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MULTICRITERIA SCHEDULING PROBLEMS: A SURVEY
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Abstract. This paper presents a state-of-the-art survey on multicrite-
ria scheduling and introduces a definition of a multicriteria scheduling
problem. It provides a framework that allows to tackle multicriteria
scheduling problems, according to Decision Aid concepts. This prob-
lem is decomposed into three different problems. The first problem
is about obtaining a model. The second one is how to take criteria
into account and the third one is about solving a scheduling problem.
An extension to an existing notation for scheduling problems is pro-
posed for multicriteria scheduling problems. Then, basic results from
the literature on multicriteria optimization are presented. These re-
sults are used to build the final scheduling problem to solve. Finally
a survey is presented for one-machine, parallel machines and flowshop
multicriteria scheduling problems.

Résumé. Ce travail présente un état de l’art sur les problèmes
d’ordonnancement multicritères et introduit une nouvelle définition de
ces problèmes. Nous proposons également une démarche, conforme
aux principes de l’aide multicritère à la décision, pour aborder les
problèmes d’ordonnancement multicritères. Ces problèmes sont décom-
posés en trois sous-problèmes. Le premier concerne la modélisation du
problème d’ordonnancement considéré. La résolution du second sous-
problème conduit à répondre à des questions : comment prendre en
compte les critères pour calculer des optima de Pareto ? Quel type
d’algorithme faut-il mettre au point ? Le troisième sous-problème con-
cerne la résolution du problème d’ordonnancement qui découle des deux
sous-problèmes précédent. Nous proposons également dans ce travail
une extension de la notation classique des problèmes d’ordonnancement
au cas multicritère. Nous présentons ensuite les résultats de base de
l’optimisation multicritère avant de détailler notre état de l’art sur les
problèmes d’ordonnancement multicritères à une machine, à machines
parallèles et de type flowshop.
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1 Laboratoire d’Informatique, École d’Ingénieurs en Informatique pour l’Industrie, 64 avenue
Jean Portalis, 37200 Tours, France; e-mail: {tkindt,billaut}@e3i.univ-tours.fr

c© EDP Sciences 2001



144 V. T’KINDT AND J.-C. BILLAUT

1. Introduction

First researches on scheduling appeared in the 50’s. From then on, problems
became more and more complex because of the numerous practical constraints
they wanted to take into account. Surprisingly the most important part of the
literature on scheduling problems is dedicated to monocriterion problems whereas,
in practice, the use of multiple criteria often enables to compute a more realistic
solution for the decision maker. A survey on multicriteria one-machine scheduling
problems can be found in [27, 35, 49]. They show that three kinds of problems
have been tackled. The first one deals with problems in which a lexicographical
order of criteria is minimized. The second class of problems considers a convex
combination of criteria. The third class of problems is about the determination of
all strict Pareto optima. Nagar et al. [64] present a similar survey on multimachine
scheduling problems. Some results on the complexity of multicriteria scheduling
problems are also presented in [22,23,56]. It appears that considering more than
one criterion does not simplify the resolution of a scheduling problem. In terms of
complexity, it means that multicriteria scheduling problems are at least as difficult
as the corresponding monocriterion scheduling problems.

In this paper we try to highlight the interest of the multicriteria optimization
theory to solve multicriteria scheduling problems. In Section 2 we propose a general
framework for the resolution of multicriteria scheduling problems that allows to
tackle multicriteria scheduling problems, according to Decision Aid concepts. After
that, we present an extension to multicriteria problems of an existing notation for
scheduling problems. Section 3 offers basic results on multicriteria optimization.
Finally Section 4 is a brief survey on multicriteria scheduling problems as seen in
the literature.

2. Framework and notation

Minimizing several conflictuous criteria modifies the way scheduling problems
are dealt with. In most cases a solution that optimally minimizes all the consid-
ered criteria does not exist. It implies that a new definition of optimality must be
used, namely Pareto optimality definition. In fact two main definitions are encoun-
tered in multicriteria optimization literature: weak and strict Pareto optimality
definitions.

Definition 1. Let us consider K conflictuous criteria Zi to minimize. S is the
set of solutions and Z its image in the criteria space. x ∈ S is a weak Pareto
optimum (or a weak efficient solution) iff @ y ∈ S, x 6= y, such that Zi(y) <
Zi(x), ∀i = 1...K. WE is the set of all weak Pareto optima and ZWE its image
in the criteria space (i.e. the set of weakly non dominated criteria vectors).

Definition 2. x ∈ S is a strict Pareto optimum (or an efficient solution) iff
@ y ∈ S, x 6= y, such that Zi(y) ≤ Zi(x), ∀i = 1...K, with at least one strict
inequality. E is the set of all strict Pareto optima and ZE its image in the criteria
space (i.e. the set of non dominated criteria vectors). One has E ⊆WE.
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The decision maker is only interested in the strict Pareto optima, but unfor-
tunately most available results compute a subset (or the entire set) of WE. A
multicriteria scheduling problem consists in computing a feasible schedule that
minimizes several criteria. This schedule is necessarily a strict Pareto optimum.
The analyst is the person who designs an algorithm for the multicriteria scheduling
problem under consideration. While dealing with such a problem, he has to solve
three problems:

1. a modelization problem in which he interacts with the decision maker to
define the relevant criteria, the set of considered solutions, etc. [75];

2. taking into account of the criteria problem, where he interacts with the de-
cision maker to choose the resolution context (i.e. resolution method) and
to define the shape of the objective function of the scheduling problem;

3. a scheduling problem for which he must determine a schedule that optimizes
the determined objective function. The obtained solution is a strict Pareto
optimum.

In the first problem the analyst interacts with the decision maker in order to obtain
a model of the multicriteria problem under consideration. It means that for a
multicriteria scheduling problem he has to define what kind of problem is tackled:
a one machine problem, a flowshop problem, etc. Then he has to enumerate
the particular constraints related to the problem: preemption, release dates, etc.
Finally, in this problem he must also define the criteria to optimize, e.g. the
makespan criterion, the total flowtime, etc.

In the second problem the analyst must determine the resolution context, i.e.
the way to retrieve some information from the decision maker and to present him
the computed Pareto optima. This is due to the fact that two strict Pareto optima
can not be compared, so, in order to choose the final solution, the decision maker
must help the resolution algorithm. Basically, Evans [33] distinguishes three kinds
of resolution contexts. In the first one, the decision maker gives all the necessary
information to the resolution algorithm (for instance the weights of criteria if a
linear combination of criteria is minimized). This algorithm allows to compute a
unique strict Pareto optimum. Such an algorithm is called an a priori algorithm.
The algorithms of the second context are interactive ones that allow the decision
maker to interactively determine his most preferred solution. In the third context,
the resolution algorithm determines all the elements of the set E and lets the
decision maker choose the strict Pareto optimum he prefers. In this case, it is
referred to as an a posteriori algorithm. After the resolution context is chosen,
a multicriteria optimization result is used to build an objective function for the
scheduling problem.

In the third problem the analyst has to propose an algorithm that solves the
scheduling problem defined previously. The consequence is that we get a monocri-
terion sub-problem with additionnal parameters. It implies that this scheduling
problem can have a non classical objective function. One can notice that if the
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criteria defined at the first step are the completion times of jobs, the optimiza-
tion of a classical regular scheduling criterion (like makespan, total flowtime, etc.)
allows to compute a Pareto optimum for these criteria.

The result obtained after the resolution of the three problems is an algorithm
that is made up of two modules: the first one is the interface with the decision
maker. This module sets the objective function parameters. The second module
is dedicated to the resolution of the scheduling problem. For instance if a convex
combination of criteria is minimized by an a posteriori algorithm, its first module
computes all possible weights for the criteria, and then, for each value, it runs the
second module that solves the corresponding scheduling problem.

Before presenting an overview of such results, we propose a notation for multi-
criteria scheduling problems based on the one presented in [14]. This notation is
decomposed into three fields α|β|γ where the field γ is dedicated to the criteria.
The existing notations do not allow to take account of all possible ways to minimize
some criteria. For multicriteria scheduling problems, we separate their notation
into two levels. The first one refers to the general multicriteria scheduling problem
and contains in the field γ the list of minimized criteria. For instance, F2||Cmax, C
refers to the 2-machine flowshop problem where the aim is to minimize both Cmax

and C criteria.
The second level of the proposed extension refers to the scheduling problem for

which the analyst proposes a resolution algorithm. In this case the different values
we propose for the field γ are:

• Z, if the aim is to minimize only criterion Z;
• F`(Z1, ..., ZK), if the aim is to minimize a linear combination of K criteria;
• P (Z1, ..., ZK) is a non decreasing function of the criteria. They are subjected

to bound constraints (parametric approach);
• ε(Zu/Z1, . . . , Zu−1, Zu+1, ..., ZK), if the criterion to minimize is Zu, and the

other criteria are subjected to bound constraints (ε-constraint approach);
• FT (Z1, ..., ZK), if the aim is to minimize the distance to a known ideal solu-

tion using a Tchebycheff metric;
• FTp(Z1, ..., ZK), if the aim is to minimize the distance to a known ideal

solution using a weighted Tchebycheff metric;
• FTpa(Z1, ..., ZK), if the aim is to minimize the distance to a known ideal

solution using an augmented weighted Tchebycheff metric;
• Fs(Z1, ..., ZK), if the aim is to maximize a special function that takes into

account an ideal solution (goal-attainment approach);
• Lex(Z1, ..., ZK), if the aim is to minimize a lexicographical order of all cri-

teria, i.e. to minimize criterion Z1, then to minimize criterion Z2 subject
to the optimality of criterion Z1, etc. The order in the Lex operator is the
considered lexicographical order;
• #(Z1, ..., ZK), denotes the problem of enumeration of Pareto optima. Gen-

erally this approach is associated to an a posteriori resolution and consists
in enumerating the set E.
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All these values refer to the different multicriteria optimization results presented
in Section 3. The possible values for fields α and β are the classical ones [14].

3. An overview of multicriteria optimization results

Many results are available in multicriteria optimization literature. The aim of
this section is to provide general guidelines on the most commonly used results.
Steuer [86] presents a detailed review of some of these results (mainly for linear
problems). Different approaches can be considered to take criteria into account,
depending on different factors:

1. Tradeoff: are tradeoff between criteria allowed?
2. Weights: is it possible to associate a weight to each criterion?
3. Goal: is it possible to associate a particular goal value to each criterion?
4. Bound: does an upper bound exist for each criterion?

Depending on the approach, one factor or more can be taken into account. Several
results are then available to compute Pareto optima. The different approaches
generally transform the original multicriteria problem into a new monocriterion
problem in which the objective function is an aggregation of the different criteria
with new parameters.
• Geoffrion [43] proposes a result when a convex combination of criteria is

minimized. This result allows to compute the set of proper Pareto optima (set
PRE), that is a subset of E.

Theorem 1. [43] Let S be the convex set of solutions and K criteria Zi that are
convex functions on S. x0 is a proper Pareto optimum iff ∃α ∈ RK , with αi ∈]0; 1[
and

∑K
i=1 αi = 1 such that x0 is an optimal solution of problem (Pα):

Min g(Z(x)) with g(Z(x)) =
∑K
i=1 αiZi(x)

subject to x ∈ S
PRE is the set of proper Pareto optima and one has PRE ⊆ E.

For problems that can be modeled using a mixed integer or linear program with
a finite number of constraints, one has PRE = E [86]. If the weights αi can be
equal to 0 or 1 then the set WE can be computed using Theorem 1. At last,
if the convex hypotheses do not hold, then only the sufficient condition of the
theorem is true. It means that every solution to problem (Pα) is a strict or weak
Pareto optima (depending on αi being equal to 0 and 1 or not). These computable
solutions are called the supported Pareto optima and belong to the border of the
convex hull of Z. The other Pareto optima are non supported and belong to the
inside of the convex hull of Z (see Fig. 1).
• The parametric approach consists in minimizing an objective function subject

to bound constraints on the criteria.

Theorem 2. [85] Let GY be the set of functions from RK to R that are strictly
increasing functions, lower bounded on Z. Let g ∈ GY . x0 ∈ S is a strict Pareto



148 V. T’KINDT AND J.-C. BILLAUT

z6

PPPPP

co(Z)

J
J

J
J

TT

LL```̀

@
@

@@

J
JJ

z0

s

s
s

s

s

s

s

s

s
s

s

s

s

Z2

Z1

-

6

z1

z2

z3

z4

z1, z2, z3, z6 : supported strict Pareto optima
z0 : non supported strict Pareto optimum

z4 : non supported weak Pareto optimum
z5 : supported weak Pareto optimum

������

z5

Figure 1. Supported and non supported Pareto optima.

optimum iff ∃b ∈ RK such that x0 is an optimal solution of problem (P(g,b)):
Min g(Z(x))
subject to x ∈ S and Z(x) ≤ b.

The parametric approach is useful because Theorem 2 ensures that only the set
E can be computed by solving all possible problems (P(g,b)) when g is fixed. A
similar result holds for weak Pareto optima if one consider an increasing function
instead of a strictly increasing function.
• A similar approach is the ε-constraint approach and has first been proposed

in [47]. A basic result is given in Theorem 3.

Theorem 3. [89] Let k ∈ [1;K] be a number of criterion. If ∃ εk =
(εk1; . . . ; εkk−1; εkk+1; . . . ; εkK) ∈ RK−1 such that x0 ∈ S is an optimal solution of
problem (Pεk ):

Min Zk(x)
subject to x ∈ S and Zi(x) ≤ εki ∀i ∈ [1;K], i 6= k

then x0 is a weak Pareto optimum.

It can be shown that the set of all solutions determined using Theorem 3 is a
subset of WE and that this subset contains set E. A more general form of this
theorem considers all problems (Pεk ), ∀k = 1...K, ∀εk. It states that the set of all
solutions to all problems (Pεk ) is a subset of WE [62]. If the convex hypothesis
for S and Zi, ∀i = 1...K, holds, then the whole set WE can be determined by the
general form of Theorem 3.
• An other well known way to compute Pareto optima consists in minimizing a

metric over the set Z. These approaches are generally based on an utopian point
zut defined by zuti ≤ min

x∈S
(Zi(x)), ∀i = 1...K, with at least one strict inequality.

Here, we consider the augmented weighted Tchebycheff metric.
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Theorem 4 (see for instance [89]). x0 ∈ S is a strict Pareto optimum iff ∃λ ∈
RK+∗, zut ∈ RK an utopian point and ∃ρ ∈ R∗+ a small value, such that x0 is an
optimal solution of problem (P(λ,ρ)):

Min ‖Z(x)− zut‖Tpa
subject to x ∈ S

with ‖Z(x)− zut‖Tpa = max
1≤i≤K

(λi|Zi(x)− zuti |) + ρ
K∑
i=1

|Zi(x)− zuti |.

The main difficulty in the use of Theorem 4 lies in the setting of value ρ. For
instance, Steuer [86] proposes to set this value around 10−6. Some particular cases
are the weighted Tchebycheff metric (ρ = 0) and the Tchebycheff metric (ρ = 0
and λi = 1, ∀i = 1...K) for which Bowman [16] proposes some results, yet weaker
than that of Theorem 4. Other metrics such as the weighted Lp metric can be used.
• The goal-attainment approach has been proposed by Gembicki [42].

Theorem 5. [42, 103] x0 ∈ S is a weak Pareto optimum iff ∃ zref ∈ RK a ref-
erence point and w ∈ RK+∗ a weight vector such that x0 is an optimal solution of
problem (P(zref ,w)):

Max g(Z(x)) with g(Z(x)) = min
1≤i≤K

(
1
wi

(zref
i − Zi(x)

)
subject to x ∈ S.

The advantage of this theorem compared to Theorem 4 lies in the reference criteria
vector: in the goal-attainment approach the reference point can be any point in
the criteria space. One disadvantage is that for fixed weights wi, the computed
weak Pareto optimum depends on the relative position of the goal zref compared
to the set Z (see [89]). On the other hand, one can show that an optimal solution

to the problem Lex

(
min1≤i≤K

(
1
wi

(zref
i − Zi(x))

)
,
∑K
i=1

(
1
wi

(zref
i − Zi(x))

))
is a

strict Pareto optimum [90].
• Other approaches are possible to minimize multiple criteria. One of the

most used in scheduling problems is the minimization of a lexicographical order of
criteria, for instance Z1 → Z2 → . . .→ ZK . The aim is to find a solution x0 ∈ SK
with Si = {x ∈ Si−1/Zi(x) = min

x′∈Si−1
(Zi(x′))}, ∀i = 1...K, and S0 = S. A solution

to this problem is a strict Pareto optimum and each solution x1 ∈ Si, ∀i = 1...K,
is a weak Pareto optimum. Notice that with this approach no tradeoff between
criteria is allowed, so it can only be used in an a priori resolution algorithm. At
last an obvious way to solve a multicriteria problem is to propose an algorithm that
enumerates the whole set E. Other particular approaches can be found in [29].

4. An overview of multicriteria scheduling problems

Surveys on multicriteria scheduling literature only focus on solved scheduling
problems, but do not present the associated multicriteria optimization results. For
some multicriteria scheduling problems, authors choose an objective function that
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is not relevant, regarding the scheduling problem they consider. The knowledge
of some basic results in the field of multicriteria optimization can prevent such
mistakes. For instance, an optimal solution to the problem of minimizing a convex
combination of criteria is a supported Pareto optimum for non convex problems. It
means that some solutions (the non supported Pareto optima) that are potentially
interesting for the decision maker can never be determined with such an approach.
On another hand, the minimization of a criterion subjected to bound constraints
on the other criteria (ε-constraint approach) leads to a weak Pareto optimum and
not necessarily to a strict Pareto optimum. Unfortunately, we note that most of
multicriteria scheduling problems tackled in the literature deal with one of these
two ways to handle the criteria. It implies that either some interesting solutions can
not be obtained, or some non interesting solutions are determined. The knowledge
of these theoretical results from the multicriteria optimization field, would have
allowed to avoid these problems. The notations used in this section are described
in Table 1.

Table 1. Basic notations in scheduling.

n number of jobs

pi (pi,j) processing time of job i (on machine j)

Data di due date of job i

si desired starting time of job i

ri release date of job i

Ci completion time of job i

Ei earliness of job i: Ei = max(0, di −Ci)
Variables Li lateness of job i: Li = Ci − di

Ti tardiness of job i: Ti = max(0, Ci − di)
Ui flag of tardiness for job i: Ui = 1 if i is tardy and 0 otherwise

permu in a flowshop problem the job sequence is the same for each machine

pmtn jobs can be interrupted and resumed later

Constraints nmit no machine idle times are allowed

Ssd sequence dependent setup times occur between jobs

fmax general maximum function strictly increasing with the completion times

Cmax maximum completion of jobs: Cmax = maxi=1..n(Ci)

Lmax maximum lateness of jobs: Lmax = maxi=1..n(Li)

Lmin minimum lateness of jobs: Lmin = mini=1..n(Li)

Tmax maximum tardiness of jobs: Tmax = maxi=1..n(Ti)

Criteria Emax maximum earliness of jobs: Emax = maxi=1..n(Ei)

C (C
w

) Sum of completion times: C =
Pn
i=1(Ci) (weighted sum)

T (T
w

) Sum of tardiness: T =
Pn
i=1(Ti) (weighted sum)

E (E
w

) Sum of earliness: E =
Pn
i=1(Ei) (weighted sum)

U (U
w

) Number of late jobs: U =
Pn
i=1(Ui) (weighted sum)

One class of criteria considered in scheduling literature contains the criteria
based on completion times. The makespan, noted Cmax, is the length of the
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scheduling period that must be minimized. The total flowtime criterion can also
be minimized. This criterion, noted C, is the sum of the completion times of
jobs. It can either be weighted or not. A second class of well known criteria
contains the criteria based on due dates. Maximum cost functions are for example
the maximum lateness of jobs (criterion Lmax) or the maximum tardiness of jobs
(criterion Tmax). Another possibility is to minimize the maximum earliness of jobs
(criterion Emax). Sum cost functions are for example the mean earliness (criterion
E), the mean tardiness (criterion T ) or the number of late jobs (criterion U). All
these sum criteria can also be considered with weighted jobs.

Most multicriteria scheduling problems are related to only one machine prob-
lems, and the most frequent criteria to just-in-time problems. In this section we
present an overview of one machine, parallel machines and flowshop multicriteria
scheduling problems.

The survey is organized as follows: for each problem, we present the literature
according to a classification based on the kind of the criteria optimized. The first
class contains problems with at least one criterion based on the sum of completion
times of jobs. The second class contains problems with at least one criterion being
a crashing time cost of jobs. The third class concerns multicriteria problems with
a tool changing cost. The two last classes contain problems with only due date
based criteria. We distinguish problems dealing with Just-In-Time scheduling from
problems with other due date based criteria. A detailed version of this survey is
proposed in [89].

4.1. One machine scheduling problems

Literature on multicriteria scheduling mainly deals with one machine scheduling
problems. They are of some interest since their properties can be either generalized
to more complicated environments or used to design some heuristic algorithms for
multi-machine problems.

A general result is given by Hoogeveen [49] who shows the problem 1||ε
(f1

max/f
2
max, . . . , fKmax) is polynomially solvable when f imax(S) =

max1≤j≤n(f ij(Cj(S))) with f ij increasing functions of the completion times Cj .
The author shows that the cardinality of set E is at most (n(n− 1)/2 + 1)K−1.

4.1.1. Minimizing the sum of completion times of jobs

In this section we present the problems in which the mean completion time of
jobs is considered as one of the criteria.

The problem 1|di|ε(C/Lmax) with Lmax = 0 has been solved by Smith [84].
When Lmax criterion has no mandatory value, the problem is polynomially solvable
and has been tackled by Heck and Roberts [48]. Van Wassenhove and Gelders [97]
and Nelson et al. [66] propose algorithms to compute the set E. Unfortunately,
the branch-and-bound algorithm of Nelson et al. actually computes a subset of
the set WE. The problem 1|di|F`(Tmax, C) belongs to the class P and has been
studied by Sen and Gupta [79]. Their algorithm computes supported Pareto op-
tima. Some problems with a general maximum cost function fmax are considered.
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Emmons [30] studies the problem 1||Lex(fmax, C) that belongs to the class P .
John [51] proposes an enumerative algorithm that computes the set E. The au-
thor shows that |E| < 1

4n
2(pmax − pmin) where pmax and pmin are the maximum

and the minimum processing time of jobs. Hoogeveen and Van de Velde [50] pro-
pose an algorithm that also computes the set E. It proceeds by iteratively solving
the problem 1||ε(C/fmax). The authors show that |E| < n(n − 1)/2 + 1. The
problem 1|di, nmit|ε(C/Emax) for which the insertion of idle times before jobs
is not allowed is strongly NP-hard. Azizoglu et al. [5] propose a heuristic that
approximates a subset of WE. The problem 1|di, nmit|F`(C,Lmax − Lmin) for
which the complexity is unknown has been tackled by Sen et al. [80]. They pro-
pose a branch-and-bound algorithm that enumerates the set of supported strict
Pareto optima. The problem 1|di|Lex(U,C) is NP-hard. Emmons [31] proposes
a heuristic to solve it. For the problem 1|di|ε(C/U) Nelson et al. [66] propose
a branch-and-bound algorithm and two heuristics. These algorithms compute or
approximate a subset of set WE. The problem 1|di|#(T ,C) has been solved by
Lin [60] who proposes a dynamic programming algorithm. This problem is NP-
hard. The problem 1|di|F`(E,C) has been tackled by Fry and Leong [38]. Its
complexity is unknown and a mixed integer program is proposed by the authors.
The problem 1|di|ε(C/U, Tmax) has been studied by Nelson et al. [66]. They pro-
pose a branch-and-bound algorithm that computes a subset of set WE.

4.1.2. Minimizing the total weighted completion time of jobs

Other works deal with the minimization of the total weighted completion time of
jobs. Chen and Bulfin [21] solve fifteen polynomial problems with unit processing
time jobs. The problem 1|di|Lex(Lmax, C

w
) has been shown strongly NP-hard by

Hoogeveen [49]. For this problem, a dynamic programming algorithm is proposed
by Chand and Schneeberger [18]. The problem 1|di|ε(C

w
/Lmax) with Lmax = 0 is

strongly NP-hard and is studied in [10,19,30,84]. Several heuristics are proposed
by Heck and Roberts [48] and Burns [17] when no value on Lmax criterion is
imposed. The equivalence between the problem with a fixed value for Lmax and
that without a fixed value for Lmax has been shown by Miyazaki [63]. Moreover
the author proposes an efficient algorithm to solve this problem. The problem
1|di|F`(C

w
, T

w
) is strongly NP-hard and has been studied by Van Wassenhove

and Gelders [96]. The authors propose three branch-and-bound procedures and a
dynamic programming algorithm to solve it.

4.1.3. Minimizing the total weighted crashing time cost of jobs

When the exact processing times of jobs are variables to be computed, the
scheduling problem can be modeled as a multicriteria scheduling problem. In this
case, one has to minimize “crashing costs” and we have pi ∈ [p

i
; pi]. This kind of

problem can occur in hoist scheduling problems in which materials (jobs) must be
plundged in a chemical bath. Chemical engineers are able to define a lower bound
p
i

and an upper bound pi on the duration pi of the processing. The aim is to
compute the exact processing time for each job. Another important constraint is
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linked to the transportation system between baths. If there is only one bath, the
problem is a one machine scheduling problem and the constraint on the transporta-
tion system disappears. The problem 1|pi ∈ [p

i
; pi], di|F`(Tmax, CC

w
) is tackled by

Vickson [99]. The criterion CC
w

is the weighted sum of the crashing costs of jobs.
This problem belongs to the class P . The problem 1|pi ∈ [p

i
; pi], di|ε(CC

w
/Tmax)

is solved by Van Wassenhove and Baker [95]. The authors show that their poly-
nomial algorithm only computes the set of supported strict Pareto optima. This
algorithm is then extended to solve problems with a general maximum cost func-
tion fmax instead of criterion Tmax. Some additional assumptions hold for the
function fmax. The problem 1|pi ∈ [p

i
; pi]|F`(C,CC

w
) is also solved by Vick-

son [99]. This problem belongs to class P . When the weighted mean completion
time criterion is considered, the problem remains open. Vickson [98] conjectures
that the problem is NP-hard and presents a heuristic and a branch-and-bound
algorithm.

4.1.4. Minimizing the tool changing costs

Some multicriteria scheduling problems deal with tool changing costs. The
problem 1|class, order, Ssd|Lex(SC,AC) has been tackled by Gupta et al. [44].
The jobs belong to different classes and different orders have to be processed.
Each order is made of different jobs. Sequence dependent setup times occur when
jobs from different classes are processed in sequence. The aim is to minimize the
sum of the setup costs SC and the carrying costs AC. The authors propose an
O(n log(m)) polynomial time algorithm to solve it. An O(n) algorithm for problem
1|class, order, Ssd|Lex(AC,SC) is also presented. In [15] two NP-hard problems
are tackled. Bourgade et al. are interested in the problem 1|di, Ssd| F (SC, Tmax)
with two different forms of function F . The problem 1|Ssd|F`(SC,C

w
) is NP-

hard. Barnes and Vanston [11] propose a heuristic, a branch-and-bound algorithm
and a dynamic programming algorithm.

4.1.5. Minimizing due date based criteria

Chen and Bulfin [21] solve problems with due date based criteria. Eighteen
polynomial problems with unit processing times are considered. In these problems
either a lexicographical order of criteria or a convex combination of criteria is
minimized. The problem 1|di|Lex(U, Tmax) is studied by Shantikumar [82]. It
is an open problem. A branch-and-bound algorithm is proposed. The problem
1|di|ε(Tmax/U) has been tackled by Nelson et al. [66]. They present a branch-
and-bound algorithm that computes a subset of the set WE. They also present a
heuristic that approximates this subset.

4.1.6. Minimizing Just-In-Time criteria

Just-In-Time (JIT) scheduling problems have often been studied. They be-
long to the class of multicriteria scheduling problems since they involve measur-
ing earliness and tardiness of jobs. Such problems frequently arise in industry,
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as for instance in car seat production. When a semi-finished car is stored, an
order is sent to the car seat maker who has five hours to produce and send
the desired seats. Finishing too early induces high storage costs for the car
maker. Finishing too late implies that some cars are re-processed from pre-
vious part in the assembly line. For these reasons, the car seat must be de-
livered on time. JIT problems are the most important part of the literature
on multicriteria scheduling problems. Hoogeveen [49] is interested in problems
1|si, di, di − si ≤ pi, nmit|ε(Lmax/Pmax) and 1|si, di, di − si ≤ pi|ε(Lmax/Pmax).
Pmax is the maximum promptness and is defined by Pmax = max1≤i≤n(si − ti)
where ti is the real starting time of job Ji. The author shows that these problems
are polynomially solvable. When the constraint di − si ≤ pi does not hold, these
problems are strongly NP-hard. An O(n log(n)) algorithm is proposed for prob-
lem 1|si, di, di − si ≤ pi, nmit|ε(Lmax/Pmax). Then an algorithm that computes
the set E is introduced and the author shows that the cardinality of this set is
at most n. For the problem 1|si, di, di − si ≤ pi|ε(Lmax/Pmax) an O(n2 log(n))
algorithm is proposed. The problem 1|di|F`(E, T ) with F`(E, T ) = E + T is NP-
hard. Garey et al. [41] propose an O(n log(n)) algorithm to compute the optimal
starting times of jobs when the sequence of jobs is fixed. Moreover they show
how this algorithm can be used to solve problems with additionnal constraints.
The problem 1|di = d ≥

∑n
i=1 pi, nmit|F`(E, T ) with F`(E, T ) = E + T has been

studied by Kanet [52] who proposes an O(n2) algorithm. The problem 1|di = d ≥
δ, nmit|F`(E, T ) with F`(E, T ) = E + T has been tackled by Bagchi et al. [8].
They consider the case where d ≥ δ with either δ = p1 +p3 + . . .+pn if n is odd or
δ = p2+p4+. . .+pn if n is even. They propose a polynomial time algorithm to solve
it. Bector et al. [12] deal with the problem 1|di = d, d unknown, nmit|F`(E, T )
with F`(E, T ) = E + T . They propose a mixed integer program for this problem
and a polynomial algorithm. For the problems 1|pi = 1, di, nmit|ε(E/U), 1|pi
= 1, di, nmit|ε(Emax/U) and 1|pi = 1, di, nmit|ε(F`(E, T )/U) with F`(E, T ) =
E + T , Kondakci et al. [53] propose some linear programs. Then, for all these
problems, they propose algorithms to compute the set E. The problem 1|di = d ≥∑n
i=1 pi, nmit|F`(E

w
, T

w
) with F`(E

w
, T

w
) =

∑n
i=1 pi(Ei + Ti) has been tackled

by Ahmed and Sundararaghavan [2] who propose an optimal algorithm. The prob-
lem 1|pi = 1, di|F (Ei, Ti) with F (Ei, Ti) = max1≤i≤n(Ei + Ti) has been studied
by Garey et al. [41]. They propose an O(n log(n)) algorithm to solve it. When the
earliness of jobs are related to desired starting times si of jobs, Sidney [83] deals
with the problem 1|agree si, di|F (f(Tmax), g(Emax)) where F (f(Tmax), g(Emax)) =
max(f(Tmax), g(Emax)) and agree si means that starting times are agreeable, i.e.
si ≤ sj ⇔ di ≤ dj , ∀i, j. This problem belongs to the class P and Sidney proposes
anO(n2) algorithm. In [55] an improved algorithm in O(n log(n)) is presented. For
the problem 1|di unknown, nmit,A|F`(E, T ,A) where criterion A is the total de-
viation of computed di from the desired common due date A, Seidmann et al. [77]
propose an O(n log(n)) algorithm to solve it. The problem 1|di = d, d unknown,
nmit|F`(E, T , d) has also been tackled by Seidmann et al. [70]. They propose a
polynomial algorithm. They also study the extension of this algorithm to similar
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problems. The problem 1|di = d, d unknown, lots, nmit|F`(E, T ,B, d) where
criterion B is the number of lots completed after date d is studied by Chen [24].
In this problem the jobs can be grouped in lots. The author proposes a dynamic
programming algorithm which complexity is O(n5). Fry and Leong [37] propose a
mixed integer model for the NP-hard problem 1|di|F`(E, T ). For the problem
1|di = d, t0 = 0, nmit|F`(E, T ) with t0 the starting time of the schedule,
Sundararaghavan and Ahmed [87] propose a heuristic. Bagchi et al. [7] pro-
pose a branch-and-bound algorithm to solve the problem 1|di = d <

∑n
i=1 pi,

nmit|F`(E, T ) which is NP-hard. The problem 1|di = d < δ, nmit|F`(E, T ) has
been studied by Bagchi et al. [8]. When d < δ, with eiter δ = p1+p3+. . .+pn if n is
odd or δ = p2+p4+. . .+pn if n is even, the authors propose a branch-and-bound al-
gorithm. Szwarc [88] also studies this problem when t0 = 0. He proposes a branch-
and-bound algorithm. The problem 1|si, di|F`(E, T ) with F`(E, T ) = E + T has
been tackled by Koulamas [54]. The earliness of each job is specifically defined
by Ei = max(si − ti, 0) with ti its real starting time. The author shows that
this problem is NP-hard and he presents seven heuristics and an optimal algo-
rithm. Chand and Schneeberger [20] deal with the problem 1|di, nmit|ε(E

w
/U).

They show that this problem is NP-hard and propose a heuristic and a dy-
namic programming algorithm. The problem 1|di|F`(E

w
, T

w
) is strongly NP-

hard and has been studied by Fry et al. [34] who propose a heuristic using linear
programing to solve it. Fry and Blackstone [36] present a mixed integer pro-
gram for this problem. When no machine idle time is allowed, Ow and Mor-
ton [68, 69] propose several filtered beam search algorithms. The problem 1|di =
d ≥

∑n
i=1 pi, nmit|F`(E

w
, T

w
) is NP-hard. Van den Akker et al. [94] propose an

algorithm combining Lagrangean relaxation and column generation. Azizoglu and
Webster [6] consider the problem in which there exist classes of jobs and setup
times between jobs of different classes. The problem tackled is noted 1|di = d ≥∑n
i=1 pi, Ssd, nmit|F`(E

w
, T

w
). They propose some dominance conditions and a

branch-and-bound algorithm. A filtered beam search based heuristic is also pre-
sented. The problem 1|di = d, d unknown, Ssd, nmit|F`(E

w
, T

w
) has been studied

by Webster et al. [102]. It is a NP-hard problem and the authors propose a genetic
algorithm to solve it. The problem 1|di|F`(C, T ,E) isNP-hard. Fry et al. [39] pro-
pose a branch-and-bound algorithm to solve it. The problem 1|di, nmit|F (Ei, Ti)
with F (Ei, Ti) =

∑n
i=1(Ei + Ti)2 has been tackled by Gupta and Sen [46]. Its

complexity is unknown. They propose a branch and bound algorithm and a
heuristic. The problem 1|di = d, d unknown, nmit|F (Ei, Ti) has been studied by
Bagchi et al. [9]. It remains open. The problem 1|di unknown, nmit|F`(E

w
, T

w
)

has been studied by Adamopoulos and Pappis [1]. Its complexity is open. For
problem 1|di = d, nmit|F`(

∑n
i=1 E

2
i ,
∑n
i=1 T

2
i ), Bagchi et al. [7] propose a branch

and bound algorithm. Its complexity is open. The problem 1|di|F (E, T ,C) with
F (E, T ,C) = (1 − α)(E − T )2 + αC is open. Dileepan and Sen [28] present a
branch and bound algorithm to solve it.



156 V. T’KINDT AND J.-C. BILLAUT

4.2. Parallel machines scheduling problems

These problems are important because in practice there are often multiple re-
sources dedicated to the processing of some operations (in industry as well as in
parallel computing). Moreover resolution algorithms for such problems can be used
in more general decomposition algorithms for multi-stage shop problems. These
heuristics can be efficient if the multiple resources stage is a bottleneck one. Few
multicriteria scheduling problems on parallel machines have been dealt with in the
literature.

4.2.1. Minimizing completion times of jobs

The problem P |pmtn|Lex(C,Cmax) is polynomially solvable. Leung and
Young [57] present an O(n log(n)) algorithm to solve it. The problem Q|pmtn|
ε(C/Cmax) has been considered by McCormick and Pinedo [61]. The preemp-
tion of jobs occur at real times. They propose an algorithm that computes
all the strict Pareto optima that correspond to extreme points of the solution
set, which is a polytope in the decision space. The complexity of this algo-
rithm is in O(m3n). The problem P |pmtn, di|Lex(Cmax, Lmax) is polynomially
solvable. T’kindt et al. [91] propose a pseudo-polynomial time implementation
in O(n4 log2(C∗max)) using Horn’s procedure for the P |pmtn, d̃i|−. The problem
P |pmtn, di|Lex(Lwmax, C

w
) with Lwmax = max

i=1...n
(wiLi) has been studied by T’kindt

et al. [90]. This problem is strongly NP-hard and the authors propose a heuristic
to solve it.

4.2.2. Maximizing the total production margin of jobs

T’kindt et al. [92] consider the problem R|pmtn|F`(Imax,M) where the pre-
emption of jobs occurs at real times. The aim is to maximize the total margin M
and to minimize the maximum difference of machines workload Imax. The authors
propose an interactive algorithm to solve the problem. In [3] a similar algorithm
is presented when the set of solutions is a discrete set.

4.2.3. Minimizing the total weighted crashing time cost of jobs

When crashing costs are involved Alidaee and Ahmadian [4] study the problems
R|pi,j ∈ [p

i,j
; pi,j ]|F`(C,CC

w
) and R|pi,j ∈ [p

i,j
; pi,j ], di = d,

d unknown|F`(T ,E,CC
w

). These problems are shown to be polynomially solvable
(reduction to the assignment problem).

4.2.4. Minimizing Just-In-Time criteria

The problem P |di = d ≥
∑n
i=1 pi, nmit|F`(E, T ) with F`(E, T ) = E + T has

been tackled by Sundararaghavan and Ahmed [87]. This problem belongs to the
class P and the authors present an optimal algorithm. The problem P |di =
d, d unknown, nmit|F`(E, T ) with F`(E, T ) = E + T is polynomially solvable.
Emmons [32] proposes an algorithm to solve it. The problem with machines having
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different non job dependent speeds (proportionnal machines) is also tackled by
Emmons, however the complexity of this problem remains open. The problem
P |di = d ≥

∑n
i=1 pi, nmit|fmax(E

w
, T

w
) with fmax = max1≤i≤n(wi(Ei + Ti)) is

studied by Li and Cheng [58]. The authors show that this problem is strongly
NP-hard. Then they propose an O(mn2) heuristic to solve it. The problem
R|di = d, d unknown, pi = p, nmit|F`(E, T , d) is polynomially solvable. Cheng
and Chen [25] present an algorithm to solve it.

4.3. Flowshop scheduling problems

In many manufacturing systems, jobs with multiple operations use machines in
the same order. Machines are set up in series and between each machine a queue
can be found, in which jobs are waiting for processing. When a job has finished its
processing on a machine it goes in the waiting queue of the next machine. Several
rules (FIFO for instance) can be used to order the jobs in the queues. The most
frequent multicriteria flowshop scheduling problems in literature are about criteria
Cmax and C, for two machines or m machines.

4.3.1. Minimizing completion times of jobs

The problem F2|permu|Lex(Cmax, C) is strongly NP-hard. Rajendran [71]
presents two heuristics and a branch-and-bound algorithm. This problem has also
been tackled by Neppalli et al. [67] who propose a genetic algorithm. Recently,
Gupta et al. [45] designed nine heuristic algorithms. All these heuristics out-
perform Rajendran’s ones. Besides, T’kindt et al. [13, 93] propose two heuristics
that outperform Rajendran’s heuristics. They also propose branch-and-bound
and dynamic programming algorithms. The problem F2|permu|F`(Cmax, C) is
strongly NP-hard. Nagar et al. [65] and Serifoglu and Ulusoy [81] propose some
heuristics and branch-and-bound algorithms. The problem F2|permu|ε(C/Cmax)
is strongly NP-hard and is considered by Sayin and Karabati [76]. They pro-
pose a branch-and-bound algorithm that computes the set E. For the problem
F |permu|Lex(Cmax, C), Selen and Hott [78] and Wilson [104] propose mixed in-
teger models. The problem F |permu|Cmax, C has been tackled by Gangadharan
and Rajendran [40] and Rajendran [72,73] for which they propose different heuris-
tics. Some bicriteria hybrid flowshop problems are tackled by Riane et al. [74].
These ones are NP-hard and can be denoted by FHk, (PM (l))kl=1||F`(Cmax, C)
and FHk, (PM (l))kl=1||ε(C/Cmax) (see [101]). Two mixed integer programs and
some heuristics are presented. The problem F2|permu, di|#(Cmax, Tmax) is NP-
hard. Daniels and Chambers [26] present a branch-and-bound algorithm that com-
putes the set E. A heuristic is also proposed to approximate this set. In the case
where the number of machines is m, the authors propose a heuristic to solve the
problem F |permu, di|ε(Tmax/Cmax). The problem FHk, (PM (l)(t))kl=1|r

(1)
i , d

(k)
i |

ε(Cmax/Tmax) with Tmax = 0 has been studied by Vignier et al. [100]. This
problem is NP-hard. At each stage and each time t, the number of available
ressources belongs to [M (l) − 1;M (l)] where M (l) is the number of resources at
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stage l. The authors propose a branch-and-bound algorithm. For the prob-
lem F2|permu, di|#(Cmax, U), Liao et al. [59] propose a branch-and-bound al-
gorithm to compute the set E. The authors also consider the problem F2|permu,
di|#(Cmax, T ) for which they propose a branch and bound algorithm that enu-
merates the set E.

4.3.2. Minimizing Just-In-Time criteria

In the context of JIT scheduling, Zegordi et al. [105] study the problem F |permu,
di, nmit|F`(E

w
, T

w
). They propose a simulated annealing algorithm to solve this

strongly NP-hard problem.

5. Conclusion

In this paper we present a general framework, that allows to deal with mul-
ticriteria scheduling problems, according to Decision Aid concepts. Multicriteria
optimization literature allows us to define some new objective functions for sched-
uling problems. Then we present a survey on multicriteria scheduling problems
and a notation for the new possible objective functions for multicriteria scheduling
problems. An overview of multicriteria scheduling literature shows that the differ-
ent works mainly deal with the minimization of a convex combination of criteria,
or with the minimization of a lexicographical order of criteria. The ε-constraint
approach is also used in few papers. We note that an important part of the works
does not take account of the properties and results related to multicriteria opti-
mization literature. This confirms the interest of bringing together multicriteria
optimization and multicriteria scheduling literatures.
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Automation-Computers Engineering-Image-Signal (AGIS’97). Angers, France (1997) 179-
184.

[92] V. T’kindt, J.-C. Billaut and C. Proust, Solving a bicriteria scheduling problem on unre-
lated parallel machines occuring in the glass bottle industry. Eur. J. Oper. Res. 135 (2001)
42-49.

[93] V. T’kindt, P. Richard, C. Proust and J.-C. Billaut, Resolution of a 2-machine bicriteria
flowshop scheduling problem, in Int. Conference on Methods and Applications of Multicri-
teria Decision Making (MAMDM’97). Mons, Belgium (1997) 139-143.

[94] M. VandenAkker, H. Hoogeveen and S. VandeVelde, in 6th International Workshop on
Project Management and Scheduling (PMS’98). Istanbul, Turkey (1998).

[95] L. VanWassenhove and K. Baker, A bicriterion approach to time/cost trade-offs in sequenc-
ing. Eur. J. Oper. Res. 11 (1982) 48-54.

[96] L. VanWassenhove and L. Gelders, Four solution techniques for a general one machine
scheduling problem: A comparative study. Eur. J. Oper. Res. 2 (1978) 281-290.

[97] L. VanWassenhove and L. Gelders, Solving a bicriterion scheduling problem. Eur. J. Oper.
Res. 4 (1980) 42-48.

[98] R. Vickson, Choosing the job sequence and processing times to minimize total processing
plus flow cost on a single machine. Oper. Res. 28 (1980) 115-167.

[99] R. Vickson, Two single machine sequencing problems involving controllable job processing
times. IEEE Trans. 12 (1980) 158-162.

[100] A. Vignier, J.-C. Billaut and C. Proust, Solving k-stage hybrid flowshop schedul-
ing problems, in Multiconference on Computational Engineering in Systems Applica-
tions (CESA’96), Symposium on Discrete Events and Manufacturing Systems (IEEE-
SMC/IMACS). Lille, France (1996) 250-258.

[101] A. Vignier, J.-C. Billaut and C. Proust, Les flowshop hybrides : état de l’art. RAIRO:
Oper. Res. 33 (1999) 117-183.

[102] S. Webster, P. Job and A. Gupta, A genetic algorithm for scheduling job families on a
single machine with arbitrary earliness/tardiness penalties and an unrestricted common
due date. Internat. J. Production Res. 36 (1998) 2543-2551.



MULTICRITERIA SCHEDULING PROBLEMS: A SURVEY 163

[103] A. Wierzbicki, The use of reference objectives in multiobjective optimization, edited by G.
Fandel and T. Gal, Multiple criteria decision making, theory and application. Springer-
Verlag (1990) 468-486.

[104] J. Wilson, Alternative formulations of a flow-shop scheduling problem. J. Oper. Res. Soc.
40 (1989) 395-399.

[105] S. Zegordi, K. Itoh and T. Enkawa, A knowledgeable simulated annealing scheme for the
early/tardy flow shop scheduling problem. Internat. J. Production Res. 33 (1995) 1449-
1466.

to access this journal online:
www.edpsciences.org


