Synlett 2008(19): 2913-2937  
DOI: 10.1055/s-0028-1087339
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Stereoselective Synthesis of Saturated Heterocycles via Palladium-Catalyzed Alkene Carboetherification and Carboamination Reactions

John P. Wolfe*
Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
Fax: +1(734)6153790; e-Mail: jpwolfe@umich.edu;
Further Information

Publication History

Received 9 June 2008
Publication Date:
12 November 2008 (online)

Abstract

The development of palladium-catalyzed carboetherification and carboamination reactions between aryl or alkenyl halides and alkenes bearing pendant heteroatoms is described. These transformations effect the stereoselective construction of useful heterocycles, such as tetrahydrofurans, pyrrolidines, imidazolidin-2-ones, isoxazolidines, and piperazines. The scope, limitations, and applications of these reactions are presented, and current stereochemical models are described. The mechanism of the product formation, which involves an unusual intramolecular syn-insertion of an alkene into a palladium-heteroatom bond, is also discussed in detail.

1 Introduction

2 Palladium-Catalyzed Synthesis of Tetrahydrofurans from γ-Hydroxyalkenes and Aryl or Alkenyl Halides

2.1 Mechanism of the Tetrahydrofuran Formation

3 Palladium-Catalyzed Synthesis of Pyrrolidines from γ-Aminoalkenes and Aryl or Alkenyl Halides

3.1 Tandem Palladium-Catalyzed N-Arylation-Carboamination Reactions of Primary Amines

3.2 Palladium-Catalyzed Carboamination Reactions of N-Protected γ-Aminoalkenes

3.3 Mechanism of the Palladium-Catalyzed Carboamination Reactions: Surprises and Utility

3.4 Application of the Palladium-Catalyzed Carboamination of N-Protected γ-Aminoalkenes to the Stereoselective Synthesis of (+)-Preussin and Its Analogues

4 Synthesis of Imidazolidin-2-ones via Palladium-Catalyzed Carboamination Reactions

5 Synthesis of Isoxazolidines via Palladium-Catalyzed Carboetherification Reactions

6 Synthesis of Piperazines via Palladium-Catalyzed Carboamination Reactions

7 Summary and Future Outlook

    References

  • For reviews on biologically active tetrahydrofurans and pyrrolidines, see:
  • 1a Kang EJ. Lee E. Chem. Rev.  2005,  105:  4348 
  • 1b Saleem M. Kim HJ. Ali MS. Lee YS. Nat. Prod. Rep.  2005,  22:  696 
  • 1c Bermejo A. Figadere B. Zafra-Polo M.-C. Barrachina I. Estornell E. Cortes D. Nat. Prod. Rep.  2005,  22:  269 
  • 1d Daly JW. Spande TF. Garraffo HM. J. Nat. Prod.  2005,  68:  1556 
  • 1e Hackling AE. Stark H. ChemBioChem  2002,  3:  946 
  • 1f Lewis JR. Nat. Prod. Rep.  2001,  18:  95 
  • For recent select reviews on metal-catalyzed or -mediated reactions for the synthesis of heterocycles, see:
  • 2a D’Souza DM. Mueller TJJ. Chem. Soc. Rev.  2007,  36:  1095 
  • 2b Chemler SR. Fuller PH. Chem. Soc. Rev.  2007,  36:  1153 
  • 2c Minatti A. Muniz K. Chem. Soc. Rev.  2007,  36:  1142 
  • 2d Zeni G. Larock RC. Chem. Rev.  2006,  106:  4644 
  • 2e Conreaux D. Bouyssi D. Monteiro N. Balme G. Curr. Org. Chem.  2006,  10:  1325 
  • 2f Muzart J. Tetrahedron  2005,  61:  5955 
  • 2g Wolfe JP. Thomas JS. Curr. Org. Chem.  2005,  9:  625 
  • 2h Nakamura I. Yamamoto Y. Chem. Rev.  2004,  104:  2127 
  • 2i Zeni G. Larock RC. Chem. Rev.  2004,  104:  2285 
  • 2j Deiters A. Martin SF. Chem. Rev.  2004,  104:  2199 
  • 2k Barluenga J. Santamaria J. Tomas M. Chem. Rev.  2004,  104:  2259 
  • 2l McReynolds MD. Dougherty JM. Hanson PR. Chem. Rev.  2004,  104:  2239 
  • For reviews on the synthesis of tetrahydrofurans, see:
  • 3a Wolfe JP. Hay MB. Tetrahedron  2007,  63:  261 
  • 3b Miura K. Hosomi A. Synlett  2003,  143 
  • 3c Koert U. Synthesis  1995,  115 
  • 3d Harmange J.-C. Figadere B. Tetrahedron: Asymmetry  1993,  4:  1711 
  • 3e Cardillo G. Orena M. Tetrahedron  1990,  46:  3321 
  • 3f Boivin TLB. Tetrahedron  1987,  43:  3309 
  • For reviews on the synthesis of pyrrolidines, see:
  • 4a Bellina F. Rossi R. Tetrahedron  2006,  62:  7213 
  • 4b Coldham I. Hufton R. Chem. Rev.  2005,  105:  2765 
  • 4c Pyne SG. Davis AS. Gates NJ. Hartley JP. Lindsay KB. Machan T. Tang M. Synlett  2004,  2670 
  • 4d Felpin F.-X. Lebreton J. Eur. J. Org. Chem.  2003,  3693 
  • For related transformations of γ-hydroxy- or γ-amino-substituted allenes or alkynes, see:
  • 5a Balme G. Bouyssi D. Lomberget T. Monteiro N. Synthesis  2003,  2115 
  • 5b Kang S.-K. Baik T.-G. Kulak AN. Synlett  1999,  324 
  • 5c Jacobi PA. Liu H. Org. Lett.  1999,  1:  341 
  • 5d Walkup RD. Guan L. Mosher MD. Kim SW. Kim YS. Synlett  1993,  88 
  • 5e Luo FT. Schreuder I. Wang RT. J. Org. Chem.  1992,  57:  2213 
  • 5f Luo FT. Wang RT. Tetrahedron Lett.  1992,  33:  6835 
  • 5g Arcadi A. Cacchi S. Marinelli F. Tetrahedron Lett.  1992,  33:  3915 
  • 5h Davies IW. Scopes DIC. Gallagher T. Synlett  1993,  85 
  • 5i Wolf LB. Tjen KCMF. Rutjes FPJT. Hiemstra H. Schoemaker HE. Tetrahedron Lett.  1998,  39:  5081 
  • Other metal-catalyzed or -mediated reactions of γ-hydroxy- or γ-aminoalkenes that generate heterocycles with the formation of both a carbon-heteroatom and a carbon-carbon bond have also been reported. For examples of copper-catalyzed intramolecular carboamination reactions of 2-allyl-N-(arylsulfonyl)anilines and related derivatives, see:
  • 6a Sherman ES. Fuller PH. Kasi D. Chemler SR.
    J. Org. Chem.  2007,  72:  3896 
  • 6b Sherman ES. Chemler SR. Tan TB. Gerlits O. Org. Lett.  2004,  6:  1573 
  • For Pd(II)-catalyzed aminocarbonylation reactions of alkenes bearing tethered nitrogen nucleophiles, see:
  • 6c Harayama H. Abe A. Sakado T. Kimura M. Fugami K. Tanaka S. Tamaru Y. J. Org. Chem.  1997,  62:  2113 
  • For carboamination reactions between alkenes and N-allylsulfonamides, see:
  • 6d Scarborough CC. Stahl SS. Org. Lett.  2006,  8:  3251 
  • For carboamination reactions of vinylcyclopropanes, see:
  • 6e Larock RC. Yum EK. Synlett  1990,  529 
  • For Pd(II)-catalyzed alkoxycarbonylation reactions of alkenes bearing tethered oxygen nucleophiles, see:
  • 6f Semmelhack MF. Bodurow C. J. Am. Chem. Soc.  1984,  106:  1496 
  • 6g Semmelhack MF. Zhang N. J. Org. Chem.  1989,  54:  4483 
  • 6h McCormick M. Monahan R. Soria J. Goldsmith D. Liotta D. J. Org. Chem.  1989,  54:  4485 
  • 6i Semmelhack MF. Kim C. Zhang N. Bodurow C. Sanner M. Dobler W. Meier M. Pure Appl. Chem.  1990,  62:  2035 ; and references cited therein
  • For Pd-catalyzed reactions of β-aminoalkenes with alkenyl halides which afford pyrrolidine products via formal 1,1-addition to the alkene, see:
  • 7a Harris GD. Herr RJ. Weinreb SM. J. Org. Chem.  1992,  57:  2528 
  • 7b Harris GD. Herr RJ. Weinreb SM. J. Org. Chem.  1993,  58:  5452 
  • 7c Larock RC. Yang H. Weinreb SM. Herr RJ. J. Org. Chem.  1994,  59:  4172 
  • 8 For a review on Pd(0)- and Pd(II)-catalyzed carboetherification and carboamination reactions, see: Wolfe JP. Eur. J. Org. Chem.  2007,  571 
  • 9 Crabtree RH. The Organometallic Chemistry of the Transition Metals   4th ed.:  John Wiley and Sons; Hoboken NJ: 2005. 
  • 10a Yamamoto A. J. Chem. Soc., Dalton Trans.  1999,  1027 
  • 10b Beletskaya IP. Cheprakov AV. Chem. Rev.  2000,  100:  3009 
  • 11a Lin BL. Clough CR. Hillhouse GL. J. Am. Chem. Soc.  2002,  124:  2890 
  • 11b Koo K. Hillhouse GL. Organometallics  1995,  14:  4421 
  • 11c Matsunaga PT. Hillhouse GL. Rheingold AL. J. Am. Chem. Soc.  1993,  115:  2075 
  • 11d Koo K. Hillhouse GL. Organometallics  1998,  17:  2924 
  • 11e Williams BS. Goldberg KI. J. Am. Chem. Soc.  2001,  123:  2576 
  • 11f Brice JL. Harang JE. Timokhin VI. Anastasi NR. Stahl SS. J. Am. Chem. Soc.  2005,  127:  2868 
  • 11g Dick AR. Kampf JW. Sanford MS. J. Am. Chem. Soc.  2005,  127:  12790 
  • 12a Hosokawa T. Murahashi S.-I. Acc. Chem. Res.  1990,  23:  49 
  • 12b Hegedus LS. Angew. Chem., Int. Ed. Engl.  1988,  27:  1113 
  • 13a Muci AR. Buchwald SL. Top. Curr. Chem.  2002,  219:  131 
  • 13b Hartwig JF. Pure Appl. Chem.  1999,  71:  1417 
  • 14a Villanueva LA. Abboud KA. Boncella JM. Organometallics  1992,  11:  2963 
  • 14b VanderLende DD. Abboud KA. Boncella JM. Inorg. Chem.  1995,  34:  5319 
  • 14c Cowan RL. Trogler WC. J. Am. Chem. Soc.  1989,  111:  4750 
  • 14d Bryndza HE. Organometallics  1985,  4:  406 ; and references cited therein
  • 14e Bennett MA. Jin H. Li S. Rendina LM. Willis AC. J. Am. Chem. Soc.  1995,  117:  8335 
  • 14f Ritter JCM. Bergman RG. J. Am. Chem. Soc.  1997,  119:  2580 
  • 14g Casalnuovo AL. Calabrese JC. Milstein D. J. Am. Chem. Soc.  1988,  110:  6738 
  • 14h Hamed O. Thompson C. Henry PM. J. Org. Chem.  1997,  62:  7082 
  • 14i Nelson DJ. Li R. Brammer C. J. Am. Chem. Soc.  2001,  123:  1564 
  • For recent studies on alkene insertion into late transition metal-oxygen or -nitrogen bonds, see:
  • 15a

    See also ref. 11f

  • 15b Hayashi T. Yamasaki K. Mimura M. Uozumi Y.
    J. Am. Chem. Soc.  2004,  126:  3036 
  • 15c Zhao P. Krug C. Hartwig JF. J. Am. Chem. Soc.  2005,  127:  12066 
  • 15d Trend RM. Ramtohul YK. Stoltz BM. J. Am. Chem. Soc.  2005,  127:  17778 
  • 15e Zhao P. Incarvito CD. Hartwig JF. J. Am. Chem. Soc.  2006,  128:  9642 
  • 16 Milstein D. Stille JK. J. Am. Chem. Soc.  1979,  101:  4981 
  • 17 Larock RC. Leung W.-Y. Stoltz-Dunn S. Tetrahedron Lett.  1989,  30:  6629 
  • 18 Fournet G. Balme G. Gore J. Tetrahedron  1990,  46:  7763 
  • 19 Trost BM. Pfrengle W. Urabe H. Dumas J. J. Am. Chem. Soc.  1992,  114:  1923 
  • 20a Wolfe JP. Rossi MA. J. Am. Chem. Soc.  2004,  126:  1620 
  • 20b Hay MB. Hardin AR. Wolfe JP. J. Org. Chem.  2005,  70:  3099 
  • 22a Widenhoefer RA. Zhong HA. Buchwald SL. J. Am. Chem. Soc.  1997,  119:  6787 
  • 22b Widenhoefer RA. Buchwald SL. J. Am. Chem. Soc.  1998,  120:  6504 
  • 22c Mann G. Hartwig JF. J. Am. Chem. Soc.  1996,  118:  13109 
  • 24a Hay MB. Wolfe JP. J. Am. Chem. Soc.  2005,  127:  16468 
  • 24b Hay MB. Wolfe JP. Tetrahedron Lett.  2006,  47:  2793 
  • 25 Yeh has recently described related carboetherification reactions of dienes, see: Yeh M.-CP. Tsao W.-C. Tu L.-H. Organometallics  2005,  24:  5909 
  • The insertion of alkenes into palladium-carbon bonds is not reversible in systems where the alkylpalladium intermediate generated by carbopalladation contains syn-β-hydrogen atoms, as β-hydride elimination is generally faster than β-aryl or β-alkyl elimination. For rare examples of β-aryl and β-alkyl elimination from Pd(II) complexes that lack β-hydrogen atoms, see:
  • 26a Campora J. Gutierrez-Puebla E. Lopez JA. Monge A. Palma P. del Rio D. Carmona E. Angew. Chem. Int. Ed.  2001,  40:  3641 
  • 26b Catellani M. Frignani F. Rangoni A. Angew. Chem., Int. Ed. Engl.  1997,  36:  119 
  • 26c Catellani M. Fagnola MC. Angew. Chem., Int. Ed. Engl.  1994,  33:  2421 
  • 26d Matsumura S. Maeda Y. Nishimura T. Uemura S. J. Am. Chem. Soc.  2003,  125:  8862 
  • 26e Wang X. Stankovich SZ. Widenhoefer RA. Organometallics  2002,  21:  901 ; and references cited therein
  • 27 For an example of stereochemical inversion in an isolated palladium complex that proceeds through a similar mechanism, see: Burke BJ. Overman LE. J. Am. Chem. Soc.  2004,  126:  16820 
  • For related examples of stereospecific deuterium migration via reversible β-hydride/deuteride elimination processes, see:
  • 29a Qian H. Widenhoefer RA. J. Am. Chem. Soc.  2003,  125:  2056 
  • 29b

    See also ref. 15b

  • 29c

    See also ref. 15d

  • 30a Ney JE. Wolfe JP. Angew. Chem. Int. Ed.  2004,  43:  3605 
  • 30b Ney JE. Hay MB. Yang Q. Wolfe JP. Adv. Synth. Catal.  2005,  347:  1614 
  • 32a Lira R. Wolfe JP. J. Am. Chem. Soc.  2004,  126:  13906 
  • 32b Yang Q. Ney JE. Wolfe JP. Org. Lett.  2005,  7:  2575 
  • 33a Saito S. Hatanaka K. Yamamoto H. Org. Lett.  2000,  2:  1891 
  • 33b Overman LE. Owen CE. Pavan MM. Richards CJ. Org. Lett.  2003,  5:  1809 
  • 33c Taniyama D. Hasegawa M. Tomioka K. Tetrahedron: Asymmetry  1999,  10:  221 
  • 34a Bordwell FG. Algrim DJ. J. Am. Chem. Soc.  1988,  110:  2964 
  • 34b Bordwell FG. Ji G.-Z. J. Am. Chem. Soc.  1991,  113:  8398 
  • 34c Zhang X.-M. Bordwell FG. J. Org. Chem.  1994,  59:  6456 
  • 35a Bertrand MB. Wolfe JP. Tetrahedron  2005,  61:  6447 
  • 35b Bertrand MB. Leathen ML. Wolfe JP. Org. Lett.  2007,  9:  457 
  • 36 Tom NJ. Simon WM. Frost HN. Ewing M. Tetrahedron Lett.  2004,  45:  905 
  • 38 Bertrand MB. Wolfe JP. Org. Lett.  2007,  9:  3073 
  • For Pd-catalyzed reactions of aryl bromides with norbornene and related bicyclo[2.2.n]alkenes which afford benzocyclobutene products, see:
  • 39a Catellani M. Chiusoli GP. Ricotti S. J. Organomet. Chem.  1985,  296:  C11 
  • 39b Catellani M. Chiusoli GP. Ricotti S. Sabini F. Gazz. Chim. Ital.  1985,  115:  685 
  • 39c Catellani M. Ferioli L. Synthesis  1996,  769 
  • 40 Ney JE. Wolfe JP. J. Am. Chem. Soc.  2005,  127:  8644 
  • For a discussion of the kinetic and thermodynamic effects in palladium amido complex formation, see:
  • 41a Meyers C. Maes BUW. Loones KTJ. Bal G. Lemiere GLF. Dommisse RA. J. Org. Chem.  2004,  69:  6010 
  • 41b Driver MS. Hartwig JF. Organometallics  1997,  16:  5706 
  • 42 When NaOt-Bu was employed as the base with N-Boc- or N-acyl-protected substrates, the amido complex could also be generated via the reaction of 58 with the deprotonated carbamate or amide. In addition, the amido complex could also be generated through the reaction of the amine, carbamate, or amide with an LnPd(Ar)(Ot-Bu) complex, see: Shekhar S. Hartwig JF. Organometallics  2007,  26:  340 
  • β-Heteroatom elimination from Pd complexes has been previously observed. Thus, it is likely that the syn-oxypalladation and syn-aminopalladation reactions described in this article are reversible, see:
  • 43a Hacksell U. Daves GD. Organometallics  1983,  2:  772 
  • 43b Zhu G. Lu X. Organometallics  1995,  14:  4899 
  • 43c Zhao H. Ariafard A. Lin Z. Organometallics  2006,  25:  812 ; and references cited therein
  • For early examples, see:
  • 44a Kasahara A. Izumi T. Takeda T. Imamura H. Bull. Chem. Soc. Jpn.  1974,  47:  183 
  • 44b Andersson C.-M. Larsson J. Hallberg A. J. Org. Chem.  1990,  55:  5757 
  • For a recent review, see:
  • 44c Oestreich M. Eur. J. Org. Chem.  2005,  783 
  • For recent reviews, see:
  • 45a Campeau L.-C. Fagnou K. Chem. Commun.  2006,  1253 
  • 45b Catellani M. Synlett  2003,  298 
  • 46a Zhang L. Zetterberg K. Organometallics  1991,  10:  3806 
  • 46b Oestreich M. Dennison PR. Kodanko JJ. Overman LE. Angew. Chem. Int. Ed.  2001,  40:  1439 
  • 46c Clique B. Fabritius C.-H. Couturier C. Monteiro N. Balme G. Chem. Commun.  2003,  272 
  • 47 Lee C.-W. Oh KS. Kim KS. Ahn KH. Org. Lett.  2000,  2:  1213 
  • 48a Gillie A. Stille JK. J. Am. Chem. Soc.  1980,  102:  4933 
  • 48b Driver MS. Hartwig JF. J. Am. Chem. Soc.  1997,  119:  8232 
  • 48c Driver MS. Hartwig JF. J. Am. Chem. Soc.  1996,  118:  7217 
  • 48d Culkin DA. Hartwig JF. Organometallics  2004,  23:  3398 ; and references cited therein
  • 48e van Leeuwen PWNM. Kamer PCJ. Reek JNH. Dierkes P. Chem. Rev.  2000,  100:  2741 
  • 48f Christmann U. Vilar R. Angew. Chem. Int. Ed.  2005,  44:  366 
  • 48g Brown JM. Cooley NA. Chem. Rev.  1988,  88:  1031 
  • 49a Jensen DR. Schultz MJ. Mueller JA. Sigman MS. Angew. Chem. Int. Ed.  2003,  42:  3810 
  • 49b Steinhoff BA. Stahl SS. Org. Lett.  2002,  4:  4179 ; and references cited therein
  • Ligand substitution reactions of d8-Pd(II) complexes generally occur via an associative mechanism, see:
  • 50a

    See also ref. 29a

  • 50b Shultz LH. Tempel DJ. Brookhart M. J. Am. Chem. Soc.  2001,  123:  11539 ; and references cited therein. For rare exceptions, see:
  • 50c Bartolome C. Espinet P. Martin-Alvarez JM. Villafane F. Eur. J. Inorg. Chem.  2004,  2326 
  • 50d Louie J. Hartwig JF. J. Am. Chem. Soc.  1995,  117:  11598 
  • 51 For the isolation of this compound, see: Schwartz RE. Liesch J. Hensens O. Zitano L. Honeycutt S. Garrity G. Fromtling RA. Onishi J. Monaghan R. J. Antibiot.  1988,  41:  1774 
  • 52a Johnson JH. Phillipson DW. Kahle AD.
    J. Antibiot.  1989,  42:  1184 
  • 52b Kasahara K. Yoshida M. Eishima J. Takesako K. Beppu T. Horinouchi S. J. Antibiot.  1997,  50:  267 
  • 52c Achenbach TV. Slater PE. Brummerhop H. Bach T. Müller R. Antimicrob. Agents Chemother.  2000,  44:  2794 
  • 52d Kinzy TG. Harger JW. Carr-Schmid A. Kwon J. Shastry M. Justice M. Dinman JD. Virology  2002,  300:  60 
  • 53 For a recent review, see: Basler B. Brandes S. Spiegel A. Bach T. Top. Curr. Chem.  2005,  243:  1 
  • Three strategies allow the installation of the aryl moiety within 1-3 steps of the final target. Davis generated the C-2 benzyl group in the final step by the reaction of lithium diphenylcuprate with a pyrrolidinylmethyl iodide (40% yield, single diastereomer; 10 steps total, 9% overall yield), see:
  • 54a Davis FA. Deng J. Tetrahedron  2004,  60:  5111 
  • Davis has also installed the benzyl moiety through the Horner-Wadsworth-Emmons reaction of a 3-oxopyrrolidin-2-ylphosphonate followed by a two-step reduction sequence (43% yield over 3 steps; 10 steps total, 25% overall yield), see:
  • 54b Davis FA. Zhang J. Qiu H. Wu Y. Org. Lett.  2008,  10:  1433 
  • Bach employed the Paternò-Büchi reaction of benzaldehyde with a dihydropyrrole (4:1 dr, 53% yield after separation of the diastereomers) followed by a two-step deprotection sequence to generate the benzyl substituent (39% yield over 3 steps; 9 steps total, 11% overall yield), see:
  • 54c Bach T. Brummerhop H. Angew. Chem. Int. Ed.  1998,  37:  3400 
  • This model is also consistent with the stereochemical outcome of reactions involving analogous γ-(arylamino)-alkenes. For further discussion of A(¹,³)-strain in transformations involving N-substituted amines, see:
  • 55a Hoffmann RW. Chem. Rev.  1989,  89:  1841 
  • 55b Hart DJ. J. Am. Chem. Soc.  1980,  102:  397 
  • 55c Williams RM. Sinclair PJ. Zhai D. Chen D. J. Am. Chem. Soc.  1988,  110:  1547 
  • 55d Kano S. Yokomatsu T. Iwasawa H. Shibuya S. Heterocycles  1987,  26:  2805 
  • 56 Bertrand MB. Wolfe JP. Org. Lett.  2006,  8:  2353 
  • 57a Fritz JA. Nakhla JS. Wolfe JP. Org. Lett.  2006,  8:  2531 
  • 57b Fritz JA. Wolfe JP. Tetrahedron  2008,  64:  6838 
  • 58 Kazmierski WM. Furfine E. Gray-Nunez Y. Spaltenstein A. Wright L. Bioorg. Med. Chem. Lett.  2004,  14:  5685 
  • 59 Heidempergher F. Pillan A. Pinciroli V. Vaghi F. Arrigoni C. Bolis G. Caccia C. Dho L. McArthur R. Varasi M. J. Med. Chem.  1997,  40:  3369 
  • 60 Shue H.-J. Chen X. Schwerdt JH. Paliwal S. Blythin DJ. Lin L. Gu D. Wang C. Reichard GA. Wang H. Piwinski JJ. Duffy RA. Lachowicz JE. Coffin VL. Nomeir AA. Morgan CA. Varty GB. Shih N.-Y. Bioorg. Med. Chem. Lett.  2006,  16:  1065 
  • 61a Davies SG. Evans GB. Mortlock AA. Tetrahedron: Asymmetry  1994,  5:  585 
  • 61b Kubota H. Kubo A. Takahashi M. Shimizu R. Da-te T. Okamura K. Nunami K.-i. J. Org. Chem.  1995,  60:  6776 
  • 61c Parisi M. Solo A. Wulff WD. Guzei IA. Rheingold AL. Organometallics  1998,  17:  3696 
  • 61d Kise N. Ueda T. Kumada K. Terao Y. Ueda N. J. Org. Chem.  2000,  65:  464 
  • 62a Guillena G. Nájera C. J. Org. Chem.  2000,  65:  7310 
  • 62b Cardillo G. Orena M. Penna M. Sandri S. Tomasini C. Tetrahedron  1991,  47:  2263 
  • 62c Trost BM. Fandrick DR. J. Am. Chem. Soc.  2003,  125:  11836 
  • For a review, see:
  • 63a Sartori G. Maggi R. In Science of Synthesis   Vol. 18:  Ley SV. Knight JG. Thieme; Stuttgart: 2005.  p.665 
  • For other recent approaches to the synthesis of cyclic ureas, see:
  • 63b Kim M. Mulcahy JV. Espino CG. DuBois J. Org. Lett.  2006,  8:  1073 
  • 63c Streuff J. H övelmann CH. Nieger M. Muñiz K. J. Am. Chem. Soc.  2005,  127:  14586 
  • 63d Zabawa TP. Kasi D. Chemler SR. J. Am. Chem. Soc.  2005,  127:  11250 
  • 63e Kim MS. Kim Y.-W. Hahm HS. Jang JW. Lee WK. Ha H.-J. Chem. Commun.  2005,  3062 ; and references cited therein
  • 63f Bar GLJ. Lloyd-Jones GC. Booker-Milburn KI. J. Am. Chem. Soc.  2005,  127:  7308 
  • For syntheses of cyclic ureas from acyclic N-allylureas that form both a carbon-carbon and a carbon-nitrogen bond, see:
  • 64a

    See also Ref. 6c.

  • 64b Tamaru Y. Hojo M. Higashimura H. Yoshida Z.-i. J. Am. Chem. Soc.  1988,  110:  3994 
  • 64c Danishefsky S. Taniyama E. Webb RR. Tetrahedron Lett.  1983,  24:  11 
  • 65a Ishiyama H. Tsuda M. Endo T. Kobayashi J. Molecules  2005,  10:  312 
  • 65b Minter AR. Brennan BB. Mapp AK. J. Am. Chem. Soc.  2004,  126:  10504 
  • 65c Palmer GC. Ordy MJ. Simmons RD. Strand JC. Radov LA. Mullen GB. Kinsolving CR. St. Georgiev V. Mitchell JT. Allen SD. Antimicrob. Agents Chemother.  1989,  33:  895 
  • 66 For a review on the use of isoxazolidines as intermediates in complex molecule syntheses, see: Frederickson M. Tetrahedron  1997,  53:  403 
  • 67a Lait SM. Rankic DA. Keay BA. Chem. Rev.  2007,  107:  767 
  • 67b Revuelta J. Cicchi S. Brandi A. Tetrahedron Lett.  2004,  45:  8375 
  • 67c LeBel NA. Balasubramanian N. J. Am. Chem. Soc.  1989,  111:  3363 
  • 67d Iida H. Kasahara K. Kibayashi C. J. Am. Chem. Soc.  1986,  108:  4647 
  • For reviews on 1,3-dipolar cycloaddition reactions of nitrones, see:
  • 68a Confalone PN. Huie EM. Org. React.  1988,  36:  1 
  • 68b Gothelf KV. Jorgensen KA. Chem. Commun.  2000,  1449 
  • 68c Kanemasa S. Synlett  2002,  1371 
  • 69 Murahashi S.-I. Mitsui H. Shiota T. Tsuda T. Watanabe S. J. Org. Chem.  1990,  55:  1736 
  • 70 Biloski AJ. Ganem B. Synthesis  1983,  537 
  • 71 Hay MB. Wolfe JP. Angew. Chem. Int. Ed.  2007,  46:  6492 
  • 72 For related studies, see: Jiang D. Peng J. Chen Y. Tetrahedron  2008,  64:  1641 
  • For Pd-catalyzed carboamination reactions of O-butenyl-hydroxylamine derivatives with aryl bromides that afford isoxazolidine products, see:
  • 73a Peng J. Jiang D. Lin W. Chen Y. Org. Biomol. Chem.  2007,  5:  1391 
  • 73b Peng J. Lin W. Yuan S. Chen Y. J. Org. Chem.  2007,  72:  3145 
  • 73c Dongol KG. Tay BY. Tetrahedron Lett.  2006,  47:  927 
  • 74 For Pd-catalyzed carboetherification reactions of β,γ-unsaturated oximes with aryl bromides which afford isoxazoline products, see: Jiang D. Peng J. Chen Y. Org. Lett.  2008,  10:  1695 
  • 75 Iida H. Watanabe Y. Kibayashi C. J. Chem. Soc., Perkin Trans. 1  1985,  261 
  • 76 Nilsson JW. Thorstensson F. Kvarnström I. Oprea T. Samuelsson B. Nilsson I. J. Comb. Chem.  2001,  3:  546 
  • 77a Chu-Moyer MY. Ballinger WE. Beebe DA. Berger R. Coutcher JB. Day WW. Li J. Mylari BL. Oates PJ. Weekly RM. J. Med. Chem.  2002,  45:  511 
  • 77b Zheng G. Dwoskin LP. Deaciuc AG. Zhu J. Jones MD. Crooks PA. Bioorg. Med. Chem.  2005,  13:  3899 
  • 78a Schanen V. Cherrier M.-P. de Melo SJ. Quirion J.-C. Husson H.-P. Synthesis  1996,  833 
  • 78b Mickelson JW. Belonga KL. Jacobsen EJ. J. Org. Chem.  1995,  60:  4177 
  • 78c Mickelson JW. Jacobsen EJ. Tetrahedron: Asymmetry  1995,  6:  19 
  • 78d Cochran BM. Michael FE. Org. Lett.  2008,  10:  329 
  • 79 Jung ME. Piizzi G. Chem. Rev.  2005,  105:  1735 
  • 80 Ma D. Zhang Y. Yao J. Wu S. Tao F. J. Am. Chem. Soc.  1998,  120:  12459 
  • 81 DEPBT = 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one. The use of other reagents (e.g., DCC/HOBt or CDI) resulted in partial epimerization to afford products with ca. 85-90% ee, see: Li H. Jiang X. Ye Y.-h. Fan C. Romoff T. Goodman M. Org. Lett.  1999,  1:  91 
  • 83 Nakhla JS. Wolfe JP. Org. Lett.  2007,  9:  3279 
21

Rossi, M. A.; Wolfe, J. P. unpublished results.

23

Definitions of ligands (see also Figure  [³] ):
Dpe-phos = bis[2-(diphenylphosphino)phenyl] ether; Xantphos = 9,9-dimethyl-4,5-bis(diphenylphosphino)-xanthene; NiXantphos = 4,6-bis(diphenylphosphino)-phenoxazine; dppe = 1,2-bis(diphenylphosphino)ethane;
dppp = 1,3-bis(diphenylphosphino)propane; dppb = 1,4-bis-(diphenylphosphino)butane.

28

A small amount of a regioisomer analogous to 18 was also formed in this reaction.

31

Lira, R.; Wolfe, J. P. unpublished results.

37

We have recently developed conditions to effect the Pd-catalyzed carboamination of N-Boc- and N-acyl-protected substrates bearing 1,1- and 1,2-disubstituted alkenes: Bertrand, M. B.; Neukom, J. D.; Wolfe, J. P. J. Org. Chem. 2008, in press; DOI: 10.1021/jo801631v.

82

Surprisingly, the stereochemical outcome of the piperazine-forming reactions is opposite to that predicted by the allylic strain model, similar to that shown in Scheme  [¹¹] . Our current working hypothesis suggests that the piperazine-forming reactions proceed through a transition state in which the N-aryl group is rotated to minimize allylic strain interactions, and the structure around the cyclizing nitrogen atom is pyramidal. Investigations into this hypothesis are currently underway.