Thromb Haemost 2003; 89(02): 393-404
DOI: 10.1055/s-0037-1613457
Cellular Proteolysis and Oncology
Schattauer GmbH

Aging of stromal-derived human breast fibroblasts might contribute to breast cancer progression

John W. M. Martens
1   Department of Medical Oncology, Erasmus MC, Rotterdam, The Netherlands
,
Anieta M. Sieuwerts
1   Department of Medical Oncology, Erasmus MC, Rotterdam, The Netherlands
,
Joan Bolt-de Vries
1   Department of Medical Oncology, Erasmus MC, Rotterdam, The Netherlands
,
Peter T. Bosma
1   Department of Medical Oncology, Erasmus MC, Rotterdam, The Netherlands
,
Susan J. J. Swiggers
2   Department of Haematology, Erasmus MC, Rotterdam, The Netherlands
,
Jan G. M. Klijn
1   Department of Medical Oncology, Erasmus MC, Rotterdam, The Netherlands
,
John A. Foekens
1   Department of Medical Oncology, Erasmus MC, Rotterdam, The Netherlands
› Author Affiliations
Further Information

Publication History

Received 13 November 2002

Accepted 08 December 2002

Publication Date:
07 December 2017 (online)

Summary

Age is an important factor in the development and spread of breast cancer. Stromal cells also contribute to breast cancer growth and metastasis through the production of extracellular matrix (ECM) modifiers such as urokinase type plasminogen activator (uPA), its receptor (uPAR), its inhibitors (PAI-1 and PAI-2), matrix metalloproteinases (MMPs), and growth factors, including the fibroblast and insulin-like growth factors (FGF’s and IGF’s). In the present study we have investigated whether breast fibroblasts aged in vitro through passage in culture display altered levels of the plasminogen activator system and growth factors that are known to modulate that system.

With real-time RT-PCR we found that during passage human breast fibroblasts, whether derived from the tumour burden or from matched adjacent normal breast tissue, exhibited a consistent increase in PAI-1 and FGF-1 and a decrease in MMP-2 mRNA expression. In addition, in 5 out of 7 fibroblast strains we observed an induction of uPA expression in combination with a reduced IGF-1 expression. Interestingly, while during aging MMP-2 protein increased in all tumour-derived fibroblast strains, these protein levels were reduced in all normal-tissue-derived fibroblasts. No other clear-cut age-dependent alterations were found in the all-together 25 factors investigated. We furthermore demonstrate in one tumour-derived fibroblast strain that the increases in uPA and PAI-1 mRNA and MMP-2 protein production are inversely related to the telomere length. Artificially increasing telomere length in this fibroblast strain by expressing human telomerase reverse transcriptase (hTERT) prevented senescence and resulted in late passage cultures with early passage uPA, PAI-1 and MMP-2 levels.

Our results show that aging accompanied by telomere loss induces PAI-1 and FGF-1 mRNA expression in all breast fibroblast strains, increases uPA and decreases IGF-1 mRNA expression in a subset, and increases MMP-2 protein expression only in tumour-derived breast fibroblasts. These age-induced levels of PAI-1, FGF-1, uPA and MMP-2 in stromal breast fibroblast could contribute to breast cancer progression.

 
  • References

  • 1 Jänicke F, Schmitt M, Graeff H. Clinical relevance of the urokinase-type and tissue-type plasminogen activators and of their type 1 inhibitor in breast cancer. Semin Thromb Hemost 1991; 17: 303-12.
  • 2 Duffy MJ, O’Grady P, Devaney D, O’Siorain L, Fennelly JJ, Lijnen HJ. Urokinaseplasminogen activator, a marker for aggressive breast carcinomas. Preliminary report. Cancer 1988; 62: 531-3.
  • 3 Look MP, van PuttenWLJ, Duffy MJ, Harbeck N, Christensen IJ, Thomssen C, Kates R, Spyratos F, Ferno M, Eppenberger-Castori S, Sweep CG, Ulm K, Peyrat JP, Martin PM, Magdelenat H, Brunner N, Duggan C, Lisboa BW, Bendahl PO, Quillien V, Daver A, Ricolleau G, Meijer-Van GelderME, Manders P, Fiets WE, Blankenstein MA, Broet P, Romain S, Daxenbichler G, Windbichler G, Cufer T, Borstnar S, Kueng W, Beex LV, Klijn JGM, O’Higgins N, Eppenberger U, Jänicke F, Schmitt M, Foekens JA. Pooled Analysis of Prognostic Impact of Urokinase-Type Plasminogen Activator and Its Inhibitor PAI-1 in 8377 Breast Cancer Patients. J Natl Cancer Inst 2002; 94: 116-28.
  • 4 Thorpe SM, Rochefort H, Garcia M, Freiss G, Christensen IJ, Khalaf S, Paolucci F, Pau B, Rasmussen BB, Rose C. Association between high concentrations of Mr 52,000 cathepsin D and poor prognosis in primary human breast cancer. Cancer Res 1989; 49: 6008-14.
  • 5 Spyratos F, Maudelonde T, Brouillet JP, Brunet M, Defrenne A, Andrieu C, Hacene K, Desplaces A, Rouesse J, Rochefort H. Cathepsin D: an independent prognostic factor for metastasis of breast cancer. Lancet 1989; 2: 1115-8.
  • 6 Duffy MJ. Proteases as prognostic markers in cancer. Clin Cancer Res 1996; 2: 613-8.
  • 7 Schmitt M, Harbeck N, Thomssen C, Wilhelm O, Magdolen V, Reuning U, Ulm K, Hofler H, Janicke F, Graeff H. Clinical impact of the plasminogen activation system in tumor invasion and metastasis: prognostic relevance and target for therapy. Thromb Haemost 1997; 78: 285-96.
  • 8 Foekens JA, Kos J, Peters HA, Krasovec M, Look MP, Cimerman N Meijervan, Gelder ME, Henzen-Logmans SC, van Putten WLJ, Klijn JGM. Prognostic significance of cathep-sins B and L in primary human breast cancer. J Clin Oncol 1998; 16: 1013-21.
  • 9 Castiglioni T, Merino MJ, Elsner B, Lah TT, Sloane BF, Emmert-Buck MR. Immunohisto-chemical analysis of cathepsins D, B, and L in human breast cancer. Hum Pathol 1994; 25: 857-62.
  • 10 Unden AB, Sandstedt B, Bruce K, Hedblad M, Stahle-Backdahl M. Stromelysin-3 mRNA associated with myofibroblasts is overex-pressed in aggressive basal cell carcinoma and in dermatofibroma but not in dermatofibrosarcoma. J Invest Dermatol 1996; 107: 147-53.
  • 11 Nielsen BS, Rank F, López JM, Balbin M, Vizoso F, Lund LR, Danø K, Lopez-Otín C. Collagenase-3 expression in breast myofibro-blasts as a molecular marker of transition of ductal carcinoma in situ lesions to invasive ductal carcinomas. Cancer Res 2001; 61: 7091-100.
  • 12 Nielsen BS, Sehested M, Kjeldsen L, Borregaard N, Rygaard J, Danø K. Expression of matrix metalloprotease-9 in vascular pericytes in human breast cancer. Lab Invest 1997; 77: 345-55.
  • 13 Nielsen BS, Sehested M, Duun S, Rank F, Timshel S, Rygaard J, Johnsen M, Danø K. Urokinase plasminogen activator is localized in stromal cells in ductal breast cancer. Lab Invest 2001; 81: 1485-501.
  • 14 Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajcer OL, Chenard MP, Rio MC, Chambon P. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 1990; 348: 699-704.
  • 15 Bianchi E, Cohen RL, Dai A, Thor AT, Shuman MA, Smith HS. Immunohistochemical localization of the plasminogen activator inhibitor-1 in breast cancer. Int J Cancer 1995; 60: 597-603.
  • 16 Pappot H, Gardsvoll H, Romer J, Pedersen AN, Grondahl-Hansen J, Pyke C, Brunner N. Plasminogen activator inhibitor type 1 in cancer: therapeutic and prognostic implications. Biol Chem Hoppe Seyler 1995; 376: 259-67.
  • 17 Bajou K, Noël A, Gerard RD, Masson V, Brünner N, Holst-Hansen C, Skobe M, Fusenig NE, Carmeliet P, Collen D, Foidart JM. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med 1998; 4: 923-8.
  • 18 Frandsen TL, Holst-Hansen C, Nielsen BS, Christensen IJ, Nyengaard JR, Carmeliet P, Brünner N. Direct evidence of the importance of stromal urokinase plasminogen activator (uPA) in the growth of an experimental human breast cancer using a combined uPA gene-disrupted and immunodeficient xenograft model. Cancer Res 2001; 61: 532-7.
  • 19 Coussens LM, Tinkle CL, Hanahan D, Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 2000; 103: 481-90.
  • 20 Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000; 2: 737-44.
  • 21 Liotta LA, Kohn EC. Stromal therapy: the next step in ovarian cancer treatment. J Natl Cancer Inst 2002; 94: 1113-4.
  • 22 Krtolica A, Campisi J. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 2002; 34: 1401
  • 23 Tlsty TD. Stromal cells can contribute oncogenic signals. Semin Cancer Biol 2001; 11: 97-104.
  • 24 Chang C, Werb Z. The many faces of metallo-proteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 2001; 11: S37-43.
  • 25 Bergers G, Coussens LM. Extrinsic regulators of epithelial tumor progression: metalloproteinases. Curr Opin Genet Dev 2000; 10: 120-7.
  • 26 McCawley LJ, Matrisian LM. Tumor progression: defining the soil round the tumor seed. Curr Biol 2001; 11: R25-7.
  • 27 DePinho RA. The age of cancer. Nature 2000; 408: 248-54.
  • 28 Ashcroft GS, Horan MA, Ferguson MW. The effects of ageing on cutaneous wound healing in mammals. J Anat 1995; 187 Pt 1 1-26.
  • 29 West MD, Pereira-Smith OM, Smith JR. Replicative senescence of human skin fibroblasts correlates with a loss of regulation and overexpression of collagenase activity. Exp Cell Res 1989; 184: 138-47.
  • 30 West MD, Shay JW, Wright WE, Linskens MHK. Altered expression of plasminogen activator and plasminogen activator inhibitor during cellular senescence. Exp Gerontol 1996; 31: 175-93.
  • 31 Zeng G, Millis AJT. Differential regulation of collagenase and stromelysin mRNA in late passage cultures of human fibroblasts. Exp Cell Res 1996; 222: 150-6.
  • 32 Zeng G, Millis AJT. Expression of 72-kDa gelatinase and TIMP-2 in early and late passage human fibroblasts. Exp Cell Res 1994; 213: 148-55.
  • 33 Wick M, Bürger C, Brüsselbach S, Lucibello FC, Müller R. A novel member of human tissue inhibitor of metalloproteinases (TIMP) gene family is regulated during G1 progression, mitogenic stimulation, differentiation, and senescence. J Biol Chem 1994; 269: 18953-60.
  • 34 Linskens MHK, Feng J, Andrews WH, Enlow BE, Saati SM, Tonkin LA, Funk WD, Villeponteau B. Cataloging altered gene expression in young and senescent cells using enhanced differential display. Nucleic Acids Res 1995; 23: 3244-51.
  • 35 Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 2001; 98: 12072-7.
  • 36 Sieuwerts AM, Klijn JGM, Foekens JA. Insulin-like growth factor 1 (IGF-1) and urokinase-type plasminogen activator (uPA) are inversely related in human breast fibroblasts. Mol Cell Endocrinol 1999; 154: 179-85.
  • 37 Sieuwerts AM, Klijn JGM, Henzen-Logmand SC, Bouwman I, Van Roozendaal CEP, Peters HA, Setyono-Han B, Foekens JA. Urokinase-type-plasminogen-activator (uPA) production by human breast (myo) fibroblasts in vitro: influence of transforming growth factor-beta(1) (TGF beta(1)) compared with factor(s) released by human epithelial-carcinoma cells. Int J Cancer 1998; 76: 829-35.
  • 38 Sieuwerts AM, Klijn JGM, Henzen-Logmans SC, Foekens JA.. Cytokine-regulated urokinase-type-plasminogen-activator (uPA) production by human breast fibroblasts in vitro. Breast Cancer Res Treat 1999; 55: 9-20.
  • 39 Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349-52.
  • 40 Van Roozendaal CEP, van Ooijen B, Klijn JGM, Claassen C, Eggermont AMM, Henzen-Logmans SC, Foekens JA. Stromal influences on breast cancer cell growth. Br J Cancer 1992; 65: 77-81.
  • 41 Grebenschikov N, Geurts-Moespot A, De Witte H, Heuvel J, Leake R, Sweep F, Benraad T. A sensitive and robust assay for urokinase and tissue-type plasminogen activators (uPA and tPA) and their inhibitor type I (PAI-1) in breast tumor cytosols. Int J Biol Markers 1997; 12: 6-14.
  • 42 Berns EM, Klijn JGM, van Putten WLJ, van Staveren IL, Portengen H, Foekens JA. c-myc amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer. Cancer Res 1992; 52: 1107-13.
  • 43 Counter CM, Hahn WC, Wei W, Caddle SD, Beijersbergen RL, Lansdorp PM, Sedivy JM, Weinberg RA. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc Natl Acad Sci U S A 1998; 95: 14723-8.
  • 44 Morgenstern JP, Land H. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 1990; 18: 3587-96.
  • 45 Pear WS, Nolan GP, Scott ML, Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A 1993; 90: 8392-6.
  • 46 Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. Embo J 1992; 11: 1921-9.
  • 47 Kim NW, Wu F. Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res 1997; 25: 2595-7.
  • 48 Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 1995; 92: 9363-7.
  • 49 Xing RH, Rabbani SA. Transcriptional regulation of urokinase (uPA) gene expression in breast cancer cells: role of DNA methylation. Int J Cancer 1999; 81: 443-50.
  • 50 Sieuwerts AM, Martens JWM, Dorssers LC, Klijn JGM, Foekens JA. Differential effects of fibroblast growth factors on expression of genes of the plasminogen activator and insulin-like growth factor systems by human breast fibroblasts. Thromb Haemost 2002; 87: 674-83.
  • 51 Sappino AP, Skalli O, Jackson B, Schurch W, Gabbiani G. Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer 1988; 41: 707-12.
  • 52 Schwachula A, Riemann D, Kehlen A, Langner J. Characterization of the immuno-phenotype and functional properties of fibroblast-like synoviocytes in comparison to skin fibroblasts and umbilical vein endothelial cells. Immunobiology 1994; 190: 67-92.
  • 53 Sommers CL, Heckford SE, Skerker JM, Worland P, Torri JA, Thompson EW, Byers SW, Gelmann EP. Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Res 1992; 52: 5190-7.
  • 54 Shay JW, Pereira-Smith OM, Wright WE. A role for both RB and p53 in the regulation of human cellular senescence. Exp Cell Res 1991; 196: 33-9.
  • 55 Alarcon-Vargas D, Ronai Z. p53-Mdm2--the affair that never ends. Carcinogenesis 2002; 23: 541-7.
  • 56 Singer CF, Kronsteiner N, Marton E, Kubista M, Cullen KJ, Hirtenlehner K, Seifert M, Kubista E. MMP-2 and MMP-9 expression in breast cancer-derived human fibroblasts is differentially regulated by stromal-epithelial interactions. Breast Cancer Res Treat 2002; 72: 69-77.
  • 57 Lansdorp PM. Repair of telomeric DNA prior to replicative senescence. Mech Ageing Dev 2000; 118: 23-34.
  • 58 Harley CB, Goldstein S. Cultured human fibroblasts: distribution of cell generations and a critical limit. J Cell Physiol 1978; 97: 509-16.
  • 59 Kyo S, Takakura M, Kanaya T, Zhuo W, Fujimoto K, Nishio Y, Orimo A, Inoue M. Estrogen activates telomerase. Cancer Res 1999; 59: 5917-21.
  • 60 Counter CM, Meyerson M, Eaton EN, Ellisen LW, Caddle SD, Haber DA, Weinberg RA. Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene 1998; 16: 1217-22.
  • 61 Karlseder J, Smogorzewska A, de Lange T. Senescence induced by altered telomere state, not telomere loss. Science 2002; 295: 2446-9.
  • 62 Smogorzewska A, de Lange T. Different telomere damage signaling pathways in human and mouse cells. Embo J 2002; 21: 4338-48.
  • 63 Kunz C, Pebler S, Otte J, von der Ahe D. Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53. Nucleic Acids Res 1995; 23: 3710-7.
  • 64 Zeng G, McCue HM, Mastrangelo L, Millis AJT. Endogenous TGF-beta activity is modified during cellular aging: effects on metalloproteinase and TIMP-1 expression. Exp Cell Res 1996; 228: 271-6.
  • 65 Thalacker FW, Nilsen-Hamilton M. Opposite and independent actions of cyclic AMP and transforming growth factor beta in the regulation of type 1 plasminogen activator inhibitor expression. Biochem J 1992; 287 Pt 3 855-62.
  • 66 Grigoriev VG, Moerman EJ, Goldstein S. Overexpression of insulin-like growth factor binding protein-3 by senescent human fibroblasts: attenuation of the mitogenic response to IGF-I. Exp Cell Res 1995; 219: 315-21.
  • 67 Reed MJ, Ferara NS, Vernon RB. Impaired migration, integrin function, and actin cytoskeletal organization in dermal fibroblasts from a subset of aged human donors. Mech Ageing Dev 2001; 122: 1203-20.
  • 68 Campisi J. From cells to organisms: can we learn about aging from cells in culture?. Exp Gerontol 2001; 36: 607-18.
  • 69 O’Hare MJ, Bond J, Clarke C, Takeuchi Y, Atherton AJ, Berry C, Moody J, Silver AR, Davies DC, Alsop AE, Neville AM, Jat PS. Conditional immortalization of freshly isolated human mammary fibroblasts and endothelial cells. Proc Natl Acad Sci U S A 2001; 98: 646-51.