Semin Neurol 2001; 21(1): 023-032
DOI: 10.1055/s-2001-13116
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Functional Imaging in Parkinson's Disease

Alain Dagher
  • Montréal Neurological Institute, McGill University, Montréal, Canada
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

This article reviews the applications of functional neuroimaging with positron emission tomography (PET) and single photon emission computed tomography (SPECT) to the diagnosis and treatment of Parkinson's disease (PD). PET measurements with [

@affil1:1

@affil8:8F]deoxyglucose to measure glucose metabolism or with various markers of the pre- and postsynaptic dopamine systems may distinguish idiopathic PD from other conditions presenting with an akinetic-rigid state. Moreover, PET has been used to gain new insights into mechanisms of cell death and the role of heredity in Parkinson's disease. Finally, we discuss the use of functional neuroimaging to study the role of the basal ganglia in movement and cognition in PD.

REFERENCES

  • 1 Raichle M E. Circulatory and metabolic correlates of brain function in normal humans. In: Mountcastle VB, ed. Handbook of Physiology, Sect 1, Vol. 5: The Nervous System. Bethesda, MD: American Physiological Society 1987: 643-674
  • 2 Garnett E S, Nahmias C, Firnau G. Central dopaminergic pathways in hemiparkinsonism examined by positron emission tomography.  Can J Neurol Sci . 1984;  174-179 (174-179)
  • 3 Hoshi H, Kuwabara H, Leger G. 6-[18F]Fluoro-L-dopa metabolism in living human brain: a comparison of six analytical methods.  J Cereb Blood Flow Metab . 1993;  13 57-69
  • 4 Deep P, Dagher A, Sadikot A, Gjedde A, Cumming P. Stimulation of dopa decarboxylase activity in striatum of healthy human brain secondary to NMDA receptor antagonism with a low dose of amantadine.  Synapse . 1999;  34 313-318
  • 5 Leger G, Gjedde A, Kuwabara H, Guttman M, Cumming P. Effect of catechol-O-methyltransferase inhibition on brain uptake of [18F]fluorodopa: implications for compartmental modelling and clinical usefulness.  Synapse . 1998;  30 351-361
  • 6 Tedroff J, Aquilonius S M, Laihinen A. Striatal kinetics of [11C]-(+)-nomifensine and 6-[18F]fluoro-L-dopa in Parkinson's disease measured with positron emission tomography.  Acta Neurol Scand . 1990;  81 24-30
  • 7 Booij J, Tissingh G, Winogrodzka A, van Royen A E. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism.  Eur J Nucl Med . 1999;  26 171-182
  • 8 Frey K A, Koeppe R A, Kilbourn M R. Presynaptic monoaminergic vesicles in Parkinson's disease and normal aging.  Ann Neurol . 1996;  40 873-884
  • 9 Vander Borght T, Kilbourn M, Desmond T, Kuhl D, Frey K. The vesicular monoamine transporter is not regulated by dopaminergic drug treatments.  Eur J Pharmacol . 1995;  294 577-583
  • 10 Innis R B, Marek K L, Sheff K. Effect of treatment with L-dopa/carbidopa or L-selegiline on striatal dopamine transporter SPECT imaging with [123I]beta-CIT.  Mov Disord . 1999;  14 436-442
  • 11 Ahlskog J E, Uitti R J, O'Connor M K. The effect of dopamine agonist therapy on dopamine transporter imaging in Parkinson's disease.  Mov Disord . 1999;  14 940-946
  • 12 Dewey S L, Smith G S, Logan J. Striatal binding of the PET ligand 11C-raclopride is altered by drugs that modify synaptic dopamine levels.  Synapse . 1993;  13 350-356
  • 13 Gorell J M, Ordidge R J, Brown G G. Increased iron-related MRI contrast in the substantia nigra in Parkinson's disease [published erratum appears in Neurology 1995;45:1420].  Neurology . 1995;  45 1138-1143
  • 14 Stern M B, Braffman B H, Skolnick B E. Magnetic resonance imaging in Parkinson's disease and parkinsonian syndromes.  Neurology . 1989;  39 1524-1526
  • 15 Kraft E, Schwarz J, Trenkwalder C. The combination of hypointense and hyperintense signal changes on T2-weighted magnetic resonance imaging sequences: a specific marker of multiple system atrophy?.  Arch Neurol . 1999;  56 225-228
  • 16 Schrag A, Kingsley D, Phatouros C. Clinical usefulness of magnetic resonance imaging in multiple system atrophy.  J Neurol Neurosurg Psychiatry . 1998;  65 65-71
  • 17 Savoiardo M, Girotti F, Strada L, Ciceri E. Magnetic resonance imaging in progressive supranuclear palsy and other parkinsonian disorders.  J Neural Transm Suppl . 1994;  42 93-110
  • 18 Gimenez-Roldan S, Mateo D, Benito C, Grandas F, Perez-Gilabert Y. Progressive supranuclear palsy and corticobasal ganglionic degeneration: differentiation by clinical features and neuroimaging techniques.  J Neural Transm Suppl . 1994;  42 79-90
  • 19 Eidelberg D. The metabolic landscape of Parkinson's disease.  Adv Neurol . 1999;  80 87-97
  • 20 Eidelberg D, Moeller J R, Kazumata K. Metabolic correlates of pallidal neuronal activity in Parkinson's disease.  Brain . 1997;  120 1315-1324
  • 21 Kazumata K, Antonini A, Dhawan V. Preoperative indicators of clinical outcome following stereotaxic pallidotomy.  Neurology . 1997;  49 1083-1090
  • 22 Eidelberg D, Takikawa S, Moeller J R. Striatal hypometabolism distinguishes striatonigral degeneration from Parkinson's disease.  Ann Neurol . 1993;  33 518-527
  • 23 Gilman S, Koeppe R A, Junck L. Patterns of cerebral glucose metabolism detected with positron emission tomography differ in multiple system atrophy and olivopontocerebellar atrophy.  Ann Neurol . 1994;  36 166-175
  • 24 De Volder G A, Francart J, Laterre C. Decreased glucose utilization in the striatum and frontal lobe in probable striatonigral degeneration.  Ann Neurol . 1989;  26 239-247
  • 25 Blin J, Baron J C, Dubois B. Positron emission tomography study in progressive supranuclear palsy. Brain hypometabolic pattern and clinicometabolic correlations.  Arch Neurol . 1990;  47 747-752
  • 26 Nagahama Y, Fukuyama H, Turjanski N. Cerebral glucose metabolism in corticobasal degeneration: comparison with progressive supranuclear palsy and normal controls.  Mov Disord . 1997;  12 691-696
  • 27 Kuwabara H, Cumming P, Yasuhara Y. Regional striatal DOPA transport and decarboxylase activity in Parkinson's disease.  J Nucl Med . 1995;  36 1226-1231
  • 28 Fearnley J M, Lees A J. Aging and Parkinson's disease: substantia nigra regional selectivity.  Brain . 1995;  114 2283-2301
  • 29 Morrish P K, Sawle G V, Brooks D J. Clinical and [18F] dopa PET findings in early Parkinson's disease.  J Neurol Neurosurg Psychiatry . 1995;  59 597-600
  • 30 Piccini P, Burn D J, Ceravolo R, Maraganore D, Brooks D J. The role of inheritance in sporadic Parkinson's disease: evidence from a longitudinal study of dopaminergic function in twins.  Ann Neurol . 1999;  45 577-582
  • 31 Piccini P, Morrish P K, Turjanski N. Dopaminergic function in familial Parkinson's disease: a clinical and 18F-dopa positron emission tomography study.  Ann Neurol . 1997;  41 222-229
  • 32 Brooks D J, Ibanez V, Sawle G V. Differing patterns of striatal 18F-dopa uptake in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy.  Ann Neurol . 1990;  28 547-555
  • 33 Sawle G V, Brooks D J, Marsden C D, Frackowiak R S. Corticobasal degeneration: a unique pattern of regional cortical oxygen hypometabolism and striatal fluorodopa uptake demonstrated by positron emission tomography.  Brain . 1991;  114 541-556
  • 34 Seibyl J P, Marek K L, Quinlan D. Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson's disease.  Ann Neurol . 1995;  38 589-598
  • 35 Marek K L, Seibyl J P, Zoghbi S S. [123I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson's disease.  Neurology . 1996;  46 231-237
  • 36 Guttman M, Burkholder J, Kish S J. [11C]RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson's disease: implications for the symptomatic threshold.  Neurology . 1997;  48 1578-1583
  • 37 Tedroff J, Ekesbo A, Rydin E, Langstrom B, Hagberg G. Regulation of dopaminergic activity in early Parkinson's disease.  Ann Neurol . 1999;  46 359-365
  • 38 Ishikawa T, Dhawan V, Kazumata K. Comparative nigrostriatal dopaminergic imaging with iodine-123-beta CIT-FP/SPECT and fluorine-18-FDOPA/PET.  J Nucl Med . 1996;  37 1760-1765
  • 39 Rinne J O, Laihinen A, Nagren K. PET demonstrates different behaviour of striatal dopamine D-1 and D-2 receptors in early Parkinson's disease.  J Neurosci Res . 1990;  27 494-499
  • 40 Rinne J O, Laihinen A, Ruottinen H. Increased density of dopamine D2 receptors in the putamen, but not in the caudate nucleus in early Parkinson's disease: a PET study with [11C]raclopride.  J Neurol Sci . 1995;  132 156-161
  • 41 Antonini A, Schwarz J, Oertel W H, Beer H F, Madeja U D, Leenders K L. [11C]Raclopride and positron emission tomography in previously untreated patients with Parkinson's disease: influence of L-dopa and lisuride therapy on striatal dopamine D2-receptors.  Neurology . 1994;  44 1325-1329
  • 42 Ouchi Y, Kanno T, Okada H. Presynaptic and postsynaptic dopaminergic binding densities in the nigrostriatal and mesocortical systems in early Parkinson's disease: a double-tracer positron emission tomography study.  Ann Neurol . 1999;  46 723-731
  • 43 Shinotoh H, Inoue O, Hirayama K. Dopamine D1 receptors in Parkinson's disease and striatonigral degeneration: a positron emission tomography study.  J Neurol Neurosurg Psychiatry . 1993;  56 467-472
  • 44 Antonini A, Leenders K L, Vontobel P. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson's disease.  Brain . 1997;  120 2187-2195
  • 45 Brooks D J, Ibanez V, Sawle G V. Striatal D2 receptor status in patients with Parkinson's disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 11C-raclopride and positron emission tomography.  Ann Neurol . 1992;  31 184-192
  • 46 Schwarz J, Tatsch K, Gasser T. 123I-IBZM binding compared with long-term clinical follow up in patients with de novo parkinsonism.  Mov Disord . 1998;  13 16-19
  • 47 Piccini P, Brooks D J, Bjorklund A. Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient.  Nat Neurosci . 1999;  2 1137-1140
  • 48 Kuhl D E, Minoshima S, Fessler J A. In vivo mapping of cholinergic terminals in normal aging, Alzheimer's disease, and Parkinson's disease.  Ann Neurol . 1996;  40 399-410
  • 49 Asahina M, Suhara T, Shinotoh H, Inoue O, Suzuki K, Hattori T. Brain muscarinic receptors in progressive supranuclear palsy and Parkinson's disease: a positron emission tomographic study.  J Neurol Neurosurg Psychiatry . 1998;  65 155-163
  • 50 Shinotoh H, Namba H, Yamaguchi M. Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson's disease and progressive supranuclear palsy.  Ann Neurol . 1999;  46 62-69
  • 51 Scatton B, Javoy Agid F, Rouquier L, Dubois B, Agid Y. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease.  Brain Res . 1983;  275 321-328
  • 52 Vingerhoets F J, Snow B J, Lee C S, Schulzer M, Mak E, Calne D B. Longitudinal fluorodopa positron emission tomographic studies of the evolution of idiopathic parkinsonism.  Ann Neurol . 1994;  36 759-764
  • 53 Vingerhoets F J, Snow B J, Tetrud J W, Langston J W, Schulzer M, Calne D B. Positron emission tomographic evidence for progression of human MPTP-induced dopaminergic lesions.  Ann Neurol . 1994;  36 765-770
  • 54 Morrish P K, Rakshi J S, Bailey D L, Sawle G V, Brooks D J. Measuring the rate of progression and estimating the preclinical period of Parkinson's disease with [18F]dopa PET.  J Neurol Neurosurg Psychiatry . 1998;  64 314-319
  • 55 Snow B J, Tooyama I, McGeer E G. Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels.  Ann Neurol . 1993;  34 324-330
  • 56 Rakshi J S, Uema T, Ito K. Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson's disease.  A 3D [18F]dopa-PET study. Brain . 1999;  122 1637-1650
  • 57 Middleton F A, Strick P L. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function.  Science . 1994;  266 458-461
  • 58 White N M. Mnemonic functions of the basal ganglia.  Curr Opin Neurobiol . 1997;  7 164-169
  • 59 Taylor A E, Saint Cyr A J, Lang A E. Frontal lobe dysfunction in Parkinson's disease: the cortical focus of neostriatal outflow.  Brain . 1986;  109 845-883
  • 60 Owen A M, James M, Leigh P N. Fronto-striatal cognitive deficits at different stages of Parkinson's disease.  Brain . 1992;  115 1727-1751
  • 61 Lange K W, Robbins T W, Marsden C D, James M, Owen A M, Paul G M. L-Dopa withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction.  Psychopharmacology (Berl) . 1992;  107 394-404
  • 62 Jahanshahi M, Jenkins I H, Brown R G, Marsden C D, Passingham R E, Brooks D J. Self-initiated versus externally triggered movements: I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects.  Brain . 1995;  118 913-933
  • 63 Jenkins I H, Fernandez W, Playford E D. Impaired activation of the supplementary motor area in Parkinson's disease is reversed when akinesia is treated with apomorphine.  Ann Neurol . 1992;  32 749-757
  • 64 Owen A M, Doyon J, Dagher A, Sadikot A, Evans A C. Abnormal basal ganglia outflow in Parkinson's disease identified with PET: implications for higher cortical functions.  Brain . 1998;  121 949-965
  • 65 Grafton S T, Waters C, Sutton J, Lew M F, Couldwell W. Pallidotomy increases activity of motor association cortex in Parkinson's disease: a positron emission tomographic study.  Ann Neurol . 1995;  37 776-783
  • 66 Grossman M, Crino P, Reivich M, Stern M B, Hurtig H I. Attention and sentence processing deficits in Parkinson's disease: the role of anterior cingulate cortex.  Cereb Cortex . 1992;  2 513-525
  • 67 Samuel M, Ceballos Baumann O A. Pallidotomy in Parkinson's disease increases supplementary motor area and prefrontal activation during performance of volitional movements. An H2O PET study.  Brain . 1997;  120 1301-1312
  • 68 Playford E D, Jenkins I H, Passingham R E, Nutt J, Frackowiak R S, Brooks D J. Impaired mesial frontal and putamen activation in Parkinson's disease: a positron emission tomography study.  Ann Neurol . 1992;  32 151-161
  • 69 Samuel M, Ceballos-Baumann A O, Blin J. Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements: a PET study.  Brain . 1997;  120 963-976
  • 70 Rascol O, Sabatini U, Chollet F. Supplementary and primary sensory motor area activity in Parkinson's disease. Regional cerebral blood flow changes during finger movements and effects of apomorphine.  Arch Neurol . 1992;  49 144-148
  • 71 Limousin P, Greene J, Pollak P, Rothwell J, Benabid A L, Frackowiak R. Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease.  Ann Neurol . 1997;  42 283-291
  • 72 Alexander G E, Crutcher M D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing.  Trends Neurosci . 1990;  13 266-271
  • 73 Scott R, Gregory R, Hines N. Neuropsychological, neurological and functional outcome following pallidotomy for Parkinson's disease: a consecutive series of eight simultaneous bilateral and twelve unilateral procedures.  Brain . 1998;  121 659-675
  • 74 Lang A E, Lozano A, Tasker R, Duff J, Saint-Cyr J, Trepanier L. Neuropsychological and behavioral changes and weight gain after medial pallidotomy [letter].  Ann Neurol . 1997;  41 834-836
  • 75 Dagher A, Doyon J, Owen A M, Boecker H, Samuel M, Brooks D J. Medial temporal lobe activation in Parkinson's disease during fronto-striatal tasks revealed by PET: evidence for cortical reorganization?.  Mov Disord . 1998;  238 (238)
  • 76 Georgiou N, Bradshaw J L, Iansek R, Phillips J G, Mattingley J B, Bradshaw J A. Reduction in external cues and movement sequencing in Parkinson's disease.  J Neurol Neurosurg Psychiatry . 1994;  57 368-370
  • 77 Ouchi Y, Yoshikawa E, Okada H. Alterations in binding site density of dopamine transporter in the striatum, orbitofrontal cortex, and amygdala in early Parkinson's disease: compartment analysis for beta-CFT binding with positron emission tomography.  Ann Neurol . 1999;  45 601-610
    >