Osteologie 2009; 18(02): 78-82
DOI: 10.1055/s-0037-1619884
Frakturen rund um das Hüftgelenk
Schattauer GmbH

Biomechanik der Hüfte und des proximalen Femurs

Biomechanics of the hip and the proximal femur
S. Eberle
1   Institut für Biomechanik der Berufsgenossenschaftlichen Unfallklinik Murnau und der Paracelsus Medizinische Privatuniversität Salzburg
,
P. Augat
1   Institut für Biomechanik der Berufsgenossenschaftlichen Unfallklinik Murnau und der Paracelsus Medizinische Privatuniversität Salzburg
› Author Affiliations
Further Information

Publication History

eingereicht: 05 April 2009

angenommen: 08 April 2009

Publication Date:
28 December 2017 (online)

Zusammenfassung

Die Hüfte spielte in der Evolution des Menschen und die Entwicklung seiner grundlegendsten motorischen Fähigkeiten wie Stehen oder Gehen eine wichtige Rolle. Gerade durch diese Fähigkeiten wird das Hüftgelenk jedoch stark beansprucht und Verletzungen oder Erkrankungen sind besonders störend. Deutlich wird dies bei Arthrose oder hüftnahen Frakturen. Betroffene leiden unter einer teilweise starken Einschränkung der Mobilität und einer verminderten Lebensqualität. Da der Hüfte primär eine biomechanische Funktion zukommt, ist das Verständnis der Biomechanik des Hüftgelenks essenziell. Für die Biomechanik der Hüfte spielen vor allem die um das Gelenk wirkenden Muskeln eine große Rolle. Die Muskelkräfte verursachen Dehnungen im Femur, die für dessen Morphologie entscheidend sind. Um den wirkenden Kräften standzuhalten, optimiert er seine eigene Topologie durch ein an mechanische Reize adaptiertes Knochenwachstum. Wie die Dehnungsverteilung und die entsprechende Topologie im Femur genau aussieht ist Teil vieler Studien. Dieses Wissen ist vor allem dann wichtig, wenn hüftgelenksnahe Frakturen mit Implantaten versorgt werden müssen oder Endoprothesen zum Einsatz kommen.

Summary

The hip had a vital role in the evolution of the human and the development of its basic motor abilities like standing or walking. But exactly these abilities stress the hip joint and consequential injuries or pathologies are very bothersome. This is especially true for arthrosis or hip fractures. Hip patients are afflicted with decreased mobility and quality of life. Understanding the biomechanics of the hip is essential because the hip has a primary biomechanical function. Most important for this function are the muscles that act around the hip joint. The muscle forces cause strains in the femur which affect its morphology. To withstand the prevalent forces the femur optimizes its topology by a change of bone mass adapted to mechanical stimuli. How the strain distribution and the according topology of the femur look like is part of many research studies. The knowledge about the mechanical situation in the hip is particularly important, when hip fracture implants or endoprostheses are to be applied.

 
  • Literatur

  • 1 Aamodt A. et al. In vivo measurements show tensile axial strain in the proximal lateral aspect of the human femur. J Orthop Res 1997; 15: 927-931.
  • 2 Augat P. et al. Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res 2003; 21: 1011-1017.
  • 3 Augat P. et al. Early, full weightbearing with flexible fixation delays fracture healing. Clin Orthop Relat Res 1996; 328: 194-202.
  • 4 Augat P. et al. Mechanical stimulation by external application of cyclic tensile strains does not effectively enhance bone healing. J Orthop Trauma 2001; 15: 54-60.
  • 5 Aurelius Augustinus. De libero arbitrio; Der freie Wille. Augustinus. Opera - Werke. Paderborn: Schöningh; 2006
  • 6 Bergmann G. et al. Hip contact forces and gait patterns from routine activities. J Biomech 2001; 34: 859-871.
  • 7 Bergot C. et al. Hip fracture risk and proximal femur geometry from DXA scans. Osteoporos Int 2002; 13: 542-550.
  • 8 Bijlsma JW, Knahr K. Strategies for the prevention and management of osteoarthritis of the hip and knee. Best Pract Res Clin Rheumatol 2007; 21: 59-76.
  • 9 Bobyn JD. et al. Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop Relat Res 1992; 274: 79-96.
  • 10 Boehm HF. et al. Local topological analysis of densitometer-generated scan images of the proximal femur for differentiation between patients with hip fracture and age-matched controls. Osteoporos Int 2009; 20: 617-624.
  • 11 Breuil V. et al. Outcome of osteoporotic pelvic fractures: An underestimated severity. Survey of 60 cases. Joint Bone Spine 2008; 75: 585-588.
  • 12 Claes L. et al. Temporary distraction and compression of a diaphyseal osteotomy accelerates bone healing. J Orthop Res 2008; 26: 772-777.
  • 13 Claes LE. et al Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin Biomech (Bristol, Avon) 1995; 10: 227-234.
  • 14 Cooper C. et al. Hip fractures in the elderly: a worldwide projection. Osteoporos Int 1992; 02: 285-289.
  • 15 Cornwall R. et al. Functional outcomes and mortality vary among different types of hip fractures: a function of patient characteristics. Clin Orthop Relat Res 2004; 425: 64-71.
  • 16 Damborg F. et al. Changes in bone mineral density (BMD) around the cemented Exeter stem: a prospective study in 18 women with 5 years follow-up. Acta Orthop 2008; 79: 494-498.
  • 17 Duda GN. et al. Influence of muscle forces on femoral strain distribution. J Biomech 1998; 31: 841-846.
  • 18 Eberle S. et al. Type of hip fracture determines load share in intramedullary osteosynthesis. Clin Orthop Relat Res. 2009 [Epub ahead of print].
  • 19 Felson DT. The epidemiology of knee osteoarthritis: results from the Framingham Osteoarthritis Study. Semin Arthritis Rheum 1990; 20: 42-50.
  • 20 Fetto J. et al. Evolution of the Koch model of the biomechanics of the hip: clinical perspective. J Orthop Sci 2002; 07: 724-730.
  • 21 Frost HM. Perspectives: a proposed general model of the „mechanostat” (suggestions from a new skeletal-biologic paradigm). Anat Rec 1996; 244: 139-147.
  • 22 Gdoutos EE. et al. A critical review of the biomechanical stress analysis of the human femur. Biomaterials 1982; 03: 2-8.
  • 23 Gourlay M. et al. Strategies for the prevention of hip fracture. Am J Med 2003; 115: 309-317.
  • 24 Grochola LF. et al. Comparison of periprosthetic bone remodelling after implantation of anatomic and straight stem prostheses in total hip arthroplasty. Arch Orthop Trauma Surg 2008; 128: 383-392.
  • 25 Gullberg B. et al. World-wide projections for hip fracture. Osteoporos Int 1997; 07: 407-413.
  • 26 Harcourt-Smith WE, Aiello LC. Fossils, feet and the evolution of human bipedal locomotion. J Anat 2004; 204: 403-416.
  • 27 Heller MO. et al. Determination of muscle loading at the hip joint for use in pre-clinical testing. J Biomech 2005; 38: 1155-1163.
  • 28 Huiskes R. If bone is the answer, then what is the question?. J Anat 2000; 197 (Pt 2): 145-156.
  • 29 Huiskes R. et al. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 1987; 20: 1135-1150.
  • 30 Jang IG, Kim IY. Computational study of Wolff ‘s law with trabecular architecture in the human proximal femur using topology optimization. J Biomech 2008; 41: 2353-2361.
  • 31 Jang IG. et al. Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization. J Biomech Eng 2009; 131: 11-12.
  • 32 Kainz D. Versuchsaufbau für den mechanischen Test des proximalen Femurs (Diploma Thesis). Biomechanics Laboratory Murnau. 2007
  • 33 Koch JC. The laws of bone architecture. Am J Anat 1917; 21: 177-298.
  • 34 Kummer B. Is the Pauwels’ theory of hip biomechanics still valid? A critical analysis, based on modern methods. Ann Anat 1993; 175: 203-210.
  • 35 Kurtz S. et al. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007; 89: 780-785.
  • 36 Lotz JC. et al. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 1995; 05: 252-261.
  • 37 McNamara LM, Prendergast PJ. Bone remodelling algorithms incorporating both strain and microdamage stimuli. J Biomech 2007; 40: 1381-1391.
  • 38 Parker MJ, Handoll HH. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev. 2005: CD000093.
  • 39 Pauwels F. et al. Biomechanics of the Normal and Diseased Hip. Berlin: Springer; 1976
  • 40 Pettersen SH. et al. Subject specific finite element analysis of stress shielding around a cementless femoral stem. Clin Biomech (Bristol, Avon) 2009; 24: 196-202.
  • 41 Phillips AT. The femur as a musculo-skeletal construct: A free boundary condition modelling approach. Med Eng Phys. 2009
  • 42 Platzer W. Taschenatlas der Anatomie 1. Bewegungsapparat, 9. überarbeitete Auflage. Stuttgart: Georg Thieme; 2005
  • 43 Polgar K. et al. Development and numerical validation of a finite element model of the muscle standardized femur. Proc Inst Mech Eng (H) 2003; 217: 165-172.
  • 44 Polgar K. et al. Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model. Proc Inst Mech Eng (H) 2003; 217: 173-189.
  • 45 Ramer M. et al. Biomechanical validation of a new nail-plate for the repair of stable proximal femoral fractures. Arch Orthop Trauma Surg 1997; 116: 137-142.
  • 46 Roberts CS. et al. Second generation intramedullary nailing of subtrochanteric femur fractures: a biomechanical study of fracture site motion. J Orthop Trauma 2002; 16: 231-238.
  • 47 Rosenblum SF. et al. A biomechanical evaluation of the Gamma nail. J Bone Joint Surg Br 1992; 74: 352-357.
  • 48 Rossi JM, Wendling-Mansuy S. A topology optimization based model of bone adaptation. Comput Methods Biomech Biomed Engin 2007; 10: 419-427.
  • 49 Rudman KE. et al. Compression or tension? The stress distribution in the proximal femur. Biomed Eng Online 2006; 05: 12.
  • 50 Schmalzried TP. et al. Quantitative assessment of walking activity after total hip or knee replacement. J Bone Joint Surg Am 1998; 80: 54-59.
  • 51 Simoes JA. et al. Influence of head constraint and muscle forces on the strain distribution within the intact femur. Med Eng Phys 2000; 22: 453-459.
  • 52 Speirs AD. et al. Physiologically based boundary conditions in finite element modelling. J Biomech 2007; 40: 2318-2323.
  • 53 Stolk J. et al. Hip-joint and abductor-muscle forces adequately represent in vivo loading of a cemented total hip reconstruction. J Biomech 2001; 34: 917-926.
  • 54 Szivek JA. et al. An experimental method for the application of lateral muscle loading and its effect on femoral strain distributions. Med Eng Phys 2000; 22: 109-116.
  • 55 Taylor ME. et al. Stress and strain distribution within the intact femur: compression or bending?. Med Eng Phys 1996; 18: 122-131.
  • 56 Van RB. et al. Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res 2003; 18: 1781-1788.
  • 57 Verhulp E. et al. Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 2008; 42: 30-35.
  • 58 Wolff J. The law of bone remodelling. Berlin, Heidelberg, New York: Springer; 1986.
  • 59 Wood B. Palaeoanthropology. Four legs good, two legs better. Nature 1993; 363: 587-588.
  • 60 Yamaji T. et al. The effect of micromovement on callus formation. J Orthop Sci 2001; 06: 571-575.