Synlett 2008(19): 3001-3005  
DOI: 10.1055/s-0028-1087340
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Ionic Liquid - an Efficient Recyclable System for the Synthesis of 2,4-Disubstituted Quinolines via Meyer-Schuster Rearrangement

Rupam Sarma, Dipak Prajapati*
Department of Medicinal Chemistry, North East Institute of Science and Technology, Jorhat 785 006, Assam, India
Fax: +91(376)2370011; e-Mail: dr_dprajapati2003@yahoo.co.uk;
Further Information

Publication History

Received 4 June 2008
Publication Date:
12 November 2008 (online)

Abstract

An improved and eco-friendly method for the synthesis of 2,4-disubstituted quinolines via Meyer-Schuster rearrangement of 2-aminoaryl ketones and phenylacetylenes in the presence of zinc trifluoromethanesulfonate in [hmim]PF6 has been developed.

    References and Notes

  • 1 Earle MJ. McCormac PB. Seddon KR. Green Chem.  1999,  1:  23 
  • 2 Kitazume T. Kassai K. Green Chem.  2001,  3:  30 
  • 3 Owens GS. Abu-Omar MM. Chem. Commun.  2000,  1165 
  • For reviews, see:
  • 4a Wasserscheid P. Keim W. Angew. Chem. Int. Ed.  2000,  39:  3772 
  • 4b Dupont J. Suarez PAZ. Umpierre AP. De Souza RF. J. Braz. Chem. Soc.  2000,  11:  293 
  • 4c Welton T. Chem. Rev.  1999,  99:  2071 
  • 5 Ranu BC. Banerjee S. Org. Lett.  2005,  7:  3049 
  • 6 Du DM. Chen X. Chin. J. Org. Chem.  2003,  23:  331 
  • 7 Dubreuil JF. Bozureau JP. Tetrahedron Lett.  2000,  41:  7351 
  • 8 Qiao K. Yokoyama C. Chem. Lett.  2004,  33:  472 
  • 9 Dubreuil JF. Bourahala K. Catal. Commun.  2002,  3:  185 
  • 10 Sheldon R. Chem. Commun.  2001,  2399 
  • 11 Gordon CM. Appl. Catal., A  2001,  222:  101 
  • 12 Zimmermann HE. Wang PA. J. Am. Chem. Soc.  1993,  115:  2205 
  • 13a Welton T. Coord. Chem. Rev.  2004,  104:  2459 
  • 13b Dupont J. de Souza RF. Suarez PAZ. Chem. Rev.  2002,  102:  3667 
  • 13c Li S. Lin Y. Xie H. Zhang S. Xu J. Org. Lett.  2006,  8:  391 
  • 14a Boon JA. Levisky JA. Pflug JL. Wilkes JS.
    J. Org. Chem.  1986,  51:  480 
  • 14b Luer GD. Bartak DE. J. Org. Chem.  1982,  47:  1238 
  • 15a Dyson PJ. Ellis DJ. Parker DG. Welton T. Chem. Commun.  1999,  25 
  • 15b Monteiro AL. Zinn FK. de Souza RF. Dupont J. Tetrahedron: Asymmetry  1997,  15:  1217 
  • 16 Ellis B. Keim W. Wasserscheid P. Chem. Commun.  1999,  337 
  • 17 Gordon CM. McCluskey A. Chem. Commun.  1999,  1431 
  • 18a Bohm VPW. Herrmann WA. Chem. Eur. J.  2000,  6:  1017 
  • 18b Carmichael AJ. Earle MJ. Holbrey JD. McCormac PB. Seddon KR. Org. Lett.  1999,  1:  997 
  • 19a Earle J. McCormac PB. Seddon KR. Green Chem.  1999,  1:  23 
  • 19b Fisher T. Sethi A. Welton T. Woolf J. Tetrahedron Lett.  1999,  40:  793 
  • 20a Larsen RD. Corley EG. King AO. Carrol JD. Davis P. Verhoeven TR. Reider PJ. Labelle M. Gauthier JY. Xiang YB. Zamboni RJ. J. Org. Chem.  1996,  61:  3398 
  • 20b Chen YL. Fang KC. Sheu JY. Hsu SL. Tzeng CC. J. Med. Chem.  2001,  44:  2374 
  • 20c Roma G. Braccio MD. Grossi G. Mattioli F. Ghia M. Eur. J. Med. Chem.  2000,  35:  1021 
  • 20d Kalluraya B. Sreenivasa S. Farmaco  1998,  53:  399 
  • 20e Dube D. Blouin M. Brideau C. Chan CC. Desmarais S. Ethier D. Falgueyret JP. Friesen RW. Girard M. Girard Y. Guay J. Riendeau D. Tagari P. Young RN. Bioorg. Med. Chem. Lett.  1998,  8:  1255 
  • 21a Stille JK. Macromolecules  1981,  14:  870 
  • 21b Agrawal AK. Jenekhe SA. Macromolecules  1991,  24:  6806 
  • 21c Agrawal AK. Jenekhe SA. Chem. Mater.  1992,  4:  95 
  • 21d Agrawal AK. Jenekhe AK. Jenekhe SA. Chem. Mater.  1993,  28:  895 
  • 21e Agrawal AK. Jenekhe SA. Chem. Mater.  1993,  5:  633 
  • 21f Jenekhe SA. Lu L. Alam MM. Macromolecules  2001,  34:  7315 
  • 21g Agrawal AK. Jenekhe SA. Vanherzeele H. Meth JS. J. Phys. Chem.  1992,  96:  2837 
  • 21h Jegou G. Jenekhe SA. Macromolecules  2001,  34:  7926 
  • 21i Lu L. Jenekhe SA. Macromolecules  2001,  34:  6249 
  • 21j Agrawal AK. Jenekhe SA. Chem. Mater.  1996,  8:  579 
  • 21k Jenekhe SA. Zhang X. Chen XL. Choong VE. Gao Y. Hsieh BR. Chem. Mater.  1997,  9:  409 
  • 21l Zhang X. Shetty AS. Jenekhe SA. Macromolecules  1999,  32:  7422 
  • 21m Zhang X. Shetty AS. Jenekhe SA. Macromolecules  2000,  33:  2069 
  • 22a Jones G. In Comprehensive Heterocyclic Chemistry II   Vol. 5:  Katritzky AR. Rees CW. Pergamon; New York: 1996.  p.167 
  • 22b Cho CS. Oh BH. Kim TJ. Shim SC. Chem. Commun.  2000,  1885 
  • 22c Jiang B. Si YG.
    J. Org. Chem.  2002,  67:  9449 
  • 22d Skraup H. Ber. Dtsch. Chem. Ges.  1880,  13:  2086 
  • 22e Friedländer P. Ber. Dtsch. Chem. Ges.  1882,  15:  2572 
  • 22f Mansake RH. Kulka M. Org. React.  1953,  7:  59 
  • 22g Linderman RJ. Kirollos KS. Tetrahedron Lett.  1990,  31:  2689 
  • 22h Theoclitou ME. Robinson LA. Tetrahedron Lett.  2002,  43:  3907 
  • 23 Hoemann MZ. Kumaravel G. Xie RL. Rossi RF. Meyer S. Sidhu A. Cuny GD. Hauske JR. Bioorg. Med. Chem. Lett.  2000,  10:  2675 
  • 24a Du W. Curran DP. Org. Lett.  2003,  5:  1765 
  • 24b Dormer PG. Eng KK. Farr RN. Humphrey GR. McWilliams JC. Reider PJ. Sager JW. Volante RP. J. Org. Chem.  2003,  68:  467 
  • 24c Matsugi M. Tabusa F. Minamikawa J. Tetrahedron Lett.  2000,  41:  8523 
  • 24d Lindsay DM. Dohle W. Jensen AE. Kopp F. Knochel P. Org. Lett.  2002,  4:  1819 
  • 25 Arcadi A. Chiarini M. Giuseppe SD. Marinelli F. Synlett  2003,  203 ; and references cited therein
  • 26 Fehnel EA. J. Org. Chem.  1996,  31:  2899 
  • 27 Amii H. Kishikawa Y. Uneyama K. Org. Lett.  2001,  3:  1109 
  • 28a Li AH. Ahmed E. Chen X. Cox M. Crew AP. Dong HQ. Jin MZ. Ma IF. Panicker B. Siu KW. Steing AG. Stolz KM. Tavares PAR. Volk B. Weng QH. Werner D. Mulyihill M. Org. Biomol. Chem.  2007,  5:  61 
  • 28b Janza B. Studer A. Org. Lett.  2006,  8:  1875 
  • 28c Jia CS. Wang GW. Lett. Org. Chem.  2006,  3:  289 
  • 29a Zolfogol MA. Salehi P. Ghaderi A. Shiri M. Tanbakouchian Z. J. Mol. Catal. A: Chem.  2006,  259:  253 
  • 29b Li YS. Wu CL. Huang JL. Su WK. Synth. Commun.  2006,  36:  3065 
  • 29c Selvam NP. Saravan C. Muralidharan D. Perumal PT. J. Heterocycl. Chem.  2006,  43:  1379 
  • 31 Kalyanam N. Rao GW. Tetrahedron Lett.  1993,  34:  1647 
  • 32 Edens M. Boerner D. Chase CR. Nass D. Schiavelli MD. J. Org. Chem.  1977,  42:  3403 
  • For some of the most recent work on quinoline synthesis, see:
  • 33a Ahmed N. Lier EV. Tetrahedron Lett.  2007,  48:  13 
  • 33b Arcadi A. Bianchi G. Inesi A. Marinelli F. Rossi I. Synlett  2007,  1031 
  • 33c Sakai N. Annaka K. Konakahara T. J. Org. Chem.  2006,  71:  3653 
  • 33d Atechian S. Nock N. Norcross RD. Ratni H. Thomas AW. Verron J. Masciadri R. Tetrahedron  2007,  63:  2811 
  • 33e Wang G.-W. Jia CS. Dong Y.-W. Tetrahedron Lett.  2006,  47:  1059 
  • 33f Subhas Bose D. Kumar RK. Tetrahedron Lett.  2006,  47:  813 
  • 33g Lee BS. Lee JH. Chi DY. J. Org. Chem.  2002,  67:  7884 
  • 33h Jia CS. Zhang Z. Tu SJ. Wang GW. Org. Biomol. Chem.  2006,  4:  104 
  • 34 Cheng C.-C. Yan S.-J. Org. React.  1982,  28:  37 ; yields of 67% and 55% were reported for 3d and 3h, respectively
30

General Procedure for the Synthesis of 2,4-Disubstituted Quinoline Derivatives under Thermolytic Conditions Using Ionic Liquids A mixture of 2-amino-5-chloro-2′-fluoro-benzophenone (1a, 0.25 g, 1 mmol), and phenylacetylene (0.18 g, 1.8 mmol) in 1-hexyl-3-methylimidazolium hexafluoro-phosphate (1 g) was placed in a round-bottom flask (50 mL) in the presence of Zn(OTf)2 (15 mg). Two phases were formed at r.t. The flask was then dipped in a pre-heated oil bath at 80-90 ˚C (bath temperature), the mixture becomes homogeneous, and was stirred for about 2.5 h. After completion (monitored by TLC), the reaction mixture was cooled to r.t. and extracted with Et2O (2 × 15 mL). The ether layer was dried over anhyd Na2SO4 for 10 h and concentrated in a rotary evaporator to half the volume and left overnight. The yellow crystals of the products so obtained was filtered, dried, and recrystallized from CHCl3-MeOH (1:1) mixture to get the pure product; mp 125 ˚C in 98% yield. The filtrate containing the Et2O is evaporated to expel the Et2O completely and ionic liquid is reused directly for the second run. Similarly other 2-aminoaryl ketones and phenylacetylene were reacted in the presence of Zn(OTf)2 under thermal heating at 80-90 ˚C to produce the corresponding quinoline derivatives in excellent yields. The results are summarized in the Table  [¹] .
2-Phenyl-4-(2′-fluorophenyl)-6-chloroquinoline (3a) Mp 125 ˚C. IR (KBr): 1615, 1370, 1280, 1165, 1125 cm. ¹H NMR (90 MHz, CDCl3): δ = 7.15-7.28 (m, 7 H), 7.72 (m, 1 H), 8.02 (m, 1 H), 8.10-8.30 (m, 4 H). Anal. Calcd for C21H13ClFN: C, 75.68; H, 3.90; N, 4.20. Found: C, 75.70; H, 4.02; N, 4.11. MS: m/z = 333 [M+].
2,4-Diphenylquinoline (3b)
Mp 107 ˚C. IR (KBr): 1610, 1370, 1270, 1160, 1125 cm. ¹H NMR (90 MHz, CDCl3): δ = 7.10-7.23 (m, 9 H), 7.65 (m, 1 H), 7.95 (m, 1 H), 8.10-8.25 (m, 4 H). Anal. Calcd for C21H15N: C, 89.69; H, 5.34; N, 4.98. Found: C, 89.75; H, 5.42; N, 4.88. MS: m/z = 281 [M+].
6-Chloro-2,4-diphenylquinoline (3c)
Mp 98 ˚C. IR (KBr): 1610, 1375, 1270, 1165, 1125 cm. ¹H NMR (90 MHz, CDCl3): δ = 7.12-7.25 (m, 8 H), 7.65 (m,
1 H), 8.05 (m, 1 H), 8.13-8.28 (m, 4 H). Anal. Calcd for C21H14ClN: C, 80.00; H, 4.44; N, 4.44. Found: C, 80.09; H, 4.50; N, 4.35. MS: m/z = 315 [M+].
2,4-Diphenyl-6-nitroquinoline (3d) Mp 264 ˚C. IR (KBr): 1630, 1375, 1240, 1150, 1040 cm. ¹H NMR (90 MHz, CDCl3): δ = 7.25-7.65 (m, 8 H), 7.83 (m, 1 H), 8.05-8.15 (m, 5 H). Anal. Calcd for C21H14N2O2: C, 77.30; H, 4.29; N, 8.59. Found: C, 77.37; H, 4.20; N, 8.68. MS: m/z = 326 [M+].
2,4-Diphenyl-8-nitroquinoline (3e) Mp 264 ˚C. IR (KBr): 1635, 1375, 1240, 1150, 1035 cm. ¹H NMR (90 MHz, CDCl3): δ = 7.25-7.60 (m, 8 H), 7.75 (m, 1 H), 8.12-8.20 (m, 5 H). Anal. Calcd for C21H14N2O2: C, 77.30; H, 4.29; N, 8.59. Found: C, 77.41; H, 4.35; N, 8.49. MS: m/z = 326 [M+].
2-Phenyl-4-(2′-chlorophenyl)-6-chloroquinoline (3f) Mp 112 ˚C. IR (KBr): 1615, 1375, 1275, 1165, 1130 cm. ¹H NMR (90 MHz, CDCl3): δ = 7.30 (s, 1 H), 7.42-7.88 (m, 7 H), 8.15 (s, 1 H), 8.16-8.25 (m, 4 H). Anal. Calcd for C21H13Cl2N: C, 72.21; H, 3.72, N, 4.01. Found: C, 72.14; H, 3.80; N, 4.10. MS: m/z = 349 [M+].
2-Phenyl-4-(2′-fluorophenyl)quinoline (3g) Mp 90 ˚C. IR (KBr): 1615, 1375, 1275, 1160, 1130 cm. ¹H NMR (90 MHz, CDCl3): δ = 7.10-7.23 (m, 7 H), 7.65 (m, 1 H), 8.02 (m, 1 H), 8.15-8.30 (m, 4 H). Anal. Calcd for C21H14FN: C, 84.28; H, 4.68; N, 4.68. Found: C, 84.38; H, 4.58; N, 4.76. MS: m/z = 299 [M+].