid elevation increases muscle lipids and impairs glycogen synthesis in the rat.  Metabolism. 47 1121-1126 1998; 
  • 22 Griffin M E, Marcucci M J, Cline G W, Bell K, Barucci N, Lee D, Goodyear L J, Kraegen E W, White M F, Shulman G I. Free fatty acid-induced insulin resistance is associated wth activation of protein kinase C theta and alterations in the insulin signaling cascade.  Diabetes. 48 1270-1274 1999; 
  • 23 Bevilacqua S, Buzzigoli G, Bonadonna R, Brandi L S, Oleggini M, Boni C, Geloni M, Ferrannini E. Operation of Randle's cycle in patients with NIDDM.  Diabetes. 39 383-389 1990; 
  • 24 Wolfe B M, Klein S, Peters E J, Schmidt B F, Wolfe R R. Effect of elevated free fatty acids on glucose oxidation in normal humans.  Metabolism. 37 323-329 1988; 
  • 25 Jenkins A B, Storlien L H, Chisholm D J, Kraegen E W. Effects of nonesterified fatty acid availability on tissue-specific glucose utilization in rats in vivo.  J Clin Invest. 82 293-299 1988; 
  • 26 Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X, Coleman E, Smith C. Effects of fat on insulin stimulated carbohydrate metabolism in normal men.  J Clin Invest. 88 960-966 1991; 
  • 27 Boden G, Chen X H, Ruiz J, White J V, Rossetti L. Mechanisms of fatty acid induced inhibition of glucose uptake.  J Clin Invest. 93 2438-2446 1994; 
  • 28 Kelley D E, Mokan M, Simoneau J A, Mandarino L J. Interaction between glucose and free fatty acid metabolism in human skeletal muscle.  J Clin Invest. 92 91-98 1993; 
  • 29 Kim J K, Youn J H. Prolonged suppression of glucose metabolism causes insulin resistance in rat skeletal muscle.  Am J Physiol. 35 E288-E296 1997; 
  • 30 Jucker B M, Rennings A JM, Cline G W, Shulman G I. C-13 and P-31 NMR studies on the effects of increased plasma free fatty acids on intramuscular glucose metabolism in the awake rat.  J Biol Chem. 272 10464-10473 1997; 
  • 31 Oakes N D, Bell K S, Furler S M, Camilleri S, Saha A K, Ruderman N B, Chisholm D J, Kraegen E W. Diet-induced muscle insulin resistance in rats is ameliorated by acute dietary lipid withdrawal or a single bout of exercise - parallel relationship between insulin stimulation of glucose uptake and suppression of long-chain fatty acyl-CoA.  Diabetes. 46 2022-2028 1997; 
  • 32 Chen M T, Kaufman L N, Spennetta T, Shrago E. Effects of high fat-feeding to rats on the interrelationship of body weight, plasma insulin, and fatty acyl-coenzyme-A esters in liver and skeletal muscle.  Metabolism. 41 564-569 1992; 
  • 33 Russell J C, Shillabeer G, Bartana J, Lau D CW, Richardson M, Wenzel L M, Graham S E, Dolphin P J. Development of insulin resistance in the jcr-La-Cp rat - role of triacylglycerols and effects of Medica 16.  Diabetes. 47 770-778 1998; 
  • 34 Goodpaster B H, Kelley D E. Role of muscle in triglyceride metabolism.  Curr Opin Lipidol. 9 231-236 1998; 
  • 35 Falholt K, Jensen I, Jensen S, Mortensen H, Volund A, Heding L, Petersen P, Falholt W. Carbohydrate and lipid metabolism of skeletal muscle in type 2 diabetic patients.  Diabetic Med.. 5 27-31 1988; 
  • 36 Ellis B A, Poynten A, Lowy A, Furler S M, Chisholm D J, Kraegen E W, Cooney G J. Long-chain acyl-CoA esters as indicators of lipid availability and insulin sensitivity in rat and human muscle.  Am J Physiol. 279 E554-E560 2000; 
  • 37 Pan D A, Lillioja S, Kriketos A D, Milner M R, Baur L A, Bogardus C, Jenkins A B, Storlien L H. Skeletal muscle triglyceride levels are inversely related to insulin action.  Diabetes. 46 983-988 1997; 
  • 38 Phillips D IW, Caddy S, Ilic V, Fielding B A, Frayn K N, Borthwick A C, Taylor R. Intramuscular triglyceride and muscle insulin sensitivity - evidence for a relationship in nondiabetic subjects.  Metabolism. 45 947-950 1996; 
  • 39 Boesch C, Slotboom J, Hoppeler H, Kreis R. In vivo determination of intra-myocellular lipids In human muscle by means of localized H-1-MR-Spectroscopy.  Magn Reson Med. 37 484-493 1997; 
  • 40 Szczepaniak L S, Babcock E E, Schick F, Dobbins R L, Garg A, Burns D K, McGarry J D, Stein D T. Measurement of intracellular triglyceride stores by 1-H spectroscopy: validation in liver and skeletal muscle in vivo.  Am J Physiol. In Press 1999; 
  • 41 Krssak M, Petersen K F, Dresner A, DiPietro L, Vogel S M, Rothman D L, Shulman G I, Roden M. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a H-1 NMR spectroscopy study.  Diabetologia. 42 113-116 1999; 
  • 42 Jacob S, Machann J, Rett K, Brechtel K, Volk A, Renn A, Maerker E, Matthaei S, Schick F, Claussen C-D, Haring H-U. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of Type 2 diabetic subjects.  Diabetes. 48 1113-1119 1999; 
  • 43 Vock R, Weibel E R, Hoppeler H, Ordway G, Weber J M, Taylor C R. Design of the oxygen and substrate pathways. V. structural basis of vascular substrate supply to muscle cells.  J Exp Biol. 199 1675-1688 1996; 
  • 44 Corkey B E. Analysis of acyl-Coenzyme A esters in biological samples.  Methods in Enzymology. 166 55-70 1988; 
  • 45 Chisholm D J, Poynten A M, Ellis B A, Furler S M, Lowy A J, Kraegen E W, Campbell L V, Cooney G J. Relationship of insulin sensitivity with abdominal fat and muscle long chain acyl CoA (LCAC) in men.  Diabetologia 41 ((Suppl 1)) A206 1998; 
  • 46 Carey D G, Jenkins A B, Campbell L V, Freund J, Chisholm D J. Abdominal fat and insulin resistance in normal and overweight women - direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM.  Diabetes. 45 633-638 1996; 
  • 47 Park K W, Rhee B D, Lee J-U, Kim S Y, Lee H K, Koh C-S, Min H K. Intra-abdominal fat is associated with decreased insulin sensitivity in healthy young men.  Metabolism. 40 600-603 1991; 
  • 48 Ross R, Fortier L, Hudson R. Separate associations between visceral and subcutaneous adipose tissue distribution, insulin and glucose levels In obese women.  Diabetes Care. 19 1404-1411 1996; 
  • 49 Simoneau J-A, Colberg S R, Thaete F L, Kelley D E. Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women.  FASEB J. 9 273-278 1995; 
  • 50 Carey D GP, Campbell L V, Chisholm D J. Is visceral fat (intra-abdominal and hepatic) a major determinant of gender differences in insulin resistance and dyslipidemia?.  Diabetes 45 ((Suppl)) 110A 1996; 
  • 51 Goodpaster B H, Thaete F L, Simoneau J A, Kelley D E. Subcutaneous abdominal fat and thigh muscle composition predict insulin sensitivity independently of visceral fat.  Diabetes. 46 1579-1585 1997; 
  • 52 Colberg S R, Simoneau J A, Thaete F L, Kelley D E. Skeletal muscle utilization of free fatty acids in women with visceral obesity.  J Clin Invest. 95 1846-1853 1995; 
  • 53 Turpeinen A K, Takala T O, Nuutila P, Luotolahti M, Haaparanta M, Bergman J, Hamalainen H, Uusitupa M IJ, Knuuti J. Cardiac and femoral muscle FFA uptake in patients with IGT or NIDDM as studied with 14(R,S)-{18F]fluoro-6-thiaheptadecanoic acid and PET.  Diabetologia 41 ((Suppl 1)) A21 1998; 
  • 54 Sidossis L S, Stuart C A, Shulman G I, Lopaschuk G D, Wolfe R R. Glucose plus insulin regulate fat oxidation by controlling the rate of fatty acid entry into the mitochondria.  J Clin Invest. 98 2244-2250 1996; 
  • 55 Wolfe R R. Metabolic interactions between glucose and fatty acids in humans.  Amer J Clin Nutr. 67 S519-S526 1998; 
  • 56 Laybutt D R, Chisholm D J, Kraegen E W. Specific adaptations in muscle and adipose tissue in response to chronic systemic glucose oversupply In rats.  Am J Physiol. 36 E1-E9 1997; 
  • 57 Laybutt D R, Schmitz-Peiffer C, Saha A K, Ruderman N B, Biden T J, Kraegen E W. Muscle lipid accumulation and protein kinase C activation in the insulin-resistant chronically glucose-infused rat.  Am J Physiol. 87 E47-E58 1999; 
  • 58 Dyck D J, Peters S J, Glatz J, Gorski J, Keizer H, Kiens B, Liu S, Righter E A, Spriet L L, Vandervusse G J, Bonen A. Functional differences in lipid metabolism in resting skeletal muscle of various fiber types.  Am J Physiol. 35 E340-E351 1997; 
  • 59 Oakes N D, Kjellstedt A, Forsberg G-B, Clementz T, Camejo G, Furler S M, Kraegen E W, Olwegard-Halvarsson M, Jenkins A B, Ljung B. Development and initial evaluation of a novel method for assessing tissue-specific plasma free fatty acid utilization in vivo using (R)-2-bromopalmitate tracer.  J Lipid Research. In Press 1999; 
  • 60 Evans K, Clark M L, Frayn K N. Effects of an oral and intravenous fat load on adipose tissue and forearm lipid metabolism.  Am J Physiol. 276 E241-248 1999; 
  • 61 Frayn K N. Non-esterified fatty acid metabolism and postprandial lipaemia.  Atherosclerosis 141 ((Suppl 1)) S41-S46 1998; 
  • 62 Schrezenmeir J, Fenselau S, Keppler I, Abel J, Orth B, Laue C, Sturmer W, Fauth U, Halmagyi M, März W. Postprandial triglyceride high response and the metabolic syndrome.  Ann N Y Acad Sci. 827 353-368 1997; 
  • 63 Randle P J, Kerbey A L, Espinal J. Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones.  Diabetes Metab Rev. 4 623-638 1988; 
  • 64 Oakes N D, Cooney G J, Camilleri S, Chisholm D J, Kraegen E W. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding.  Diabetes. 46 1768-1774 1997; 
  • 65 Faergeman N J, Knudsen J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and cell signalling.  Biochem J. 323 1-12 1997; 
  • 66 Carroll J E, Villadiego A, Morse D P. Fatty acid oxidation intermediates and the effect of fasting on oxidation in red and white skeletal muscle.  Muscle & Nerve. 6 367-373 1983; 
  • 67 Saha A K, Kurowski T G, Ruderman N B. A malonyl-CoA fuel-sensing mechanism In muscle - effects of insulin, glucose, and denervation.  Am J Physiol. 269 E283-E289 1995; 
  • 68 Wititsuwannakul D, Kim K-H. Mechanism of palmityl coenzyme A inhibition of liver glycogen synthase.  J Biol Chem. 252 7812-7817 1977; 
  • 69 Tippett P S, Neet K E. An allosteric model for the inhibition of glucokinase by long acyl coenzyme A.  J Biol Chem. 257 12846-12852 1982; 
  • 70 Fulceri R, Gamberucci A, Scott H M, Giunti R, Burchell A, Benedetti A. Fatty acyl-CoA esters inhibit glucose-6-phosphatase in rat liver microsomes.  Biochem J. 307 391-397 1995; 
  • 71 Nikawa J-I, Tanabe T, Ogiwara H, Shiba T, Numa S. Inhibitory effects of long-chain acyl coenzyme A analogues on liver acetyl coenzyme A carboxylase.  FEBS Lett. 102 223-226 1979; 
  • 72 Carling D, Zammit V A, Hardie D G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis.  FEBS Lett. 223 217-222 1987; 
  • 73 Jepson C A, Yeaman S J. Inhibition of hormone-sensitive lipase by intermediary lipid metabolites.  FEBS Lett. 310 197-200 1992; 
  • 74 Danielsen A G, Liu F, Hosomi Y, Shii K, Roth R. Activation of protein kinase C alpha inhibits signalling by members of the insulin receptor family.  J Biol Chem. 270 21600-21605 1995; 
  • 75 Schmitz-Peiffer C, Browne C L, Oakes N D, Watkinson A, Chisholm D J, Kraegen E W, Biden T J. Alterations In the expression and cellular localization of protein kinase C isozymes epsilon and theta are associated with insulin resistance in skeletal muscle of the high-fat-fed rat.  Diabetes. 46 169-178 1997; 
  • 76 Brindley D N. Intracellular translocation of phosphatide phosphohydrolase and its possible role in the control of glycerolipid synthesis.  Prog Lipid Res. 23 115-123 1984; 
  • 77 Jump D B, Clarke S D, Thelen A, Liimatta M, Ren B, Badin M V. Dietary fat, genes and human health.  Adv Exp Med Biol. 422 167-176 1997; 
  • 78 Raclot T, Groscolas R, Langin D, Ferre P. Site-specific regulation of gene expression by n-3 polyunsaturated fatty acids in rat white adipose tissues.  J Lipid Res. 38 1963-1972 1997; 
  • 79 Lemberger T, Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: A nuclear receptor signaling pathway in lipid physiology.  Annu Rev Cell Dev Biol. 12 335-363 1996; 
  • 80 Hertz R, Magenhelm J, Berman I, Bar-Tana J. Fatty acyl-CoA thioesters are ligands of hepatic nuclear factor-4α.  Nature. 392 512-516 1998; 
  • 81 Massillon D, Barzilai N, Hawkins M, Prus-Wertheimer D, Rossetti L. Induction of hepatic glucose-6-phosphatase gene expression by lipid infusion.  Diabetes. 46 153-157 1997; 
  • 82 Pan D A, Hulbert A J, Storlien L H. Dietary fats, membrane phospholipids and obesity.  J Nutr. 124 1555-1565 1994; 
  • 83 Borkman M, Storlien L H, Pan D A, Jenkins A B, Chisholm D J, Campbell L V. The relation between insulin sensitivity and the fatty acid composition of skeletal-muscle phospholipids.  N Engl J Med. 328 238-244 1993; 
  • 84 Storlien L H, Kriketos A D, Calvert G D, Baur L A, Jenkins A B. Fatty acids, triglycerides and syndromes of insulin resistance. Prostagland.  Leuk Essent Fatty. 57 379-385 1997; 
  • 85 Storlien L H, Baur L A, Kriketos A D, Pan D A, Cooney G J, Jenkins A B, Calvert G D, Campbell L V. Dietary fats and insulin action.  Diabetologia. 39 621-631 1996; 
  • 86 Lehmann J M, Moore L B, Smitholiver T A, Wilkison W O, Willson T M, Kliewer S A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR-gamma).  J Biol Chem. 270 12953-12956 1995; 
  • 87 Auboeuf D, Rieusset J, Fajas L, Vallier P, Frering V, Riou J P, Staels P, Auwerx J, Laville M, Vidal H. Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans - no alteration in adipose tissue of obese and NIDDM patients.  Diabetes. 46 1319-1327 1997; 
  • 88 Kruszynska Y T, Mukherjee R, Jow L, Dana S, Paterniti J R, Olefsky J M. Skeletal muscle Peroxisome Proliferator-Activated Receptor-gamma expression in obesity and Non-Insulin-Dependent Diabetes Mellitus.  J Clin Invest. 101 543-548 1998; 
  • 89 Oakes N D, Kennedy C J, Jenkins A B, Laybutt D R, Chisholm D J, Kraegen E W. A new antidiabetic agent, BRL 49653, reduces lipid availability and improves insulin action and glucoregulation in the rat.  Diabetes. 43 1203-1210 1994; 
  • 90 Boden G, Chen X H, Rosner J, Barton M. Effects of a 48-h fat infusion on insulin secretion and glucose utilization.  Diabetes. 44 1239-1242 1995; 
  • 91 Rebrin K, Steil G M, Mittelman S D, Bergman R N. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs.  J Clin Invest. 98 741-749 1996; 
  • 92 Nuutila P, Koivisto V A, Knuuti J, Ruotsalainen U, Teras M, Haaparanta M, Bergman J, Solin O, Voipio-Pulkki L-M, Wegelius U, Yki-Jarvinen H. Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo.  J Clin Invest. 89 1767-1744 1992; 
  • 93 Oakes N D, Camilleri S, Furler S M, Chisholm D J, Kraegen E W. The insulin sensitizer, BRL 49653, reduces systemic fatty acid supply and utilization and tissue lipid availability in the rat.  Metabolism. 46 935-942 1997; 
  • 94 Schmitz-Peiffer C, Oakes N D, Browne C L, Kraegen E W, Biden T J. Reversal of chronic alterations of skeletal muscle protein kinase C from fat-fed Rats by BRL-49653.  Am J Physiol. 36 E915-E921 1997; 
  • 95 Okuno A, Tamemoto H, Tobe K, Ueki K, Mori Y, Iwamoto K, Umesono K, Akanuma Y, Fujiwara T, Horikoshi H, Yazaki Y, Kadowaki T. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats.  J Clin Invest. 101 1354-1361 1998; 
  • 96 Adams M, Montague C T, Prins J B, Holder J C, Smith S A, Sanders L, Digby J E, Sewter C P, Lazar M A, Chatterjee V KK, O'Rahilly S. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation.  J Clin Invest. 100 3149-3153 1997; 
  • 97 Bahr M, Spelleken M, Bock M, Vonholtey M, Kiehn R, Eckel J. Acute and chronic effects of Troglitazone (CS-045) on isolated rat ventricular cardiomyocytes.  Diabetologia. 39 766-774 1996; 
  • 98 Park K S, Ciaraldi T P, Abramscarter L, Mudaliar S, Nikoulina S E, Henry R R. Troglitazone regulation of glucose metabolism in human skeletal muscle cultures from obese Type II diabetic subjects.  J Clin Endocrinol Metab. 83 1636-1643 1998; 
  • 99 Fulgencio J P, Kohl C, Girard J, Pegorier J P. Troglitazone inhibits fatty acid oxidation and esterification, and gluconeogenesis in isolated hepatocytes from starved rats.  Diabetes. 45 1556-1562 1996; 
  • 100 Murase K, Odaka H, Suzuki M, Tayuki N, Ikeda H. Pioglitazone time-dependently reduces tumour necrosis factor-alpha level in muscle and improves metabolic abnormalities in wistar fatty rats.  Diabetologia. 41 257-264 1998; 
  • 101 Nolte L A, Hansen P A, Chen M M, Schluter J M, Gulve E A, Holloszy J O. Short-term exposure to tumor necrosis factor-alpha does not affect insulin-stimulated glucose uptake in skeletal muscle.  Diabetes. 47 721-726 1998; 
  • 102 Miles P D, Romeo O M, Higo K, Cohen A, Rafaat K, Olefsky J M. TNF-alpha-induced insulin resistance in vivo and its prevention by Troglitazone.  Diabetes. 46 1678-1683 1997; 
  • 103 Berger J, Leibowitz M D, Doebber T W, Elbrecht A, Zhang B, Zhou G, Biswas C, Cullinan C A, Hayes N S, Li Y, Tanen M, Ventre J, Wu M S, Berger G D, Mosley R, Marquis R, Santini C, Sahoo S P, Tolman R L, Smith R G, Moller D E. Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPAR delta ligands produce distinct biological effects.  J Biol Chem. 274 6718-6725 1999; 
  • 104 Matsui H R, Okumura K, Kawakami K, Hibino M, Toki Y, Ito T. Improved Insulin Sensitivity By Bezafibrate In Rats - Relationship to Fatty Acid Composition Of Skeletal-Muscle Triglycerides.  Diabetes. 46 348-353 1997; 
  • 105 Lee K U, Park J Y, Kim C H, Hong S K, Suh K I, Park K S, Park S W. Effect Of decreasing plasma free fatty acids by acipimox on hepatic glucose metabolism in normal rats.  Metabolism. 45 1408-1414 1996; 
  • 106 Alvarsson M, Grill V. Impact of nicotinic acid treatment on insulin secretion and insulin sensitivity in low and high insulin responders.  Scand. J Clin Lab Invest. 56 563-570 1996; 
  • 107 Haffner S M. The prediabetic problem - development of non-insulin dependent diabetes mellitus and associated abnormalities.  J Diabetes Complications. 11 69-76 1997; 
  • 108 Davoren P M, Alberti K. The effect of 24-hour suppression of plasma non-esterified fatty acid levels on glucose and lipid metabolism in NIDDM.  Diabetes, Nutrition & Metabolism Clinical & Experimental. 8 17-23 1995; 
  • 109 Hannah J S, Bodkin N L, Paidi M S, Anhle N, Howard B V. Effects Of acipimox on the metabolism of free fatty acids and very low density lipoprotein triglyceride.  Acta Diabetologica. 32 279-283 1995; 
  • 110 Enoksson S, Degerman E, Hagstromtoft E, Large V, Arner P. Various phosphodiesterase subtypes mediate the in vivo antilipolytic effect of insulin on adipose tissue and skeletal muscle in Man.  Diabetologia. 41 560-568 1998; 
  • 111 Murakami K, Tobe K, Ide T, Mochizuki T, Ohashi M, Akanuma Y, Yazaki Y, Kadowaki T. A novel insulin sensitizer acts as a coligand for peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and PPAR-gamma. Effect of PPARalpha activation on abnormal lipid metabolism in liver of Zucker Fatty rats.  Diabetes. 47 1841-1847 1998; 

Prof. E. W. Kraegen

Garvan Institute of Medical Research

St Vincent's Hospital

Sydney NSW 2010

Australia

Phone: + 61 2 9295 8206

Fax: + 61 2 9295 8201

Email: e.kraegen@garvan.org.au

    >