Nervenheilkunde 2018; 37(03): 159-166
DOI: 10.1055/s-0038-1642090
Seltene Erkrankungen
Schattauer GmbH

Genetisch determinierte Dystonien

Monogenic dystonias
N. Brüggemann
1   Institut für Neurogenetik, Universität zu Lübeck, Lübeck
2   Klinik für Neurologie, Universität zu Lübeck, Lübeck
,
K. Lohmann
1   Institut für Neurogenetik, Universität zu Lübeck, Lübeck
,
S. Paus
3   Klinik und Poliklinik für Neurologie, Universitätsklinikum Bonn, Bonn
,
E. Lohmann
4   Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Tübingen
5   Neurologie mit Schwerpunkt Neurodegenerative Erkrankungen, Universitätsklinikum Tübingen, Tübingen
,
T. Gasser
4   Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Tübingen
5   Neurologie mit Schwerpunkt Neurodegenerative Erkrankungen, Universitätsklinikum Tübingen, Tübingen
,
C. Ganos
6   Klinik und Hochschulambulanz für Neurologie, Charité-Universitätsmedizin Berlin, Berlin
,
C. Klein
1   Institut für Neurogenetik, Universität zu Lübeck, Lübeck
› Author Affiliations
Further Information

Publication History

eingegangen am: 26 October 2017

angenommen am: 30 November 2017

Publication Date:
02 April 2018 (online)

Zusammenfassung

Dystonien sind durch anhaltende oder intermittierende Muskelkontraktionen gekennzeichnet, die zu abnormen, häufig repetitiven Bewegungen verschiedener Körperteile führen. Die Einteilung der Dystonien erfolgt nach klinischen und ätiologischen Kriterien, wobei insbesondere die Genetik durch die Identifikation neuer, mit der Krankheit assoziierter Gene an Bedeutung gewonnen hat.

Innerhalb des Krankheitsbildes der Dystonie können folgende Formen voneinander unterschieden werden: bei den isolierten Formen bestehen keine über die Dystonie hinausgehenden Zeichen oder Symptome; kombinierte Dystonien zeichnen sich durch eine Kombination von Dystonie und anderen Bewegungsstörungen wie Parkinsonismus, Chorea und Myoklonien aus und bei den komplexen Dystonien finden sich weitere neurologische und nicht-neurologische Manifestationen. Mutationen in den folgenden Genen sind mittlerweile als etablierte Ursachen für isolierte oder kombinierte erbliche Dystonie identifiziert worden: Tor1A, THAP1, GNAL, ANO3, KMT2B, GCH1, TAF1, PRKRA, ATP1A3, SGCE und ADCY5; > 100 Gene stehen im Zusammenhang mit komplexen Dystonien. Viele, insbesondere auch einige genetisch bedingte Formen der Dystonien, sprechen auf die Therapieoption der tiefen Hirnstimulation gut an. Aktuell arbeiten Forschungsnetzwerke daran, die Diagnostik und Therapie der Dystonien weiter zu verbessern.

Summary

Dystonias are characterized by sustained or intermittent muscle contractions resulting in abnormal and often repetitive movements of different body parts. The classification of dystonia includes clinical and etiological criteria with a particular emphasis on genetic aspects due to the identification of disease-related genes. Three following main categories of dystonia can be distinguished: isolated dystonia, in which dystonia is the only presenting sign aside from tremor, combined dystonia, in which dystonia is combined with another movement disorder such as parkinsonism, chorea or myoclonus, and complex dystonia with additional neurological and non-neurological manifestations. Mutations in the following genes have been established as cause of hereditary dystonia: Tor1A, THAP1, GNAL, ANO3, KMT2B, GCH1, TAF1, PRKRA, ATP1A3, SGCE and ADCY5; >100 genes have been implicated in complex forms of dystonia.

Therapeutic advances have particularly been achieved by the introduction of deep brain stimulation as various dystonias, including many genetic forms, exquisitely respond to this surgical procedure. Research networks currently join forces to further improve the differential diagnosis and development of causal treatment for dystonias.

 
  • Literatur

  • 1 Oppenheim H. Über eine eigenartige Krampfkrankheit des kindlichen und jugendlichen Alters (Dysbasia lordotica progressiva, Dystonia musculorum deformans). Neurol Centrabl 1911; 30: 1090-107.
  • 2 Albanese A, Bhatia K, Bressman SB, Delong MR, Fahn S, Fung VS. et al. Phenomenology and classification of dystonia: a consensus update. Movement disorders 2013; 28 (07) 863-73.
  • 3 Dystonia Gene Reviews. 2017 http://www.ncbi.nlm.nih.gov/books/NBK1155/
  • 4 Marras C, Lang A, van de Warrenburg BP, Sue CM, Tabrizi SJ, Bertram L. et al. Nomenclature of genetic movement disorders: Recommendations of the international Parkinson and movement disorder society task force. Mov Disord 2016; 31 (04) 436-57.
  • 5 Ozelius LJ, Hewett JW, Page CE, Bressman SB, Kramer PL, Shalish C. et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet 1997; 17 (01) 40-8.
  • 6 Fuchs T, Gavarini S, Saunders-Pullman R, Raymond D, Ehrlich ME, Bressman SB. et al. Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat Genet 2009; 41 (03) 286-8.
  • 7 Fuchs T, Saunders-Pullman R, Masuho I, Luciano MS, Raymond D, Factor S. et al. Mutations in GNAL cause primary torsion dystonia. Nat Genet 2013; 45 (01) 88-92.
  • 8 Ichinose H, Ohye T, Takahashi E, Seki N, Hori T, Segawa M. et al. Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 1994; 08 (03) 236-42.
  • 9 Tadic V, Kasten M, Bruggemann N, Stiller S, Hagenah J, Klein C. Dopa-Responsive Dystonia Revisited: Diagnostic Delay, Residual Signs, and Nonmotor Signs. Arch Neurol 2012; 1-5.
  • 10 Mencacci NE, Isaias IU, Reich MM, Ganos C, Plagnol V, Polke JM. et al. Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers. Brain 2014; 137 (Pt 9): 2480-92.
  • 11 Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M. et al. Large-scale metaanalysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 2014; 46 (09) 989-93.
  • 12 Opladen T, Hoffmann G, Horster F, Hinz AB, Neidhardt K, Klein C. et al. Clinical and biochemical characterization of patients with early infantile onset of autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia. Mov Disord 2011; 26 (01) 157-61.
  • 13 Zimprich A, Grabowski M, Asmus F, Naumann M, Berg D, Bertram M. et al. Mutations in the gene encoding epsilon-sarcoglycan cause myoclonusdystonia syndrome. Nat Genet 2001; 29 (01) 66-9.
  • 14 Grunewald A, Djarmati A, Lohmann-Hedrich K, Farrell K, Zeller JA, Allert N. et al. Myoclonus-dystonia: significance of large SGCE deletions. Hum Mutat 2008; 29 (02) 331-2.
  • 15 Weissbach A, Werner E, Bally JF, Tunc S, Lons S, Timmann D. et al. Alcohol improves cerebellar learning deficit in myoclonus-dystonia: A clinical and electrophysiological investigation. Ann Neurol. 2017 e-pub..
  • 16 Peall KJ, Dijk JM, Saunders-Pullman R, Dreissen YE, van Loon I, Cath D. et al. Psychiatric disorders, myoclonus dystonia and SGCE: an international study. Ann Clin Transl Neurol 2016; 03 (01) 4-11.
  • 17 Kim JY, Lee WW, Shin CW, Kim HJ, Park SS, Chung SJ. et al. Psychiatric symptoms in myoclonus-dystonia syndrome are just concomitant features regardless of the SGCE gene mutation. Parkinsonism Relat Disord. 2017 e-pub..
  • 18 Mencacci NE, Rubio-Agusti I, Zdebik A, Asmus F, Ludtmann MH, Ryten M. et al. A Missense Mutation in KCTD17 Causes Autosomal Dominant Myoclonus-Dystonia. Am J Hum Genet 2015; 96 (06) 938-47.
  • 19 Groen JL, Ritz K, Jalalzadeh H, van der Salm SM, Jongejan A, Mook OR. et al. RELN rare variants in myoclonus-dystonia. Mov Disord 2015; 30 (03) 415-9.
  • 20 Groen JL, Andrade A, Ritz K, Jalalzadeh H, Haagmans M, Bradley TE. et al. CACNA1B mutation is linked to unique myoclonus-dystonia syndrome. Hum Mol Genet. 2014 e-pub..
  • 21 Stamelou M, Charlesworth G, Cordivari C, Schneider SA, Kagi G, Sheerin UM. et al. The phenotypic spectrum of DYT24 due to ANO3 mutations. Movement disorders. 2014 e-pub..
  • 22 Charlesworth G, Plagnol V, Holmstrom KM, Bras J, Sheerin UM, Preza E. et al. Mutations in ANO3 Cause Dominant Craniocervical Dystonia: Ion Channel Implicated in Pathogenesis. Am J Hum Genet 2012; 91 (06) 1041-50.
  • 23 Zech M, Boesch S, Jochim A, Weber S, Meindl T, Schormair B. et al. Clinical exome sequencing in early-onset generalized dystonia and large-scale resequencing follow-up. Mov Disord 2017; 32 (04) 549-59.
  • 24 de Carvalho Aguiar P, Sweadner KJ, Penniston JT, Zaremba J, Liu L, Caton M. et al. Mutations in the Na+/K+ -ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 2004; 43 (02) 169-75.
  • 25 Brashear A, Dobyns WB, de Carvalho Aguiar P, Borg M, Frijns CJ, Gollamudi S. et al. The phenotypic spectrum of rapid-onset dystonia-parkinsonism (RDP) and mutations in the ATP1A3 gene. Brain 2007; 130 (Pt 3): 828-35.
  • 26 Sweney MT, Newcomb TM, Swoboda KJ. The expanding spectrum of neurological phenotypes in children with ATP1A3 mutations, Alternating Hemiplegia of Childhood, Rapid-onset DystoniaParkinsonism, CAPOS and beyond. Pediatr Neurol 2015; 52 (01) 56-64.
  • 27 Hully M, Ropars J, Hubert L, Boddaert N, Rio M, Bernardelli M. et al. Mosaicism in ATP1A3-related disorders: not just a theoretical risk. Neurogenetics 2017; 18 (01) 23-8.
  • 28 Fernandez M, Raskind W, Wolff J, Matsushita M, Yuen E, Graf W. et al. Familial dyskinesia and facial myokymia (FDFM): a novel movement disorder. Ann Neurol 2001; 49 (04) 486-92.
  • 29 Chen YZ, Matsushita MM, Robertson P, Rieder M, Girirajan S, Antonacci F. et al. Autosomal dominant familial dyskinesia and facial myokymia: single exome sequencing identifies a mutation in adenylyl cyclase 5. Arch Neurol 2012; 69 (05) 630-5.
  • 30 Carapito R, Paul N, Untrau M, Le Gentil M, Ott L, Alsaleh G. et al. A De Novo ADCY5 mutation causes early-onset autosomal dominant chorea and dystonia. Mov Disord. 2014 e-pub.
  • 31 Chen YZ, Friedman JR, Chen DH, Chan GC, Bloss CS, Hisama FM. et al. Gain-of-function ADCY5 mutations in familial dyskinesia with facial myokymia. Ann Neurol 2014; 75 (04) 542-9.
  • 32 Mencacci NE, Erro R, Wiethoff S, Hersheson J, Ryten M, Balint B. et al. ADCY5 mutations are another cause of benign hereditary chorea. Neurology. 2015 e-pub..
  • 33 Carecchio M, Mencacci NE, Iodice A, Pons R, Panteghini C, Zorzi G. et al. ADCY5-related movement disorders: Frequency, disease course and phenotypic variability in a cohort of paediatric patients. Parkinsonism Relat Disord 2017; 41: 37-43.
  • 34 Tunc S, Bruggemann N, Baaske MK, Hartmann C, Grutz K, Westenberger A. et al. Facial twitches in ADCY5-associated disease - Myokymia or myoclonus? An electromyography study. Parkinsonism Relat Disord. 2017 e-pub..
  • 35 Fung VS, Jinnah HA, Bhatia K, Vidailhet M. Assessment of patients with isolated or combined dystonia: an update on dystonia syndromes. Mov Disord 2013; 28 (07) 889-98.
  • 36 Ganos C, Crowe B, Stamelou M, Kresojevic N, Lukic MJ, Bras J. et al. The clinical syndrome of dystonia with anarthria/aphonia. Parkinsonism Relat Disord 2016; 24: 20-7.
  • 37 Zech M, Jech R, Wagner M, Mantel T, Boesch S, Nocker M. et al. Molecular diversity of combined and complex dystonia: insights from diagnostic exome sequencing. Neurogenetics. 2017 e-pub..
  • 38 Lange LM, Tunc S, Tennstedt S, Munchau A, Klein C, Assmann B. et al. A novel, in-frame KMT2B deletion in a patient with apparently isolated, generalized dystonia. Mov Disord. 2017 e-pub..
  • 39 Zech M, Jech R, Havrankova P, Fecikova A, Berutti R, Urgosik D. et al. KMT2B rare missense variants in generalized dystonia. Mov Disord 2017; 32 (07) 1087-91.
  • 40 Meyer E, Carss KJ, Rankin J, Nichols JM, Grozeva D, Joseph AP. et al. Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nat Genet 2017; 49 (02) 223-37.
  • 41 Zech M, Boesch S, Maier EM, Borggraefe I, Vill K, Laccone F. et al. Haploinsufficiency of KMT2B, encoding the lysine-specific histone methyltransferase 2B, results in early-onset generalized dystonia. Am J Hum Genet 2016; 99 (06) 1377-87.
  • 42 Anikster Y, Haack TB, Vilboux T, Pode-Shakked B, Thony B, Shen N. et al. Biallelic mutations in DNAJC12 cause hyperphenylalaninemia, dystonia, and intellectual disability. Am J Hum Genet 2017; 100 (02) 257-66.
  • 43 Straniero L, Guella I, Cilia R, Parkkinen L, Rimoldi V, Young A. et al. DNAJC12 and dopa-responsive non-progressive Parkinsonism. Ann Neurol. 2017 e-pub..
  • 44 van Spronsen FJ, Himmelreich N, Rufenacht V, Shen N, Vliet DV, Al-Owain M. et al. Heterogeneous clinical spectrum of DNAJC12-deficient hyperphenylalaninemia: from attention deficit to severe dystonia and intellectual disability. J Med Genet. 2017 e-pub..
  • 45 Lenk GM, Szymanska K, Debska-Vielhaber G, Rydzanicz M, Walczak A, Bekiesinska-Figatowska M. et al. Biallelic mutations of VAC14 in pediatriconset neurological disease. Am J Hum Genet 2016; 99 (01) 188-94.
  • 46 Taghavi S, Chaouni R, Tafakhori A, Azcona LJ, Firouzabadi SG, Omrani MD. et al. A clinical and molecular genetic study of 50 families with autosomal recessive parkinsonism revealed known and novel gene mutations. Mol Neurobiol. 2017 e-pub..
  • 47 Lohmann K, Masuho I, Patil DN, Baumann H, Hebert E, Steinrucke S. et al. Novel GNB1 mutations disrupt assembly and function of G protein heterotrimers and cause global developmental delay in humans. Hum Mol Genet 2017; 26 (06) 1078-86.
  • 48 Petrovski S, Kury S, Myers CT, Anyane-Yeboa K, Cogne B, Bialer M. et al. Germline de novo mutations in GNB1 cause severe neurodevelopmental disability, hypotonia, and seizures. Am J Hum Genet 2016; 98 (05) 1001-10.
  • 49 Maas R, Wassenberg T, Lin JP, van de Warrenburg BPC, Willemsen M. l-Dopa in dystonia: A modern perspective. Neurology 2017; 88 (19) 1865-71.
  • 50 Mochel F, Hainque E, Gras D, Adanyeguh IM, Caillet S, Heron B. et al. Triheptanoin dramatically reduces paroxysmal motor disorder in patients with GLUT1 deficiency. J Neurol Neurosurg Psychiatry 2016; 87 (05) 550-3.
  • 51 Frucht SJ, Houghton WC, Bordelon Y, Greene PE, Louis ED. A single-blind, open-label trial of sodium oxybate for myoclonus and essential tremor. Neurology 2005; 65 (12) 1967-9.
  • 52 Jinnah HA, Alterman R, Klein C, Krauss JK, Moro E, Vidailhet M. et al. Deep brain stimulation for dystonia: a novel perspective on the value of genetic testing. J Neural Transm 2017; 124 (04) 417-30.
  • 53 Andrews C, Aviles-Olmos I, Hariz M, Foltynie T. Which patients with dystonia benefit from deep brain stimulation? A metaregression of individual patient outcomes. J Neurol Neurosurg Psychiatry 2010; 81 (12) 1383-9.
  • 54 Meyer E, Carss KJ, Rankin J, Nichols JM, Grozeva D, Joseph AP. et al. Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia. Nat Genet 2017; 49 (02) 223-37.
  • 55 Gruber D, Kuhn AA, Schoenecker T, Kivi A, Trottenberg T, Hoffmann KT. et al. Pallidal and thalamic deep brain stimulation in myoclonus-dystonia. Movement disorders 2010; 25 (11) 1733-43.
  • 56 Aguilar JA, Vesagas TS, Jamora RD, Teleg RA, Ledesma L, Rosales RL. et al. The promise of deep brain stimulation in X-linked dystonia parkinsonism. Int J Neurosci 2011; 121 Suppl 1: 57-63.
  • 57 Bruggemann N, Kuhn A, Schneider SA, Kamm C, Wolters A, Krause P. et al. Short- and long-term outcome of chronic pallidal neurostimulation in monogenic isolated dystonia. Neurology 2015; 84 (09) 895-903.
  • 58 Brücke C, Horn A, Huppke P, Kupsch A, Schneider GH, Kühn AA. Failure of pallidal deep brain stimulation in a case of rapid-onset Dystonia parkinsonism (DYT12). Mov Disord Clin Pract. 2014 DOI:10.1002/mdc3.12124.
  • 59 Albanese A, Di Giovanni M, Amami P, Lalli S. Failure of pallidal deep brain stimulation in DYT12-ATP1A3 dystonia. Parkinsonism Relat Disord. 2017 e-pub..
  • 60 Zech M, Boesch S, Jochim A, Weber S, Meindl T, Schormair B. et al. Clinical exome sequencing in early-onset generalized dystonia and large-scale resequencing follow-up. Mov Disord. 2016 e-pub..
  • 61 Lingen M, Albers L, Borchers M, Haass S, Gartner J, Schroder S. et al. Obtaining a genetic diagnosis in a child with disability: impact on parental quality of life. Clin Genet 2016; 89 (02) 258-66.
  • 62 Lohmann E, Gasser T, Grundmann K. Needs and requirements of modern biobanks on the example of dystonia syndromes. Front Neurol 2017; 08: 9.