Aktuelle Urol 2017; 48(04): 296-305
DOI: 10.1055/s-0043-109820
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Moderne endoskopische Bildgebungsverfahren für das Urothelkarzinom der Harnblase

Modern endoscopic imaging tools for urothelial carcinoma of the urinary bladder
M. C. Kriegmair
1   Klinik für Urologie, Universitätsmedizin Mannheim, Universität Heidelberg, Mannheim
,
M. Ritter
1   Klinik für Urologie, Universitätsmedizin Mannheim, Universität Heidelberg, Mannheim
,
M. S. Michel
1   Klinik für Urologie, Universitätsmedizin Mannheim, Universität Heidelberg, Mannheim
,
C. Bolenz
2   Klinik für Urologie und Kinderurologie, Universitätsklinikum Ulm, Ulm
› Author Affiliations
Further Information

Publication History

Publication Date:
27 July 2017 (online)

Zusammenfassung

Die primäre Diagnostik und Therapie des Urothelkarzinoms (UCC) der Harnblase erfolgt endoskopisch. Eine möglichst sichere Differenzierung zwischen benignen Läsionen und maligne entartetem Urothel ist erforderlich. Die Weißlichtzystoskopie gilt als Goldstandard, jedoch bestehen Limitationen bei der Detektion kleiner Tumore und des Carcinoma in situ. Mit der Photodyamischen Diagnostik (PDD) und dem Narrow Band Imaging (NBI) stehen zwei klinisch etablierte Techniken zur Verfügung, die die Detektionsrate verbessern und die Rezidivrate eines Urothelkarzinoms senken können. Das Storz Professional Imaging Enhancement System (SPIES) beruht auf einer digitalen Kontrastverstärkung und wird aktuell in klinischen Studien evaluiert. Mit der konfokalen Laser-Endomikroskopie (CLE) wird das Prinzip der optischen Biopsie verfolgt. Sie erlaubt bereits intraoperativ die Darstellung des Gewebes mit einer der Lichtmikroskopie vergleichbaren Auflösung. Die optische Kohärenztomografie (OCT) stellt intraoperativ Querschnittsbilder der Harnblasenwand dar und liefert Informationen zur Eindringtiefe des Tumors. Eine weitere Ergänzung ist die Raman-Spektroskopie, die über Spektralanalysen die Beurteilung der Zusammensetzung von Material und Gewebe erlaubt. Die zunehmende molekulare Entschlüsselung des Urothelkarzinoms der Harnblase bietet neue Chancen für die Endoskopie. In Zukunft werden moderne Fotosensibilisatoren über molekulare Zielstrukturen spezifisch an Urothelkarzinomzellen binden, um malignes Gewebe sensitiver zu detektieren. Softwarebasierte Bildgebungsmodalitäten bieten neben der Unterstützung bei der Interpretation von endoskopischen Bildern diverse Möglichkeiten für eine verbesserte digitale Befunddokumentation und -kommunikation. Die vorliegende Arbeit stellt die modernen endoskopischen Bildgebungsverfahren vor und diskutiert deren potenziellen klinischen Nutzen.

Abstract

Cystoscopy is the gold standard for the initial diagnosis of urothelial carcinoma in the urinary bladder (UCB). White light exhibits significant limitations in its ability to detect flat lesions or carcinoma in situ. Photodynamic Diagnosis (PDD) and Narrow Band Imaging (NBI) are established techniques which may improve the detection rates of UCB and reduce the risk of recurrence. Multiple novel tools have been developed in order to improve the diagnostic accuracy of endoscopic procedures, including Digital Contrast Enhancement Technology, Confocal Laser Endomicroscopy (CLE) and Optical Coherence Tomography (OCT). In future, spectral analysis of urothelial lesions may be achieved by Raman spectroscopy, thus providing information about biological alterations in the tissue. Furthermore, molecular imaging may allow specific targeting by fluorescent antibodies or small molecule agents, thus enabling differential diagnosis of suspicious lesions. Software-based approaches have been developed to incorporate computer-aided diagnosis and improve digital documentation of endoscopic findings. This study reviews current and future developments in the field of modern endoscopy of the urinary bladder and discusses the different approaches.

 
  • Literatur

  • 1 S3-Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Harnblasenkarzinoms. AWMF-Registernummer OL 2016. 2016
  • 2 Institut RK. e UDGDEKID V. Krebs in Deutschland.
  • 3 Babjuk M, Böhle A, Burger M. et al. EAU Guidelines on Non-Muscle-invasive Urothelial Carcinoma of the Bladder: Update 2016. European Urology 2017; 71: 447-461
  • 4 Burger M, Grossman HB, Droller M. et al. Photodynamic Diagnosis of Non–muscle-invasive Bladder Cancer with Hexaminolevulinate Cystoscopy: A Meta-analysis of Detection and Recurrence Based on Raw Data. European Urology 2013; 64: 846-854
  • 5 Lerner SP, Goh A. Novel endoscopic diagnosis for bladder cancer. Cancer 2015; 121: 169-178
  • 6 Schultheiss D, Machtens SA, Jonas U. Air cystoscopy: the history of an endoscopic technique from the late 19th century. BJU International. Blackwell Science Ltd 1999; 83: 571-577
  • 7 Borin JF, Abdelshehid CS, Clayman RV. Comparison of Resolution, Contrast, and Color Differentiation Among Fiberoptic and Digital Flexible Cystoscopes. Journal of Endourology 2006; 20: 54-58
  • 8 Cina SJ, Epstein JI, Endrizzi JM. et al. Correlation of cystoscopic impression with histologic diagnosis of biopsy specimens of the bladder. Human Pathology 2001; 32: 630-637
  • 9 Rink M, Babjuk M, Catto JWF. et al. Hexyl Aminolevulinate – Guided Fluorescence Cystoscopy in the Diagnosis and Follow-up of Patients with Non-Muscle-invasive Bladder Cancer: A Critical Review of the Current Literature. European Urology 2013; 64: 624-638
  • 10 Millan-Rodriguez F, Chechile-Toniolo G, Salvador-Bayarri J. et al. Multivariate Analysis Of The Prognostic Factors Of Primary Superficial Bladder Cancer. The Journal Of Urology 2000; 163: 73-78
  • 11 Schwaibold HE, Sivalingam S, May F. et al. The Value Of A Second Transurethral Resection For T1 Bladder Cancer. Bju International. Blackwell Publishing Ltd 2006; 97: 1199-1201
  • 12 Brauers A, Buettner R, Jakse G. Second Resection And Prognosis Of Primary High Risk Superficial Bladder Cancer: Is Cystectomy Often Too Early?. The Journal Of Urology 2001; 165: 808-810
  • 13 Shariat SF, Palapattu GS, Karakiewicz PI. et al. Discrepancy between clinical and pathologic stage: impact on prognosis after radical cystectomy. European Urology 2007; 51: 137-149 discussion149–151
  • 14 Kriegmair M, Baumgartner R, Knüchel R. et al. Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. JURO 1996; 155: 105-109 discussion109–110
  • 15 Jocham D, Stepp H, Waidelich R. Photodynamic Diagnosis in Urology: State-of-the-Art. European Urology 2008; 53: 1138-1150
  • 16 Batlle AM. Porphyrins, porphyrias, cancer and photodynamic therapy – a model for carcinogenesis. J Photochem Photobiol B, Biol 1993; 20: 5-22
  • 17 Nakai Y, Tatsumi Y, Miyake M. et al. Expression of ferrochelatase has a strong correlation in protoporphyrin IX accumulation with photodynamic detection of bladder cancer. Photodiagnosis and Photodynamic Therapy 2016; 13: 225-232
  • 18 Burger M, Stief CG, Zaak D. et al. Hexaminolevulinate Is Equal to 5-Aminolevulinic Acid Concerning Residual Tumor and Recurrence Rate Following Photodynamic Diagnostic Assisted Transurethral Resection of Bladder Tumors. Urology 2009; 74: 1282-1286
  • 19 Yuan H, Qiu J, Liu L. et al. Therapeutic Outcome of Fluorescence Cystoscopy Guided Transurethral Resection in Patients with Non-Muscle Invasive Bladder Cancer: A Meta-Analysis of Randomized Controlled Trials. Real FX, editor. PLoS ONE 2013; 8: e74142
  • 20 Stenzl A, Burger M, Fradet Y. et al. Hexaminolevulinate Guided Fluorescence Cystoscopy Reduces Recurrence in Patients With Nonmuscle Invasive Bladder Cancer. The Journal of Urology 2010; 184: 1907-1914
  • 21 Jocham D, Witjes F, Wagner S. et al. Improved detection and treatment of bladder cancer using hexaminolevulinate imaging: a prospective, phase III multicenter study. JURO 2005; 174: 862-866 discussion 866
  • 22 Grossman HB, Gomella L, Fradet Y. et al. A Phase III, Multicenter Comparison of Hexaminolevulinate Fluorescence Cystoscopy and White Light Cystoscopy for the Detection of Superficial Papillary Lesions in Patients With Bladder Cancer. The Journal of Urology 2007; 178: 62-67
  • 23 Gakis G, Fahmy O. Systematic Review and Meta-Analysis on the Impact of Hexaminolevulinate- Versus White-Light Guided Transurethral Bladder Tumor Resection on Progression in Non-Muscle Invasive Bladder Cancer. Bladder Cancer. IOS Press 2016; 2: 293-300
  • 24 Gakis G, Ngamsri T, Rausch S. et al. Fluorescence-guided bladder tumour resection: impact on survival after radical cystectomy. World J Urol 2015; 33: 1429-1437
  • 25 May M, Fritsche H-M, Vetterlein MW. et al. Impact of photodynamic diagnosis-assisted transurethral resection of bladder tumors on the prognostic outcome after radical cystectomy: results from PROMETRICS 2011. World J Urol 2017; 35: 245-250
  • 26 Onkologie L. S3-Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Harnblasenkarzinoms, Langversion 1.0. AWMF. 2016
  • 27 Zheng C, Lv Y, Zhong Q. et al. Narrow band imaging diagnosis of bladder cancer: systematic review and meta-analysis. BJU International. Blackwell Publishing Ltd 2012; 110: E680-687
  • 28 Cauberg ECCE, Kloen SS, Visser MM. et al. Narrow Band Imaging Cystoscopy Improves the Detection of Non-muscle-invasive Bladder Cancer. URL 2010; 76: 658-663
  • 29 Herr HW, Donat SM. Reduced bladder tumour recurrence rate associated with narrow‐band imaging surveillance cystoscopy. BJU International. Blackwell Publishing Ltd 2011; 107: 396-398
  • 30 Herr HW. Randomized trial of narrow-band versus white-light cystoscopy for restaging (second-look) transurethral resection of bladder tumors. European Urology 2015; 67: 605-608
  • 31 Naselli A, Introini C, Timossi L. et al. A Randomized Prospective Trial to Assess the Impact of Transurethral Resection in Narrow Band Imaging Modality on Non-Muscle-Invasive Bladder Cancer Recurrence. European Urology 2012; 61: 908-913
  • 32 Cauberg ECC, Mamoulakis C, la Rosette de JJMCH. et al. Narrow band imaging-assisted transurethral resection for non-muscle invasive bladder cancer significantly reduces residual tumour rate. World J Urol 2011; 29: 503-509
  • 33 Kang W, Cui Z, Chen Q. et al. Narrow band imaging-assisted transurethral resection reduces the recurrence risk of non-muscle invasive bladder cancer: A systematic review and meta-analysis. Oncotarget. Impact Journals 2017; 8: 23880-23890
  • 34 Geavlete B, Multescu R, Georgescu D. et al. Narrow Band Imaging Cystoscopy and Bipolar Plasma Vaporization for Large Nonmuscle-invasive Bladder Tumors-Results of a Prospective, Randomized Comparison to the Standard Approach. Urology 2012; 79: 846-852
  • 35 Naito S, van Rees Vellinga S, la Rosette de J. Global randomized narrow band imaging versus white light study in nonmuscle invasive bladder cancer: accession to the first milestone-enrollment of 600. J Endourol 2013; DOI: 10.1089/end.2012.1556.
  • 36 Kamphuis GM, de Bruin DM. Storz Professional Image Enhancement System: A New Technique to Improve Endoscopic Bladder Imaging. Journal of Cancer Science & Therapy 2016; 08: 71-77
  • 37 Gravas S, Stenzl A. The Storz professional image enhancement system(spies) nonmuscle-invasive bladder cancer study: a multicenter international randomized controlled study. J Endourol 2014; 28: 1254-1255
  • 38 Hoffman A, Goetz M, Vieth M. et al. Confocal laser endomicroscopy: technical status and current indications. Endoscopy 2006; 38: 1275-1283
  • 39 Carignan CS, Yagi Y. Optical endomicroscopy and the road to real-time, in vivo pathology: present and future. Diagn Pathol. BioMed Central 2012; 13: 98
  • 40 Canto MI, Anandasabapathy S, Brugge W. et al. In vivo endomicroscopy improves detection of Barrettʼs esophagus–related neoplasia: a multicenter international randomized controlled trial (with video). Gastrointestinal Endoscopy 2014; 79: 211-221
  • 41 Goetz M. Characterization of lesions in the stomach: will confocal laser endomicroscopy replace the pathologist?. Best Pract Res Clin Gastroenterol 2015; 29: 589-599
  • 42 Wu K, Liu J-J, Adams W. et al. Dynamic real-time microscopy of the urinary tract using confocal laser endomicroscopy. Urology 2011; 78: 225-231
  • 43 Sonn GA, Jones S-N, Mach KE. et al. Optical Biopsy of human bladder neoplasia with in vivo confocal endomicroscopy. The Journal of Urology 2009; 181: 414-415
  • 44 Chang TC, Liu J-J, Hsiao ST. et al. Interobserver agreement of confocal laser endomicroscopy for bladder cancer. J Endourol 2013; 27: 598-603
  • 45 Bui D, Mach KE, Zlatev DV. et al. A Pilot Study of In Vivo Confocal Laser Endomicroscopy of Upper Tract Urothelial Carcinoma. J Endourol 2015; 29: 1418-1423
  • 46 Lerner SP, Goh AC, Tresser NJ. et al. Optical Coherence Tomography as an Adjunct to White Light Cystoscopy for Intravesical Real-Time Imaging and Staging of Bladder Cancer. Urology 2008; 72: 133-137
  • 47 Manyak MJ, Gladkova ND, Makari JH. et al. Evaluation of Superficial Bladder Transitional-Cell Carcinoma by Optical Coherence Tomography. Journal of Endourology 2005; 19: 570-574
  • 48 Schmidbauer J, Remzi M, Klatte T. et al. Fluorescence Cystoscopy with High-Resolution Optical Coherence Tomography Imaging as an Adjunct Reduces False-Positive Findings in the Diagnosis of Urothelial Carcinoma of the Bladder. European Urology 2009; 56: 914-919
  • 49 D'Hallewin M-A, Kamuhabwa AR, Roskams T. et al. Hypericin-based fluorescence diagnosis of bladder carcinoma. BJU International 2002; 89: 760-763
  • 50 Vandepitte J, Van Cleynenbreugel B, Hettinger K. et al. Biodistribution of PVP-hypericin and hexaminolevulinate-induced PpIX in normal and orthotopic tumor-bearing rat urinary bladder. Cancer Chemother Pharmacol 2010; 67: 775-781
  • 51 Fristrup N, Ulhøi BP, Birkenkamp-Demtröder K. et al. Cathepsin E, maspin, Plk1, and survivin are promising prognostic protein markers for progression in non-muscle invasive bladder cancer. The American Journal of Pathology 2012; 180: 1824-1834
  • 52 Chan CHF, Liesenfeld LF, Ferreiro-Neira I. et al. Preclinical Evaluation of Cathepsin-Based Fluorescent Imaging System for Cytoreductive Surgery. Ann Surg Oncol 2017; 931-938
  • 53 Austin LA, Osseiran S, Evans CL. Raman technologies in cancer diagnostics. Analyst. The Royal Society of Chemistry 2016; 141: 476-503
  • 54 Crow P, Uff JS, Farmer JA. et al. The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro. BJU International. Blackwell Science Ltd 2004; 93: 1232-1236
  • 55 Draga ROP, Grimbergen MCM, Vijverberg PLM. et al. In vivo bladder cancer diagnosis by high-volume Raman spectroscopy. Anal Chem 2010; 82: 5993-5999
  • 56 Erben P, Hartmann A, Bolenz C. [Molecular Characterisation of Urothelial Bladder Cancer: Will it Improve Patient Care?]. Aktuelle Urol 2015; 46: 227-235
  • 57 Pan Y, Volkmer J-P, Mach KE. et al. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. Sci Transl Med 2014; 6: 260ra148
  • 58 Kriegmair MC, Theuring M, Dimitriadis N. et al. Multispektrale Bildgebung zur Darstellung multipler Fluoreszenzsignale in der präklinischen Videoendoskopie. Der Urologe 2016; (Suppl. 01) 106
  • 59 Dimitriadis N, Grychtol Bartłomiej, Theuring Martin. et al. Spectral and temporal multiplexing for multispectral fluorescence and reflectance imaging using two color sensors. Opt Express 2017; 12812-12829
  • 60 Summers RM. Progress in Fully Automated Abdominal CT Interpretation. AJR Am J Roentgenol. American Roentgen Ray Society 2016; 207: 67-79
  • 61 Kah JCY, Lau WKO, Tan PH. et al. Endoscopic image analysis of photosensitizer fluorescence as a promising noninvasive approach for pathological grading of bladder cancer in situ. Journal of Biomedical Optics 2008; 13: 054022
  • 62 Bostrom PJ, Toren PJ, Xi H. et al. Point-of-care clinical documentation: assessment of a bladder cancer informatics tool (eCancerCareBladder): a randomized controlled study of efficacy, efficiency and user friendliness compared with standard electronic medical records. Journal of the American Medical Informatics Association 2011; 18: 835-841
  • 63 Kriegmair MC, Bergen T, Ritter M. et al. Digital Mapping of the Urinary Bladder: Potential for Standardized Cystoscopy Reports. Urology 2017; 104: 235-241