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Abstract

In this paper, we focus on finite volume approximation schemes to solve a non-local
material flow model in two space dimensions. Based on the numerical discretisation with
dimensional splitting, we prove the convergence of the approximate solutions, where the
main difficulty arises in the treatment of the discontinuity occurring in the flux function. In
particular, we compare a Roe-type scheme to the well-established Lax-Friedrichs method
and provide a numerical study highlighting the benefits of the Roe discretisation. Besides,
we also prove the L1-Lipschitz continuous dependence on the initial datum, ensuring the
uniqueness of the solution.
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1 Introduction

In this paper, we consider the Cauchy problem for a non-local scalar conservation law in two
space dimensions, namely{

∂tρ+∇ · (ρvstat(x, y) + ρvdyn(ρ)) = 0, (t, x, y)∈ [0, T ]× R2,
ρ(0, x, y) = ρo(x, y), (x, y)∈R2,

(1.1)

for any T > 0, where for the weighting factor ε > 0

vdyn(ρ) = H(ρ− ρmax) I(ρ) with I(ρ) = −ε ∇(η ∗ ρ)√
1 +

∥∥∇(η ∗ ρ)
∥∥2
. (1.2)

Here, H denotes the Heaviside function which becomes active whenever the maximal density
ρmax > 0 is exceeded.

The above model was introduced in [9], to describe the flow of objects on a conveyor belt.
In particular, the unknown function ρ = ρ(t, x, y) is the density of transported parts, vstat is
the velocity vector field induced by the conveyor belt, which is constant in time. So, below the
maximal density, parts are transported with the velocity of the conveyor belt. On the other
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hand, the dynamic velocity vector field vdyn is active only at high densities and accounts
for colliding parts through the operator I(ρ). The negative gradient of the convolution η ∗ ρ
pushes the mass towards lower density regions. The particular choice of the collision operator
I(ρ) was introduced in [5] to describe crowd dynamics.

Conservation laws with non-local flux function have been recently introduced in the lit-
erature to describe transport phenomena accounting for non-local interaction effects among
agents, such as road traffic flow [3] or pedestrian dynamics [5]. General well-posedness results
have been provided by [2] in the scalar one-dimensional case, while [1] deals with systems of
non-local conservation laws in multi-space dimensions. Even if the latter result applies to our
problem (1.1), estimates in [1] where obtained for general flux functions using finite volume
approximate solutions constructed via Lax-Friedrichs scheme. The aim of the present paper
is instead to derive sharp estimates for the Roe scheme, which is known to give less diffusive
solutions and is therefore computationally more convenient, especially in the case of non-local
problems in multi-D. The same remark holds for the L1-stability estimates, which have been
derived from scratch even if more general results are present in the literature [12, 13].

We finally remark that, even if the original model proposes the use of the discontinuous
Heaviside function, the stability of the numerical schemes requires a smooth approximation
of it. Indeed, it can be noticed that L∞-norm of the derivative H ′ appears in the estimates
(for instance in the CFL condition (3.9) that guarantees the BV-estimates), which blow up
with it.

The paper is organised as follows: for a better overview, we introduce our main results in
Section 2 and start then to prove convergence of the approximate solution constructed by the
Roe scheme in Section 3. We also add a proof of the Lipschitz continuous dependence on the
initial data in Section 4. Sections 5 and 6 are devoted to the comparison of results obtained
by the Lax-Friedrichs method. The numerical results emphasise the good performance of the
Roe scheme.

2 Main results

Throughout the paper, we will denote I(r, s) := [min {r, s} ,max {r, s}], for any r, s ∈ R. We
require the following assumptions to hold:

(v) vstat ∈ C2(R2;R2).

(H) The function H is a smooth approximation of the Heaviside function such that, setting

f(r) = r H(r − ρmax),

the function f has bounded derivative. In particular, we denote by Lf the Lipschitz
constant of the function f :

Lf =
∥∥f ′∥∥

L∞(R)
. (2.1)

(η) η ∈ (C3 ∩W3,∞)(R2;R+).

Recall the definition of solution to the Cauchy problem (1.1), see also [1, 2, 5].
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Definition 2.1. Let ρo ∈ L∞(R2;R+). A map ρ : [0, T ] → L∞(R2;R) is a solution to (1.1)
if it is a Kružkov solution to{

∂tρ+∇ · g(t, x, y, ρ) = 0, (t, x, y)∈ [0, T ]× R2,
ρ(0, x, y) = ρo(x, y), (x, y)∈R2,

(2.2)

with g(t, x, y, ρ) = ρvstat(x, y)− ε ρH(ρ− ρmax)
∇(η ∗ ρ)√

1 +
∥∥∇(η ∗ ρ)

∥∥2
.

Above, for the definition of Kružkov solution we refer to [11, Definition 1].

Theorem 2.2. Let ρo ∈ (L∞∩BV)(R2;R+). Let assumptions (v), (H) and (η) hold. Then,
for all T > 0, there exists a unique weak entropy solution ρ ∈ (L∞ ∩BV)([0, T ]×R2;R+) to
problem (1.1). Moreover, the following estimates hold: for all t ∈ [0, T ]∥∥ρ(t)

∥∥
L1 = ‖ρo‖L1 ,∥∥ρ(t)

∥∥
L∞
≤ ‖ρo‖L∞ e

C∞ t,

TV (ρ(t)) ≤ TV (ρo) e
2 tK1 +

2K2

K1

(
e2 tK1 − 1

)
,∥∥ρ(t)− ρ(t− τ)

∥∥
L1 ≤ 2 Ct(t) τ, for τ > 0,

where C∞ is defined in (3.12), K1 is defined in (3.16), K2 is defined in (3.17) and Ct(t) is as
in (3.38).

The proof of Theorem 2.2 is standard, see [1, Theorem 2.3], which refers to [15]. The
uniqueness is ensured by Proposition 4.1, which provides the Lipschitz continuous dependence
estimate of solutions to (1.1) on the initial data.

The bounds presented in Theorem 2.2 are obtained by passing to the limit in the corre-
sponding discrete bounds.

3 Existence

Introduce the uniform mesh of width ∆x along the x-axis and ∆y along the y-axis, and a
time step ∆t subject to a CFL condition, specified later on. For k ∈ Z set

xk = (k − 1/2)∆x, yk = (k − 1/2)∆y,

xk+1/2 = k∆x, yk+1/2 = k∆y,

where (xi+ 1
2
, yj) and (xi, yj+1/2) denote the cells interfaces and (xi, yj) are the cells centres.

Set NT = bT/∆tc and let tn = n∆t , n = 0, . . . , NT , be the time mesh. Set λx = ∆t/∆x and
λy = ∆t/∆y, and let α, β ≥ 1 be the viscosity coefficients.

For the sake of shortness, sometimes we will use also the notation xi,j = (xi, yj).
We approximate the initial datum as follows: for i, j ∈ Z

ρ0
i,j =

1

∆x∆y

∫ xi+1/2

xi−1/2

∫ yi+1/2

yi−1/2

ρo(x, y) dx dy ,
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and we define a piece-wise constant solution to (1.1) as

ρ∆(t, x, y) = ρni,j for


t ∈ [tn, tn+1[ ,
x ∈ [xi−1/2, xi+1/2[ ,

y ∈ [yj−1/2, yj+1/2[ ,
where

n = 0, . . . , NT − 1,
i ∈ Z,
j ∈ Z.

(3.1)

through a modified Roe-type scheme with dimensional splitting, exactly as in [9]:

Algorithm 3.1.

V1(x, y, u, w) = vstat1 (x, y)u+ min{0, vstat1 (x, y)}(w − u) (3.2)

F (u,w, J(t, x, y)) = J(t, x, y) f(u) + min{0, J(t, x, y)}
(
f(w)− f(u)

)
(3.3)

V2(x, y, u, w) = vstat2 (x, y)u+ min{0, vstat2 (x, y)}(w − u) (3.4)

for n = 0, . . . NT − 1

ρ
n+1/2
i,j = ρni,j − λx

[
V1(xi+1/2,j , ρ

n
i,j , ρ

n
i+i,j)− V1(xi−1/2,j , ρ

n
i−1,j , ρ

n
i,j) (3.5)

+F (ρni,j , ρ
n
i+1,j , J

n
1 (xi+1/2,j)− F (ρni−1,j , ρ

n
i,j , J

n
1 (xi−1/2,j))

]
ρn+1
i,j = ρ

n+1/2
i,j − λy

[
V2(xi,j+1/2, ρ

n
i,j , ρ

n
i,j+1)− V2(xi,j−1/2, ρ

n
i,j−1, ρ

n
i,j) (3.6)

+F (ρni,j , ρ
n
i,j+1, J

n
2 (xi,j+1/2)− F (ρni,j−1, ρ

n
i,j , J

n
2 (xi,j−1/2))

]
end

Above, we set I(ρn)(x, y) =
(
Jn1 (x, y), Jn2 (x, y)

)
and the convolution products are com-

puted through the following quadrature formula, for k = 1, 2,

(∂iη ∗ ρ)(xi, yj) = ∆x∆y
∑
k,`∈Z

ρk,` ∂iη(xi−k, yj−`), (3.7)

where ∂1η = ∂xη and ∂2 eta = ∂yη. Remark that the choice of evaluating the numerical flux
at tn for both fractional steps allows to save computational time, because the convolution
products (3.7) are computed only once per time step.

Introduce the following notation, which is of use below:

vi+1/2 = vstat1 (xi+1/2). (3.8)

3.1 Positivity

In the case of positive initial datum, we prove that under a suitable CFL condition the
approximate solution to (1.1) constructed via the Algorithm 3.1 preserves the positivity.

Lemma 3.2. (Positivity) Let ρo ∈ L∞(R2;R+). Let (v), (H), and (η) hold. Assume that

λx ≤
1

2(ε+
∥∥vstat1

∥∥
L∞

)
, λy ≤

1

2(ε+
∥∥vstat2

∥∥
L∞

)
. (3.9)

Then, for all t > 0 and (x, y) ∈ R2, the piece-wise constant approximate solution ρ∆ (3.1)
constructed through Algorithm 3.1 is such that ρ∆(t, x, y) ≥ 0.
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Proof. Fix n between 0 and NT −1 and assume that ρni,j ≥ 0 for all i, j ∈ Z. Consider (3.5),
with the notation (3.2) and (3.3), and observe that:

V1(xi+1/2,j , ρ
n
i,j , ρ

n
i+1,j) + F (ρni,j , ρ

n
i+1,j , J

n
1 (xi+1/2,j))

≤ vstat1 (xi+1/2,j) ρ
n
i,j + Jn1 (xi+1/2,j) f(ρni,j) ≤

(∥∥∥vstat1

∥∥∥
L∞

+ ε

)
ρni,j ,

V1(xi−1/2,j , ρ
n
i−1,j , ρ

n
i,j) + F (ρni−1,j , ρ

n
i,j , J

n
1 (xi−1/2,j))

≥ vstat1 (xi−1/2,j) ρ
n
i,j + Jn1 (xi−1/2,j) f(ρni,j) ≥ −

(∥∥∥vstat1

∥∥∥
L∞

+ ε

)
ρni,j .

Therefore, by (3.5),

ρ
n+1/2
i,j ≥ ρni,j − 2λx

(∥∥∥vstat1

∥∥∥
L∞

+ ε

)
ρni,j ≥ 0,

thanks to the CFL condition (3.9). Starting from (3.6), an analogous argument shows that
ρn+1
i,j ≥ 0, concluding the proof. �

3.2 L1 bound

The following result on the L1 bound follows from the conservation property of the Roe
scheme.

Lemma 3.3. (L1 bound) Let ρo ∈ L∞(R2;R+). Let (v), (H), (η) and (3.9) hold. Then,
for all t > 0 and (x, y) ∈ R2, ρ∆ (3.1) constructed through Algorithm 3.1 satisfies∥∥ρ∆(t, ·, ·)

∥∥
L1(R2)

= ‖ρo‖L1(R2). (3.10)

3.3 L∞ bound

Lemma 3.4. (L∞ bound) Let ρo ∈ L∞(R2;R+). Let (v), (H), (η) and (3.9) hold. Then,
for all t > 0 and (x, y) ∈ R2, ρ∆ (3.1) constructed through Algorithm 3.1 satisfies∥∥ρ∆(t, ·, ·)

∥∥
L∞(R2)

≤ ‖ρo‖L∞ e
C∞ t, (3.11)

where
C∞ =

∥∥∥∂xvstat1

∥∥∥
L∞

+
∥∥∥∂yvstat2

∥∥∥
L∞

+ 4 ε
∥∥∥∇2η

∥∥∥
L∞
‖ρo‖L1 . (3.12)

Proof. Omitting the dependencies on j and exploiting the notation introduced in (3.8), we
observe that (3.5) attains its maximum for vi+1/2 < 0, vi−1/2 ≥ 0, Jn1 (xi+1/2) < 0 and

Jn1 (xi−1/2) ≥ 0. In this case

ρ
n+1/2
i,j ≤ ρni − λx

(
ρni+1 vi+1/2 + Jn1 (xi+1/2) f(ρni+1)

)
+ λx

(
ρni−1 vi−1/2 + Jn1 (xi−1/2) f(ρni−1)

)
,

where we use the positivity of each ρni and of the function f and discard all the terms giving
a negative contribution. Moreover, since vi+1/2 < 0 and vi−1/2 ≥ 0,

λx

(
−ρni+1 vi+1/2 + ρni−1 vi−1/2

)
≤ λx ‖ρn‖L∞

(
−vi+1/2 + vi−1/2

)
5



= λx ‖ρn‖L∞ (−∆x) ∂xv
stat
1 (x̂i)

with x̂i ∈ ]xi−1/2, xi+1/2[. In a similar way, since Jn1 (xi+1/2) < 0 and Jn1 (xi−1/2) ≥ 0, exploiting
also the fact that f(r) ≤ r for all r ≥ 0, we get

λx

(
−Jn1 (xi+1/2) f(ρni+1) + Jn1 (xi−1/2) f(ρni−1)

)
≤ λx ‖ρn‖L∞

(
−Jn1 (xi+1/2) + Jn1 (xi−1/2)

)
≤ λx ‖ρn‖L∞ 2 ε∆x

∥∥∥∇2η
∥∥∥
L∞
‖ρn‖L1 ,

thanks to (A.2). Therefore,

ρ
n+1/2
i,j ≤ ‖ρn‖L∞

[
1 + ∆t

(∥∥∥∂xvstat1

∥∥∥
L∞

+ 2 ε
∥∥∥∇2η

∥∥∥
L∞
‖ρo‖L1

)]
.

In a similar way we get

ρn+1
i,j ≤

∥∥∥ρn+1/2
∥∥∥
L∞

[
1 + ∆t

(∥∥∥∂yvstat2

∥∥∥
L∞

+ 2 ε
∥∥∥∇2η

∥∥∥
L∞
‖ρo‖L1

)]
,

concluding the proof. �

3.4 BV bound

Proposition 3.5. (BV estimate in space) Let ρo ∈ (L∞ ∩BV)(R2;R+). Let (v), (H),
and (η) hold. Assume that

λx ≤
1

3(εLf +
∥∥vstat1

∥∥
L∞

)
, λy ≤

1

3(εLf +
∥∥vstat2

∥∥
L∞

)
. (3.13)

Then, for all t > 0, ρ∆ in (3.1) constructed through Algorithm 3.1 satisfies the following
estimate: for all n = 0, . . . , NT ,∑

i,j∈Z

(
∆y
∣∣∣ρni+1,j − ρni,j

∣∣∣+ ∆x
∣∣∣ρni,j+1 − ρni,j

∣∣∣) ≤ Cx(tn), (3.14)

where

Cx(t) = e2 tK1
∑
i,j∈Z

(
∆x
∣∣∣ρ0
i,j+1 − ρ0

i,j

∣∣∣+ ∆y
∣∣∣ρ0
i+1,j − ρ0

i,j

∣∣∣)+
2K2

K1

(
e2 tK1 − 1

)
, (3.15)

with

K1 = 6

(∥∥∥∇vstat∥∥∥
L∞

+ 2 εLf

∥∥∥∇2η
∥∥∥
L∞
‖ρo‖L1

)
, (3.16)

K2 =

(
4 ε
(
c1‖ρo‖L1 + c2‖ρo‖2L1

)
+ 3

∥∥∥∇2vstat
∥∥∥
L∞

)
‖ρo‖L1 , (3.17)

and c1, c2 are defined in (A.6).

Remark 3.6. Observe that the CFL conditions (3.13) are stricter than (3.9).
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Proof. We follow the idea of [1, Lemma 2.7]. First consider the term∑
i,j∈Z

∆y
∣∣∣ρn+1/2
i+1,j − ρ

n+1/2
i,j

∣∣∣.
In particular, fixing i, j ∈ Z and omitting the dependencies on yj for the sake of simplicity,
by (3.5) we get

ρ
n+1/2
i+1 − ρn+1/2

i = ρni+1 − ρni − λx
[
V1(xi+3/2, ρ

n
i+1, ρ

n
i+2) + F (ρni+1, ρ

n
i+2, J

n
1 (xi+3/2))

− V1(xi+1/2, ρ
n
i , ρ

n
i+1)− F (ρni , ρ

n
i+1, J

n
1 (xi+1/2))

− V1(xi+1/2, ρ
n
i , ρ

n
i+1)− F (ρni , ρ

n
i+1, J

n
1 (xi+1/2))

+V1(xi−1/2, ρ
n
i−1, ρ

n
i ) + F (ρni−1, ρ

n
i , J

n
1 (xi−1/2))

]
± λx

[
V1(xi+3/2, ρ

n
i , ρ

n
i+1) + F (ρni , ρ

n
i+1, J

n
1 (xi+3/2))

−V1(xi+1/2, ρ
n
i−1, ρ

n
i )− F (ρni−1, ρ

n
i , J

n
1 (xi+1/2))

]
= Ani,j − λx Bni,j ,

where we set

Ani,j = ρni+1 − ρni − λx
[
V1(xi+3/2, ρ

n
i+1, ρ

n
i+2) + F (ρni+1, ρ

n
i+2, J

n
1 (xi+3/2))

− V1(xi+1/2, ρ
n
i , ρ

n
i+1)− F (ρni , ρ

n
i+1, J

n
1 (xi+1/2))

+ V1(xi+1/2, ρ
n
i−1, ρ

n
i ) + F (ρni−1, ρ

n
i , J

n
1 (xi+1/2))

−V1(xi+3/2, ρ
n
i , ρ

n
i+1)− F (ρni , ρ

n
i+1, J

n
1 (xi+3/2))

]
,

Bni,j = V1(xi+3/2, ρ
n
i , ρ

n
i+1) + F (ρni , ρ

n
i+1, J

n
1 (xi+3/2))

− V1(xi+1/2, ρ
n
i−1, ρ

n
i )− F (ρni−1, ρ

n
i , J

n
1 (xi+1/2))

+ V1(xi−1/2, ρ
n
i−1, ρ

n
i ) + F (ρni−1, ρ

n
i , J

n
1 (xi−1/2))

− V1(xi+1/2, ρ
n
i , ρ

n
i+1)− F (ρni , ρ

n
i+1, J

n
1 (xi+1/2)).

For the sake of shortness, introduce the following notation

Hn
k,`(u,w) = V1(xk,`, u, w) + F (u,w, Jn1 (xk,`)), (3.18)

so that, dropping the j dependencies, Ani,j reads

Ani,j = ρni+1 − ρni − λx
[
Hn
i+3/2(ρni+1, ρ

n
i+2)−Hn

i+1/2(ρni , ρ
n
i+1)

+Hn
i+1/2,j(ρ

n
i−1,j , ρ

n
i,j)−Hn

i+3/2,j(ρ
n
i,j , ρ

n
i+1,j)

]
= ρni+1 − ρni − λx

Hn
i+3/2(ρni+1, ρ

n
i+2)−Hn

i+3/2(ρni+1, ρ
n
i+i)

ρni+2 − ρni+1

(
ρni+2 − ρni+1

)
− λx

Hn
i+3/2(ρni+1, ρ

n
i+i)−Hn

i+3/2(ρni , ρ
n
i+i)

ρni+1 − ρni

(
ρni+1 − ρni

)
+ λx

Hn
i+1/2(ρni , ρ

n
i+1)−Hn

i+1/2(ρni , ρ
n
i )

ρni+1 − ρni

(
ρni+1 − ρni

)
7



+ λx
Hn
i+1/2(ρni , ρ

n
i )−Hn

i+1/2(ρni−1, ρ
n
i )

ρni − ρni−1

(
ρni − ρni−1

)
= δni+1

(
ρni+2 − ρni+1

)
+ ϑni

(
ρni − ρni−1

)
+ (1− δni − ϑni+1)

(
ρni+1 − ρni

)
,

where

δni =


−λx

Hn
i+1/2(ρni , ρ

n
i+1)−Hn

i+1/2(ρni , ρ
n
i )

ρni+1 − ρni
if ρni 6= ρni+1,

0 if ρni = ρni+1,

(3.19)

ϑni =


λx

Hn
i+1/2(ρni , ρ

n
i )−Hn

i+1/2(ρni−1, ρ
n
i )

ρni − ρni−1

if ρni 6= ρni−1,

0 if ρni = ρni−1.

(3.20)

Exploiting (3.18), observe that, whenever ρni 6= ρni+1,

δni = − λx
ρni+1 − ρni

[
V1(xi+1/2, ρ

n
i , ρ

n
i+1) + F (ρni , ρ

n
i+1, J

n
1 (xi+1/2))

−V1(xi+1/2, ρ
n
i , ρ

n
i )− F (ρni , ρ

n
i , J

n
1 (xi+1/2))

]
= − λx

ρni+1 − ρni

[
min

{
0, vstat1 (xi+1/2)

}
(ρni+1 − ρni ) + min

{
0, Jn1 (xi+1/2)

}(
f(ρni+1)− f(ρni )

)]
= − λx

(
min

{
0, vstat1 (xi+1/2)

}
+ min

{
0, Jn1 (xi+1/2)

}
f ′(rni+1/2)

)
,

with rni+1/2 ∈ I
(
ρni , ρ

n
i+1

)
. Since f ′(r) ≥ 0 and by (3.13) we get

δni ∈
[
0,

1

3

]
.

In a similar way one can prove that ϑni ∈ [0, 1/3]. Thus,∑
i,j∈Z

∣∣∣Ani,j∣∣∣ ≤ ∑
i,j∈Z

∣∣∣ρni+1,j − ρni,j
∣∣∣. (3.21)

We pass now to Bni,j . Consider separately the terms involving V1 and those involving F .
Observe that the maps

x 7→min
{

0, vstat1 (x)
}
, x 7→min

{
0, Jn1 (x)

}
are Lipschitz continuous, with constant respectively

∥∥∂xvstat1

∥∥
L∞

and 2 ε
∥∥∇2η

∥∥
L∞
‖ρo‖L1 .

Exploiting (3.2) we get:

V1(xi+3/2, ρ
n
i , ρ

n
i+1)− V1(xi+1/2, ρ

n
i−1, ρ

n
i ) + V1(xi−1/2, ρ

n
i−1, ρ

n
i )− V1(xi+1/2, ρ

n
i , ρ

n
i+1)

= vstat1 (xi+3/2)ρni + min
{

0, vstat1 (xi+3/2)
}

(ρni+1 − ρni )

− vstat1 (xi+1/2)ρni −min
{

0, vstat1 (xi+1/2)
}

(ρni+1 − ρni )
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+ vstat1 (xi−1/2)ρni−1 + min
{

0, vstat1 (xi−1/2)
}

(ρni − ρni−1)

− vstat1 (xi+1/2)ρni−1 −min
{

0, vstat1 (xi+1/2)
}

(ρni − ρni−1)

±
(
vstat1 (xi−1/2)− vstat1 (xi+1/2)

)
ρni

=
(
vstat1 (xi+3/2)− 2 vstat1 (xi+1/2) + vstat1 (xi−1/2)

)
ρni

+
(
vstat1 (xi−1/2)− vstat1 (xi+1/2)

)
(ρni−1 − ρni )

+

(
min

{
0, vstat1 (xi+3/2)

}
−min

{
0, vstat1 (xi+1/2)

})
(ρni+1 − ρni )

+

(
min

{
0, vstat1 (xi−1/2)

}
−min

{
0, vstat1 (xi+1/2)

})
(ρni − ρni−1)

≤ 2 (∆x)2
∥∥∥∂2

xxv
stat
1

∥∥∥
L∞

∣∣ρni ∣∣+ ∆x
∥∥∥∂xvstat1

∥∥∥
L∞

(∣∣ρni+1 − ρni
∣∣+ 2

∣∣ρni − ρni−1

∣∣) , (3.22)

since

vstat1 (xi+3/2)− 2 vstat1 (xi+1/2) + vstat1 (xi−1/2) = ∆x ∂xv
stat
1 (ξi+1)−∆x ∂xv

stat
1 (ξi)

= ∆x (ξi+1 − ξi) ∂2
xxv

stat
1 (ζi+1/2),

with ξi ∈ ]xi−1/2, xi+1/2[ and ζi+1/2 ∈ ]ξi, ξi+1[.
Similarly, exploiting (3.3) we obtain

F (ρni , ρ
n
i+1, J

n
1 (xi+3/2))− F (ρni−1, ρ

n
i , J

n
1 (xi+1/2))

+ F (ρni−1, ρ
n
i , J

n
1 (xi−1/2))− F (ρni , ρ

n
i+1, J

n
1 (xi+1/2))

= Jn1 (xi+3/2)f(ρni ) + min
{

0, Jn1 (xi+3/2)
}

(f(ρni+1)− f(ρni ))

− Jn1 (xi+1/2)f(ρni )−min
{

0, Jn1 (xi+1/2)
}

(f(ρni+1)− f(ρni ))

+ Jn1 (xi−1/2)f(ρni−1) + min
{

0, Jn1 (xi−1/2)
}

(f(ρni )− f(ρni−1))

− Jn1 (xi+1/2)f(ρni−1)−min
{

0, Jn1 (xi+1/2)
}

(f(ρni )− f(ρni−1))

±
(
Jn1 (xi−1/2)− Jn1 (xi+1/2)

)
f(ρni )

=
(
Jn1 (xi+3/2)− 2 Jn1 (xi+1/2) + Jn1 (xi−1/2)

)
f(ρni )

+
(
Jn1 (xi−1/2)− Jn1 (xi+1/2)

)
(f(ρni−1)− f(ρni ))

+

(
min

{
0, Jn1 (xi+3/2)

}
−min

{
0, Jn1 (xi+1/2)

})
(f(ρni+1)− f(ρni ))

+

(
min

{
0, Jn1 (xi−1/2)

}
−min

{
0, Jn1 (xi+1/2)

})
(f(ρni )− f(ρni−1))

≤ 2 ε (∆x)2C
∣∣ρni ∣∣+ 2 εLf ∆x

∥∥∥∇2η
∥∥∥
L∞
‖ρo‖L1

(∣∣ρni+1 − ρni
∣∣+ 2

∣∣ρni − ρni−1

∣∣) , (3.23)

where we used the fact that f(r) ≤ r, (A.2) and (A.4), with the notation (A.6). Collecting
together (3.22) and (3.23) we therefore obtain∣∣∣Bni,j∣∣∣ ≤ 2 (∆x)2

(∥∥∥∂2
xxv

stat
1

∥∥∥
L∞

+ εC

) ∣∣ρni ∣∣
9



+ ∆x

(∥∥∥∂xvstat1

∥∥∥
L∞

+ 2 εLf

∥∥∥∇2η
∥∥∥
L∞
‖ρo‖L1

)(∣∣ρni+1 − ρni
∣∣+ 2

∣∣ρni − ρni−1

∣∣) ,
so that ∑

i,j∈Z
λx

∣∣∣Bni,j∣∣∣ ≤ 3 ∆t

(∥∥∥∂xvstat1

∥∥∥
L∞

+ 2 εLf

∥∥∥∇2η
∥∥∥
L∞
‖ρo‖L1

) ∑
i,j∈Z

∣∣ρni+1 − ρni
∣∣

+ 2 ∆t

(∥∥∥∂2
xxv

stat
1

∥∥∥
L∞

+ εC

)
∆x

∑
i,j∈Z

∣∣ρni ∣∣. (3.24)

Therefore, by (3.21) and (3.24), using also Lemma 3.3∑
i,j∈Z

∆y
∣∣∣ρn+1/2
i+1,j − ρ

n+1/2
i,j

∣∣∣
≤
∑
i,j∈Z

∆y

(∣∣∣Ani,j∣∣∣+ λx

∣∣∣Bni,j∣∣∣)

≤

[
1 + 3 ∆t

(∥∥∥∂xvstat1

∥∥∥
L∞

+ 2 εLf

∥∥∥∇2η
∥∥∥
L∞
‖ρo‖L1

)] ∑
i,j∈Z

∆y
∣∣ρni+1 − ρni

∣∣ (3.25)

+ 2 ∆t

[∥∥∥∂2
xxv

stat
1

∥∥∥
L∞

+ εC

]
‖ρo‖L1 .

Now pass to the term ∑
i,j∈Z

∆x
∣∣∣ρn+1/2
i,j+1 − ρ

n+1/2
i,j

∣∣∣.
Fix i, j ∈ Z and exploit (3.5) again to get

ρ
n+1/2
i,j+1 − ρ

n+1/2
i,j

= ρni,j+1 − ρni,j − λx
[
V1(xi+1/2,j+1, ρ

n
i,j+1, ρ

n
i+1,j+1) + F (ρni,j+1, ρ

n
i+1,j+1, J

n
1 (xi+1/2,j+1))

− V1(xi−1/2,j+1, ρ
n
i−1,j+1, ρ

n
i,j+1)− F (ρni−1,j+1, ρ

n
i,j+1, J

n
1 (xi−1/2,j+1))

− V1(xi+1/2,j , ρ
n
i,j , ρ

n
i+1,j)− F (ρni,j , ρ

n
i+1,j , J

n
1 (xi+1/2,j))

+V1(xi−1/2,j , ρ
n
i−1,j , ρ

n
i,j) + F (ρni−1,j , ρ

n
i,j , J

n
1 (xi−1/2,j))

]
± λx

[
V1(xi+1/2,j+1, ρ

n
i,j , ρ

n
i+1,j) + F (ρni,j , ρ

n
i+1,j , J

n
1 (xi+1/2,j+1))

−V1(xi−1/2,j+1, ρ
n
i−1,j , ρ

n
i,j)− F (ρni−1,j , ρ

n
i,j , J

n
1 (xi−1/2,j+1))

]
= Dni,j + λx Eni,j ,

where we set

Dni,j
= ρni,j+1 − ρni,j − λx

[
V1(xi+1/2,j+1, ρ

n
i,j+1, ρ

n
i+1,j+1) + F (ρni,j+1, ρ

n
i+1,j+1, J

n
1 (xi+1/2,j+1))

− V1(xi+1/2,j+1, ρ
n
i,j , ρ

n
i+1,j)− F (ρni,j , ρ

n
i+1,j , J

n
1 (xi+1/2,j+1))

+ V1(xi−1/2,j+1, ρ
n
i−1,j , ρ

n
i,j) + F (ρni−1,j , ρ

n
i,j , J

n
1 (xi−1/2,j+1))
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−V1(xi−1/2,j+1, ρ
n
i−1,j+1, ρ

n
i,j+1)− F (ρni−1,j+1, ρ

n
i,j+1, J

n
1 (xi−1/2,j+1))

]
,

Eni,j = V1(xi+1/2,j , ρ
n
i,j , ρ

n
i+1,j) + F (ρni,j , ρ

n
i+1,j , J

n
1 (xi+1/2,j))

− V1(xi+1/2,j+1, ρ
n
i,j , ρ

n
i+1,j)− F (ρni,j , ρ

n
i+1,j , J

n
1 (xi+1/2,j+1))

+ V1(xi−1/2,j+1, ρ
n
i−1,j , ρ

n
i,j) + F (ρni−1,j , ρ

n
i,j , J

n
1 (xi−1/2,j+1))

− V1(xi−1/2,j , ρ
n
i−1,j , ρ

n
i,j)− F (ρni−1,j , ρ

n
i,j , J

n
1 (xi−1/2,j)).

Similarly as before, rearrange Dni,j , exploiting the notation (3.18):

Dni,j = ρni,j+1 − ρni,j − λx
[
Hn
i+1/2,j+1(ρni,j+1, ρ

n
i+1,j+1)−Hn

i+1/2,j+1(ρni,j , ρ
n
i+1,j)

+Hn
i−1/2,j+1(ρni−1,j , ρ

n
i,j)−Hn

i−1/2,j+1(ρni−1,j+1, ρ
n
i,j+1)

]
± λxH

n
i+1/2,j+1(ρni,j , ρ

n
i+1,j+1)± λxH

n
i−1/2,j+1(ρni−1,j , ρ

n
i,j+1)

= ρni,j+1 − ρni,j

− λx
Hn
i+1/2,j+1(ρni,j+1, ρ

n
i+1,j+1)−Hn

i+1/2,j+1(ρni,j , ρ
n
i+1,j+1)

ρni,j+1 − ρni,j
(ρni,j+1 − ρni,j)

− λx
Hn
i+1/2,j+1(ρni,j , ρ

n
i+1,j+1)−Hn

i+1/2,j+1(ρni,j , ρ
n
i+1,j)

ρni+1,j+1 − ρni+1,j

(ρni+1,j+1 − ρni+1,j)

+ λx
Hn
i−1/2,j+1(ρni−1,j , ρ

n
i,j+1)−Hn

i−1/2,j+1(ρni−1,j , ρ
n
i,j)

ρni,j+1 − ρni,j
(ρni,j+1 − ρni,j)

+ λx
Hn
i−1/2,j+1(ρni−1,j+1, ρ

n
i,j+1)−Hn

i−1/2,j+1(ρni−1,j , ρ
n
i,j+1)

ρni−1,j+1 − ρni−1,j

(ρni−1,j+1 − ρni−1,j)

= (1− κni,j − νni,j)(ρni,j+1 − ρni,j) + νni+1,j(ρ
n
i+1,j+1 − ρni+1,j) + κni−1,j(ρ

n
i−1,j+1 − ρni−1,j),

where

κni,j =


λx

Hn
i+1/2,j+1(ρni,j+1, ρ

n
i+1,j+1)−Hn

i+1/2,j+1(ρni,j , ρ
n
i+1,j+1)

ρni,j+1 − ρni,j
if ρni,j+1 6= ρni,j ,

0 if ρni,j+1 = ρni,j ,

νni,j =


−λx

Hn
i−1/2,j+1(ρni−1,j , ρ

n
i,j+1)−Hn

i−1/2,j+1(ρni−1,j , ρ
n
i,j)

ρni,j+1 − ρni,j
if ρni,j+1 6= ρni,j ,

0 if ρni,j+1 = ρni,j .

As for δni (3.19) and ϑni (3.20), it is immediate to prove that κni,j , ν
n
i,j ∈

[
0,

1

3

]
for all i, j ∈ Z.

Hence, ∑
i,j∈Z

∣∣∣Dni,j∣∣∣ ≤ ∑
i,j∈Z

∣∣∣ρni,j+1 − ρni,j
∣∣∣. (3.26)

Pass now to Eni,j : we can proceed analogously to Bni,j , treating separately the terms involv-
ing V1 and those involving F . First, by (3.2),

V1(xi+1/2,j , ρ
n
i,j , ρ

n
i+1,j)− V1(xi+1/2,j+1, ρ

n
i,j , ρ

n
i+1,j)
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+ V1(xi−1/2,j+1, ρ
n
i−1,j , ρ

n
i,j)− V1(xi−1/2,j , ρ

n
i−1,j , ρ

n
i,j)

= vstat1 (xi+1/2,j)ρ
n
i,j + min

{
0, vstat1 (xi+1/2,j)

}
(ρni+1,j − ρni,j)

− vstat1 (xi+1/2,j+1)ρni,j −min
{

0, vstat1 (xi+1/2,j+1)
}

(ρni+1,j − ρni,j)

+ vstat1 (xi−1/2,j+1)ρni−1,j + min
{

0, vstat1 (xi−1/2,j+1)
}

(ρni,j − ρni−1,j)

− vstat1 (xi−1/2,j)ρ
n
i−1,j −min

{
0, vstat1 (xi−1/2,j)

}
(ρni,j − ρni−1,j)

±
(
vstat1 (xi−1/2,j+1)− vstat1 (xi−1/2,j)

)
ρni,j

=
(
vstat1 (xi+1/2,j)− vstat1 (xi+1/2,j+1)− vstat1 (xi−1/2,j) + vstat1 (xi−1/2,j+1)

)
ρni,j

+
(
vstat1 (xi−1/2,j+1)− vstat1 (xi−1/2,j)

)
(ρni−1,j − ρni,j)

+

(
min

{
0, vstat1 (xi+1/2,j)

}
−min

{
0, vstat1 (xi+1/2,j+1)

})
(ρni+1,j − ρni,j)

+

(
min

{
0, vstat1 (xi−1/2,j+1)

}
−min

{
0, vstat1 (xi−1/2,j)

})
(ρni,j − ρni−1,j)

≤ ∆x∆y
∥∥∥∂2

xyv
stat
1

∥∥∥
L∞

∣∣∣ρni,j∣∣∣+ ∆y
∥∥∥∂yvstat1

∥∥∥
L∞

(∣∣∣ρni+1,j − ρni,j
∣∣∣+ 2

∣∣∣ρni,j − ρni−1,j

∣∣∣) , (3.27)

since

vstat1 (xi+1/2,j)− vstat1 (xi+1/2,j+1)− vstat1 (xi−1/2,j) + vstat1 (xi−1/2,j+1)

= ∆x ∂xv
stat
1 (ξi, yj)−∆x ∂xv

stat
1 (ξi, yj+1)

= −∆x∆y ∂2
xyv

stat
1 (ξi, ζj+1/2),

with ξi ∈ ]xi−1/2, xi+1/2[ and ζj+1/2 ∈ ]yj , yj+1[. In a similar way, by (3.3),

F (ρni,j , ρ
n
i+1,j , J

n
1 (xi+1/2,j))− F (ρni,j , ρ

n
i+1,j , J

n
1 (xi+1/2,j+1))

+ F (ρni−1,j , ρ
n
i,j , J

n
1 (xi−1/2,j+1))− F (ρni−1,j , ρ

n
i,j , J

n
1 (xi−1/2,j))

= Jn1 (xi+1/2,j) f(ρni,j) + min
{

0, Jn1 (xi+1/2,j)
}(

f(ρni+1,j)− f(ρni,j)
)

− Jn1 (xi+1/2,j+1) f(ρni,j)−min
{

0, Jn1 (xi+1/2,j+1)
}(

f(ρni+1,j)− f(ρni,j)
)

+ Jn1 (xi−1/2,j+1) f(ρni−1,j) + min
{

0, Jn1 (xi−1/2,j+1)
}(

f(ρni,j)− f(ρni−1,j)
)

− Jn1 (xi−1/2,j) f(ρni−1,j)−min
{

0, Jn1 (xi−1/2,j)
}(

f(ρni,j)− f(ρni−1,j)
)

±
(
Jn1 (xi−1/2,j+1)− Jn1 (xi−1/2,j)

)
f(ρni,j)

=
(
Jn1 (xi+1/2,j)− Jn1 (xi+1/2,j+1)− Jn1 (xi−1/2,j) + Jn1 (xi−1/2,j+1)

)
f(ρni,j)

+
(
Jn1 (xi−1/2,j+1)− Jn1 (xi−1/2,j)

)(
f(ρni−1,j)− f(ρni,j)

)
+

(
min

{
0, Jn1 (xi+1/2,j)

}
−min

{
0, Jn1 (xi+1/2,j+1)

})(
f(ρni+1,j)− f(ρni,j)

)
+

(
min

{
0, Jn1 (xi−1/2,j+1)

}
−min

{
0, Jn1 (xi−1/2,j)

})(
f(ρni,j)− f(ρni−1,j)

)
12



≤ 2 ε∆x∆y C
∣∣ρni ∣∣+ 2 εLf ∆y

∥∥∥∇2η
∥∥∥
L∞
‖ρo‖L1

(∣∣∣ρni+1,j − ρni,j
∣∣∣+ 2

∣∣∣ρni,j + ρni−1,j

∣∣∣) , (3.28)

where we used the fact that f(r) ≤ r, (A.3) and (A.5), with the notation (A.6). Therefore,
collecting together (3.27) and (3.28), we get∣∣∣Eni,j∣∣∣ ≤ ∆x∆y

(∥∥∥∂2
xyv

stat
1

∥∥∥
L∞

+ 2 εC

) ∣∣ρni ∣∣
+ ∆y

(∥∥∥∂yvstat1

∥∥∥
L∞

+ 2 εLf

∥∥∥∇2η
∥∥∥
L∞
‖ρo‖L1

)(∣∣∣ρni+1,j − ρni,j
∣∣∣+ 2

∣∣∣ρni,j + ρni−1,j

∣∣∣) ,
so that∑

i,j∈Z
λx

∣∣∣Eni,j∣∣∣ ≤ 3λx ∆y

(∥∥∥∂yvstat1

∥∥∥
L∞

+ 2 εLf

∥∥∥∇2η
∥∥∥
L∞
‖ρo‖L1

) ∑
i,j∈Z

∣∣∣ρni+1,j − ρni,j
∣∣∣

+ ∆t

(∥∥∥∂2
xyv

stat
1

∥∥∥
L∞

+ 2 εC

)
∆y

∑
i,j∈Z

ρni,j . (3.29)

Hence, by (3.26) and (3.29), using also Lemma 3.3, we obtain∑
i,j∈Z

∆x
∣∣∣ρn+1/2
i,j+1 − ρ

n+1/2
i,j

∣∣∣
≤
∑
i,j∈Z

∆x

(∣∣∣Dni,j∣∣∣+ λx

∣∣∣Eni,j∣∣∣)
≤
∑
i,j∈Z

∆x
∣∣∣ρni,j+1 − ρni,j

∣∣∣
+ 3 ∆t

(∥∥∥∂yvstat1

∥∥∥
L∞

+ 2 εLf

∥∥∥∇2η
∥∥∥
L∞
‖ρo‖L1

) ∑
i,j∈Z

∆y
∣∣∣ρni+1,j − ρni,j

∣∣∣ (3.30)

+ ∆t

(∥∥∥∂2
xyv

stat
1

∥∥∥
L∞

+ 2 εC

)
‖ρo‖L1 .

Setting

K1 = 3

(∥∥∥∂xvstat1

∥∥∥
L∞

+
∥∥∥∂yvstat1

∥∥∥
L∞

+ 4 εLf

∥∥∥∇2η
∥∥∥
L∞
‖ρo‖L1

)
, (3.31)

K2 =

(
4 εC + 2

∥∥∥∂2
xxv

stat
1

∥∥∥
L∞

+
∥∥∥∂2

xyv
stat
1

∥∥∥
L∞

)
‖ρo‖L1 , (3.32)

by (3.25) and (3.30) we conclude∑
i,j∈Z

(
∆y
∣∣∣ρn+1/2
i+1,j − ρ

n+1/2
i,j

∣∣∣+ ∆x
∣∣∣ρn+1/2
i,j+1 − ρ

n+1/2
i,j

∣∣∣)

≤ (1 + ∆tK1)
∑
i,j∈Z

(
∆x
∣∣∣ρni,j+1 − ρni,j

∣∣∣+ ∆y
∣∣∣ρni+1,j − ρni,j

∣∣∣)+ ∆tK2.
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Analogous computations yield∑
i,j∈Z

(
∆y
∣∣∣ρn+1
i+1,j − ρ

n+1
i,j

∣∣∣+ ∆x
∣∣∣ρn+1
i,j+1 − ρ

n+1
i,j

∣∣∣)

≤ (1 + ∆tK3)
∑
i,j∈Z

(
∆x
∣∣∣ρn+1/2
i,j+1 − ρ

n+1/2
i,j

∣∣∣+ ∆y
∣∣∣ρn+1/2
i+1,j − ρ

n+1/2
i,j

∣∣∣)+ ∆tK4,

where

K3 = 3

(∥∥∥∂xvstat2

∥∥∥
L∞

+
∥∥∥∂yvstat2

∥∥∥
L∞

+ 4 εLf

∥∥∥∇2η
∥∥∥
L∞
‖ρo‖L1

)
, (3.33)

K4 =

(
4 εC + 2

∥∥∥∂2
yyv

stat
2

∥∥∥
L∞

+
∥∥∥∂2

xyv
stat
2

∥∥∥
L∞

)
‖ρo‖L1 . (3.34)

Observe that, using the notation (3.16) and (3.17),

K1, K3 ≤ K1, K2, K4 ≤ K2.

A recursive argument yields the desired result:∑
i,j∈Z

(
∆y
∣∣∣ρni+1,j − ρni,j

∣∣∣+ ∆x
∣∣∣ρni,j+1 − ρni,j

∣∣∣)

≤ e2n∆tK1
∑
i,j∈Z

(
∆x
∣∣∣ρ0
i,j+1 − ρ0

i,j

∣∣∣+ ∆y
∣∣∣ρ0
i+1,j − ρ0

i,j

∣∣∣)+
2K2

K1

(
e2n∆tK1 − 1

)
.

�

Corollary 3.7. (BV estimate in space and time) Let ρo ∈ (L∞∩BV)(R2;R+). Let (v),
(H), (η), (3.13) hold. Then, for all t > 0, ρ∆ in (3.1) constructed through Algorithm 3.1
satisfies the following estimate: for all n = 1, . . . , NT ,

n−1∑
m=0

∑
i,j∈Z

∆t

(
∆y
∣∣∣ρmi+1,j − ρmi,j

∣∣∣+ ∆x
∣∣∣ρmi,j+1 − ρmi,j

∣∣∣)+
n−1∑
m=0

∑
i,j∈Z

∆x∆y
∣∣∣ρm+1
i,j − ρmi,j

∣∣∣ ≤ Cxt(tn),

(3.35)
where

Cxt(t) = t
(
Cx(t) + 2 Ct(t)

)
, (3.36)

with Cx as in (3.15) and Ct as in (3.38).

Proof. By Proposition 3.5 we have

n−1∑
m=0

∑
i,j∈Z

∆t

(
∆y
∣∣∣ρmi+1,j − ρmi,j

∣∣∣+ ∆x
∣∣∣ρmi,j+1 − ρmi,j

∣∣∣) ≤ n∆t Cx(n∆t). (3.37)

Since ∣∣∣ρm+1
i,j − ρmi,j

∣∣∣ ≤ ∣∣∣ρm+1
i,j − ρm+1/2i, j

∣∣∣+
∣∣∣ρm+1/2
i,j − ρmi,j

∣∣∣,
14



we focus first on ∑
i,j∈Z

∆x∆y
∣∣∣ρm+1/2
i,j − ρmi,j

∣∣∣.
By the scheme (3.5), we have, using the notation (3.8),

ρ
m+1/2
i,j − ρmi,j ≤ λx

[
V1(xi+1/2,j , ρ

m
i,j , ρ

m
i+1,j) + F (ρmi,j , ρ

m
i+1,j , J

m
1 (xi+1/2,j))

−V1(xi−1/2,j , ρ
m
i−1,j , ρ

m
i,j)− F (ρmi−1,j , ρ

m
i,j , J

m
1 (xi−1/2,j))

]
= λx

[
vi+1/2,j ρ

m
i,j + min

{
0, vi+1/2,j

}
(ρmi+1,j − ρmi,j)

− vi−1/2,j ρ
m
i−1,j −min

{
0, vi−1/2,j

}
(ρmi,j − ρmi−1,j)

+ Jm1 (xi+1/2,j) f(ρmi,j) + min
{

0, Jm1 (xi+1/2,j)
}

(f(ρmi+1,j)− f(ρmi,j))

− Jm1 (xi−1/2,j) f(ρmi−1,j)−min
{

0, Jm1 (xi−1/2,j)
}

(f(ρmi,j)− f(ρmi−1,j))

±vi−1/2,j ρ
m
i,j ± Jm1 (xi−1/2,j) f(ρmi,j)

]
= λx

[
∆x ∂xv

stat
1 (ξi, yj) ρ

m
i,j +

(
vi−1/2,j −min

{
0, vi−1/2,j

})
(ρmi,j − ρmi−1,j)

+ min
{

0, vi+1/2,j

}
(ρmi+1,j − ρmi,j) +

(
Jm1 (xi+1/2,j)− Jm1 (xi−1/2,j)

)
f(ρmi,j)

+

(
Jm1 (xi−1/2,j)−min

{
0, Jm1 (xi−1/2,j)

})
(f(ρmi,j)− f(ρmi−1,j))

+ min
{

0, Jm1 (xi+1/2,j)
}

(f(ρmi+1,j)− f(ρmi,j))

]
≤ ∆t

(∥∥∥∂xvstat1

∥∥∥
L∞

+ 2 ε
∥∥∥∇2η

∥∥∥
L∞
‖ρo‖L1

)
ρmi,j

+ λx

(∥∥∥vstat1

∥∥∥
L∞

+ εLf

)(∣∣∣ρmi,j − ρmi−1,j

∣∣∣+
∣∣∣ρmi+1,j − ρmi,j

∣∣∣) ,
where ξi ∈ ]xi−1/2, xi+1/2[ and we used f(r) ≤ r, (A.1) and (A.2). Therefore,∑

i,j∈Z
∆x∆y

∣∣∣ρm+1/2
i,j − ρmi,j

∣∣∣ ≤ 2 ∆t

(∥∥∥vstat1

∥∥∥
L∞

+ εLf

) ∑
i,j∈Z

∆y
∣∣∣ρmi+1,j − ρmi,j

∣∣∣
+ ∆t

(∥∥∥∂xvstat1

∥∥∥
L∞

+ 2 ε
∥∥∥∇2η

∥∥∥
L∞
‖ρo‖L1

)
‖ρo‖L1

≤ 2 ∆t

(∥∥∥vstat1

∥∥∥
L∞

+ εLf

)
Cx(m∆t)

+ ∆t

(∥∥∥∂xvstat1

∥∥∥
L∞

+ 2 ε
∥∥∥∇2η

∥∥∥
L∞
‖ρo‖L1

)
‖ρo‖L1

≤ ∆t Ct(m∆t),

where we set

Ct(s) = 2

(∥∥∥vstat∥∥∥
L∞

+ εLf

)
Cx(s) +

(∥∥∥∇vstat∥∥∥
L∞

+ 2 ε
∥∥∥∇2η

∥∥∥
L∞
‖ρo‖L1

)
‖ρo‖L1 . (3.38)
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Analogously, we get∑
i,j∈Z

∆x∆y
∣∣∣ρm+1
i,j − ρm+1/2

i,j

∣∣∣ ≤ 2 ∆t

(∥∥∥vstat2

∥∥∥
L∞

+ εLf

) ∑
i,j∈Z

∆x
∣∣∣ρm+1/2
i,j+1 − ρ

m+1/2
i,j

∣∣∣
+ ∆t

(∥∥∥∂yvstat2

∥∥∥
L∞

+ 2 ε
∥∥∥∇2η

∥∥∥
L∞
‖ρo‖L1

)
‖ρo‖L1

≤ 2 ∆t

(∥∥∥vstat2

∥∥∥
L∞

+ εLf

)
Cx(m∆t)

+ ∆t

(∥∥∥∂yvstat2

∥∥∥
L∞

+ 2 ε
∥∥∥∇2η

∥∥∥
L∞
‖ρo‖L1

)
‖ρo‖L1

≤ ∆t Ct(m∆t).

Hence
n−1∑
m=0

∑
i,j∈Z

∆x∆y
∣∣∣ρm+1
i,j − ρmi,j

∣∣∣ ≤ 2n∆t Ct(n∆t), (3.39)

which together with (3.37) completes the proof. �

3.5 Discrete entropy inequalities

Following [1], see also [7, 8], introduce the following notation: for i, j ∈ Z, n = 0, . . . , NT − 1
and κ ∈ R,

Φn
i+1/2,j(u, v) = V1(xi+1/2,j , u ∨ κ, v ∨ κ) + F (u ∨ κ, v ∨ κ, Jn1 (xi+1/2,j))

− V1(xi+1/2,j , u ∧ κ, v ∧ κ)− F (u ∧ κ, v ∧ κ, Jn1 (xi+1/2,j)),

Γni,j+1/2(u, v) = V2(xi,j+1/2, u ∨ κ, v ∨ κ) + F (u ∨ κ, v ∨ κ, Jn2 (xi,j+1/2))

− V2(xi,j+1/2, u ∧ κ, v ∧ κ)− F (u ∧ κ, v ∧ κ, Jn2 (xi,j+1/2)),

with V1, V2 and F defined as in (3.2), (3.4) and (3.3) respectively.

Lemma 3.8. (Discrete entropy condition) Fix ρo ∈ (L∞ ∩BV)(R2;R+). Let (v), (H),
(η), (3.13) hold. Then, the solution ρ∆ in (3.1) constructed through Algorithm 3.1 satisfies
the following discrete entropy inequality: for i, j ∈ Z, for n = 0, . . . , NT − 1 and κ ∈ R,∣∣∣ρn+1

i,j − κ
∣∣∣− ∣∣∣ρni,j − κ∣∣∣+ λx

(
Φn
i+1/2,j(ρ

n
i,j , ρ

n
i+1,j)− Φn

i−1/2,j(ρ
n
i−1,j , ρ

n
i,j)
)

+λx sgn(ρ
n+1/2
i,j − κ)

(
vstat1 (xi+1/2,j)− vstat1 (xi−1/2,j)

)
κ

+λx sgn(ρ
n+1/2
i,j − κ)

(
Jn1 (xi+1/2,j)− Jn1 (xi−1/2,j)

)
f(κ)

+λy

(
Γni,j+1/2(ρ

n+1/2
i,j , ρ

n+1/2
i,j+1 )− Γni,j−1/2(ρ

n+1/2
i,j−1 , ρ

n+1/2
i,j )

)
+λy sgn(ρn+1

i,j − κ)
(
vstat2 (xi,j+1/2)− vstat2 (xi,j−1/2)

)
κ

+λy sgn(ρn+1
i,j − κ)

(
Jn2 (xi,j+1/2)− Jn2 (xi,j−1/2)

)
f(κ) ≤ 0.

The proof is omitted, being entirely analogous to that of [2, Proposition 2.8], see also [1,
Lemma 2.8].
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4 Lipschitz continuous dependence on initial data

Proposition 4.1. Fix T > 0. Let (v), (H) and (η) hold. Let ρo, σo ∈ (L∞ ∩BV)(R2;R+).
Call ρ and σ the corresponding solutions to (1.1). Then the following estimate holds:∥∥ρ(t)− σ(t)

∥∥
L1(R2)

≤ ‖ρo − σo‖L1(R2) e
t A(t).

with A(t) defined in (4.2).

Proof. In the rest of the proof, to avoid heavy notation, we will denote pairs in R2 by x or
y. Introduce the following notation:

R(t,x) =
(
I(ρ(t))

)
(x), S(t,x) =

(
I(σ(t))

)
(x). (4.1)

The idea is to apply the doubling of variables method introduced by Kružkov in [11], exploiting
in particular the proof of [4, Lemma 4]. There, a flux of the form f(t, x, ρ)V (t, x) is taken
into account, with x ∈ R, the proof being valid also in the multidimensional case, i.e. x ∈ Rn.
Therefore we are going to use this result for what concerns the part of the flux of type
f(ρ)R(t,x).

For the sake of completeness, we recall that a flux function of type l(x) g(ρ) is considered
in [10], with x ∈ Rn, and the proof of [4, Lemma 4] follows the lines of that of [10, Theorem 1.3].
Thus, here we are adding the dependence on time to the function l(x) considered in [10].

Let ϕ ∈ C1
c(]0, T [×R2;R+) be a test function as in the definition of solution by Kružkov.

Let Y ∈ C∞c (R;R+) be such that

Y (z) = Y (−z), Y (z) = 0 for |z| ≥ 1,

∫
R
Y (z) dz = 1.

Define, for h > 0, Yh(z) = 1
hY ( zh). Clearly, Yh ∈ C∞c (R;R+), Yh(z) = Yh(−z), Yh(z) = 0 for

|z| ≥ h,
∫
R Yh(z) dz = 1 and Yh → δ0 as h→ 0, δ0 being the Dirac delta in 0. Define moreover

ψh(t,x, s,y) = ϕ

(
t+ s

2
,
x+ y

2

)
Yh(t− s)

2∏
i=1

Yh(xi − yi).

Introduce the space ΠT = ]0, T [×R2 and, from the definition of solution, derive the following
entropy inequalities for ρ = ρ(t,x) and σ = σ(s,y):∫∫∫∫
ΠT×ΠT

{
|ρ− σ| ∂tψh + |ρ− σ| ∇xv

stat(x) · ∇xψh + sgn(ρ− σ)
(
f(ρ)− f(σ)

)
R(t,x) · ∇xψh

− sgn(ρ− σ)σ divx v
stat(x)ψh − sgn(ρ− σ) f(σ) divxR(t,x)ψh } dx dt dy ds ≥ 0,∫∫∫∫

ΠT×ΠT

{
|σ − ρ| ∂sψh + |σ − ρ| ∇yv

stat(y) · ∇yψh + sgn(σ − ρ)
(
f(σ)− f(ρ)

)
S(s,y) · ∇yψh

− sgn(σ − ρ) ρ divy v
stat(y)ψh − sgn(σ − ρ) f(ρ) divy S(s,y)ψh }dx dt dy ds ≥ 0.

Sum the two inequalities above and rearrange the terms therein, following the proof of [11,
Theorem 1] for what concerns the linear part of the flux and the proof of [4, Lemma 4], see
also [10, Theorem 1.3], for the other part:∫∫∫∫

ΠT×ΠT

{
|ρ− σ|(∂tψh + ∂sψh) + sgn(ρ− σ)(ρvstat(x)− σvstat(y)) · (∇xψh +∇yψh)
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+ sgn(ρ− σ)σ
[
(vstat(y)− vstat(x)) · ∇xψh − divx v

stat(x)ψh

]
+ sgn(ρ− σ) ρ

[
(vstat(y)− vstat(x)) · ∇yψh + divy v

stat(y)ψh

]
+ sgn(ρ− σ)

(
f(ρ)R(t,x)− f(σ)S(s,y)

)
· (∇xψh +∇yψh)

+ sgn(ρ− σ) f(σ)
[(
S(s,y)−R(t,x)

)
· ∇xψ − divxR(t,x)ψh

]
+ sgn(ρ− σ) f(ρ)

[(
S(s,y)−R(t,x)

)
· ∇yψ + divy S(s,y)ψh

]}
dx dtdy ds ≥ 0.

Let h→ 0, which gives∫∫
ΠT

{
|ρ− σ|∂tϕh + sgn(ρ− σ)

[
(ρ− σ)vstat(x) + S(t,x)

(
f(ρ)− f(σ)

)]
· ∇xϕ

+ sgn(ρ− σ) f(ρ) divx

(
S(t,x)−R(t,x)

)
ϕ

+ sgn(ρ− σ) f ′(ρ)
(
S(t,x)−R(t,x)

)
∂xρ(t,x)ϕ

}
dx dt dy ds ≥ 0.

Choosing a suitable test function ϕ leads to∫
R2

∣∣ρ(t,x)− σ(t,x)
∣∣dx− ∫

R2

∣∣ρ(τ,x)− σ(τ,x)
∣∣ dx

+

∫ t

τ

∫
R2

∣∣div (S(s,x)−R(s,x))
∣∣ f(ρ(s,x)) dx ds

+

∫ t

τ
Lf
∥∥S(s)−R(s)

∥∥
L∞(R2)

TV (ρ(s)) ds ≥ 0.

Observe that, following [6, Lemma 4.1], the following bounds hold∥∥S(s)−R(s)
∥∥
L∞(R2)

≤ 2 ε‖∇η‖L∞
∥∥ρ(s)− σ(s)

∥∥
L1(R2)

,∥∥div (S(s)−R(s))
∥∥
L∞(R2)

≤ ε
∥∥ρ(s)− σ(s)

∥∥
L1(R2)

‖∆η‖L∞
(

1 +
∥∥σ(s)

∥∥
L1(R2)

‖∇η‖L1

)
.

Thus, letting τ → 0 and exploiting the bounds on ρ and σ given by Theorem 2.2, as well as
f(r) ≤ r, we get∫

R2

∣∣ρ(t,x)− σ(t,x)
∣∣ dx

≤
∫
R2

∣∣ρo(x)− σo(x)
∣∣ dx+ 2 ε‖∇η‖L∞‖ρo‖L1(R2)

∫ t

0

∫
R2

∣∣ρ(s,x)− σ(s,x)
∣∣ dx ds

+ εLf‖∆η‖L∞
(

1 + ‖σo‖L1(R2)‖∇η‖L1

)∫ t

0
TV (ρ(s))

(∫
R2

∣∣ρ(s,x)− σ(s,x)
∣∣ dx)ds

=

∫
R2

∣∣ρo(x)− σo(x)
∣∣ dx+

∫ t

0
A(s)

(∫
R2

∣∣ρ(s,x)− σ(s,x)
∣∣dx) ds ,

with

A(s) = 2 ε‖∇η‖L∞‖ρo‖L1(R2) + εLf‖∆η‖L∞
(

1 + ‖σo‖L1(R2)‖∇η‖L1

)
TV (ρ(s)). (4.2)
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An application of Gronwall Lemma, together with∫ t

0
A(s) exp

(∫ t

s
A(r) dr

)
ds = −1 + exp

(∫ t

0
A(s) ds

)
,

yields the desired estimate∥∥ρ(t)− σ(t)
∥∥
L1(R2)

≤ ‖ρo − σo‖L1(R2) e
t A(t).

�

Remark 4.2. We can interpret ρ and σ as solutions of the following Cauchy problems:{
∂tρ+∇ · g(t,x, ρ) = 0,
ρ(0,x) = ρo(x),

{
∂tσ +∇ · h(t,x, σ) = 0, (t,x)∈ [0, T ]× R2,
σ(0,x) = σo(x), x∈R2,

where

g(t,x, r) = r vstat(x) + f(r)R(t,x), h(t,x, r) = r vstat(x) + f(r)S(t,x),

so that the L1 distance between the solutions at time t > 0 can be estimated by [12, Propo-
sition 2.10], see also the refinement in [13, Proposition 2.9]. However, making use of the
explicit expression of the flux in the present case, one may see that the bound provided by
Proposition 4.1 is sharper than that coming from [13, Proposition 2.9].

5 Lax–Friedrichs scheme

It is also possible to consider a piece-wise constant solution ρ∆ to (1.1) as in (3.1) defined
through a Lax–Friedrichs type finite volume scheme with dimensional splitting. The algorithm
reads as follows

Algorithm 5.1.

for n = 0, . . . NT − 1

Fn(x, y, u, w) =
1

2

[
vstat1 (x, y)(u+ w) + Jn1 (x, y)

(
f(u) + f(w)

)]
− α

2
(w − u) (5.1)

Gn(x, y, u, w) =
1

2

[
vstat2 (x, y)(u+ w) + Jn2 (x, y)

(
f(u) + f(w)

)]
− β

2
(w − u) (5.2)

ρ
n+1/2
i,j = ρni,j − λx

[
Fn(xi+1/2,j , ρ

n
i,j , ρ

n
i+1,j)− Fn(xi−1/2,j , ρ

n
i−1,j , ρ

n
i,j)
]

(5.3)

ρn+1
i,j = ρ

n+1/2
i,j − λy

[
Gn(xi,j+1/2, ρ

n
i,j , ρ

n
i,j+1)−Gn(xi,j−1/2, ρ

n
i,j−1, ρ

n
i,j)
]

(5.4)

end

The algorithm is close to that studied in [1], except that in the present case to compute
ρn+1 the flux is evaluated at ρn, instead of ρn+1/2.

Following closely the proofs presented in [1], it is possible to recover also for Algorithm 5.1
the bounds on the approximate solution necessary to prove the convergence. Below, we state
only the final results, omitting the computations.
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Lemma 5.2. (Positivity) Let ρo ∈ L∞(R2;R+). Let assumptions (v), (H) and (η) hold.
Assume that

α ≥
∥∥∥vstat1

∥∥∥
L∞

+ εLf , λx ≤
1

3
min

{
1

α
,

1

2 εLf + ∆x
∥∥vstat1

∥∥
L∞

}
, (5.5)

β ≥
∥∥∥vstat2

∥∥∥
L∞

+ εLf , λy ≤
1

3
min

{
1

β
,

1

2 εLf + ∆x
∥∥vstat2

∥∥
L∞

}
. (5.6)

Then, for all t > 0 and (x, y) ∈ R2, the piece-wise constant approximate solution ρ∆ (3.1)
constructed through Algorithm 5.1 is such that ρ∆(t, x, y) ≥ 0.

Lemma 5.3. (L1 bound) Let ρo ∈ L∞(R2;R+). Let (v), (H), (η), (5.5) and (5.6) hold.
Then, for all t > 0, ρ∆ in (3.1) constructed through Algorithm 5.1 satisfies (3.10), that is∥∥ρ∆(t)

∥∥
L1(R2)

= ‖ρo‖L1(R2).

Lemma 5.4. (L∞ bound) Let ρo ∈ L∞(R2;R+).Let (v), (H), (η), (5.5) and (5.6) hold.
Then, for all t > 0, ρ∆ in (3.1) constructed through Algorithm 5.1 satisfies∥∥ρ∆(t)

∥∥
L∞(R2)

≤ ‖ρo‖L∞ e
C̃∞ t,

where
C̃∞ =

∥∥∥∂xvstat1

∥∥∥
L∞

+
∥∥∥∂yvstat2

∥∥∥
L∞

+ 4 εLf

∥∥∥∇2η
∥∥∥
L∞
‖ρo‖L1 .

Remark 5.5. Compare the L∞ estimate obtained in Lemma 5.4 using the Lax–Friedrichs
scheme with that in Lemma 3.4, given by the Roe scheme. Although they look very similar,
the constants appearing in the exponent are actually different: when comparing C̃∞ above to
C∞ as in (3.12), we see that in C̃∞ the last addend is multiplied by Lf .

Proposition 5.6. (BV estimate in space) Let ρo ∈ (L∞ ∩BV)(R2;R+). Let (v), (H),
(η), (5.5) and (5.6) hold. Then, for all t > 0, ρ∆ in (3.1) constructed through Algorithm 5.1
satisfies the following estimate: for all n = 0, . . . , NT ,∑

i,j∈Z

(
∆y
∣∣∣ρni+1,j − ρni,j

∣∣∣+ ∆x
∣∣∣ρni,j+1 − ρni,j

∣∣∣) ≤ C̃x(tn),

where

C̃x(t) = e2 t K̃1
∑
i,j∈Z

(
∆x
∣∣∣ρ0
i,j+1 − ρ0

i,j

∣∣∣+ ∆y
∣∣∣ρ0
i+1,j − ρ0

i,j

∣∣∣)+
2K2

K̃1

(
e2 t K̃1 − 1

)
, (5.7)

with

K̃1 = 2
∥∥∥∇vstat∥∥∥

L∞
+ 4 εLf

∥∥∥∇2η
∥∥∥
L∞
‖ρo‖L1 ,

K2 as in (3.17) and c1, c2 are defined in (A.6).

Remark 5.7. Observe that K̃1 < K1 in (3.16).
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Corollary 5.8. (BV estimate in space and time) Let ρo ∈ (L∞∩BV)(R2;R+). Let (v),
(H), (η), (5.5) and (5.6) hold. Then, for all t > 0, ρ∆ in (3.1) constructed through Algo-
rithm 5.1 satisfies the following estimate: for all n = 1, . . . , NT ,

n−1∑
m=0

∑
i,j∈Z

∆t

(
∆y
∣∣∣ρmi+1,j − ρmi,j

∣∣∣+ ∆x
∣∣∣ρmi,j+1 − ρmi,j

∣∣∣)+

n−1∑
m=0

∑
i,j∈Z

∆x∆y
∣∣∣ρm+1
i,j − ρmi,j

∣∣∣ ≤ C̃xt(tn),

where
C̃xt(t) = t

(
C̃x(t) + 2 C̃t(t)

)
,

with C̃x as in (5.7) and

C̃t(s) = 2

(∥∥∥vstat∥∥∥
L∞

+ εLf

)
C̃x(s) +

(∥∥∥∇vstat∥∥∥
L∞

+ ε
∥∥∥∇2η

∥∥∥
L∞
‖ρo‖L1

)
‖ρo‖L1 .

6 Numerical results

We consider the test setting given in [9] to compare the results of the Roe scheme, cf. Algo-
rithm 3.1, to the results of the Lax-Friedrichs type scheme, cf. Algorithm 5.1.

6.1 Test setting

A total number of N = 192 parts in the shape of metal cylinders are transported on a
conveyor belt moving with speed vT = 0.42 m/s and are redirected by a diverter. The
diverter is positioned at an angle of ϑ = 45 degree with respect to the border of the conveyor
belt. Figure 1 illustrates the static velocity field of the conveyor belt. Parts are transported
with velocity vstat = (vT , 0) in Region A and the diverter redirects the parts (Region C).
The area behind the diverter (Region B) is modelled in a way that should prohibit parts from
passing through the diverter, see [9]. The point (xd, yd) marks the end of the diverter.

vT

ϑ

Figure 1 – Schematic view of the static field of the conveyor belt.

6.2 Discretisation and solution properties

To numerically model the setting, we introduce a uniform grid ∆x = ∆y on the selected
area of the conveyor belt. Initial conditions for the density at time t = 0 are given by the
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experimental data and normalised so that ρmax = 1. The mollifier η which is used in the
operator I(ρ) (1.2) is chosen as follows

η(x) =
σ

2π
e−

1
2
σ||x||22 ,

with σ = 10000.
In the original model formulation [9], the Heaviside function was introduced to avoid

densities larger than ρmax. In this work, we investigate the performances of two numerical
schemes with two types of smooth approximations of the Heaviside function, one sensibly
closer than the other. The former is the approximation Ht (atan), obtained using the inverse
tangent

Ht(u) =
arctan(50(u− 1))

π
+ 0.5, (6.1)

while the latter is denoted Hp (polynomial) and it is obtained by cubic spline interpolation
with the following conditions

Hp(u) = 0 ∀u ≤ dl < 1, Hp(u) = 1 ∀u ≥ dr > 1,

Hp(dl) = 0, Hp(1) =
1

2
, Hp(dr) = 1, H ′p(dl) = 0, H ′p(dr) = 0.

The approximation Hp for dl = 1
2 and dr = 8

5 together with the inverse tangent approximation
are depicted in Figure 2.

0 0.5 1 1.5 2
0

0.5

1

ρ

H
(ρ

)

Heaviside function

Approximation (atan)

Approximation (polynomial)

Figure 2 – The Heaviside function and approximations Ht (atan) and Hp (polynomial).

Using the inverse tangent approximation corresponds to activating the collision operator
I(ρ) very close to ρmax. On the other hand, with the polynomial approximation, the col-
lision operator starts activating at 1

2ρmax, which implies that clusters with densities values
between 1

2ρmax and ρmax are already dispersed to some extent. Numerically, this means that
densities above the maximum one are more likely to appear when using the inverse tangent
approximation, while exploiting the polynomial approximation prevents from reaching such
high values of the density.

Clearly, different approximations of the Heaviside function lead to different Lipschitz con-
stants Lf (2.1) and therefore influence the CFL time steps of the Roe scheme (3.13) and of the
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Lax-Friedrichs scheme (5.5)–(5.6). Moreover, the constants α and β given by the CFL con-
dition for the Lax-Friedrichs scheme depend on the Lipschitz constant Lf . Larger Lipschitz
constants, and therefore higher viscosity coefficients α and β, add additional viscosity to the
Lax-Friedrichs scheme and therefore more diffusion, as shown in [14]. Note that in general,
the Lax-Friedrichs scheme is more diffusive than the Roe scheme. To ensure conservation
of mass within the given area of the conveyor belt, we impose zero–flux–conditions at the
boundaries of the conveyor belt for the Lax-Friedrichs scheme. Therefore, at the boundary,
the flux that would exit the domain is set to zero.

The Lipschitz constants of the approximations of the Heaviside functions depicted in
Figure 2, as well as the corresponding CFL conditions, are displayed in Table 1, for a fixed
space step size ∆x. The inverse tangent approximation has a greater Lipschitz constant,
leading to small CFL time steps and thus to an increased computational effort.

Approximation Lf ∆x = ∆y [m] CFL time step Roe [s] CFL time step LxF [s]

Ht (atan) 16.42 1 · 10−2 2.37 · 10−4 1.21 · 10−4

Hp (polynomial) 2.09 1 · 10−2 1.63 · 10−3 9.50 · 10−4

Table 1 – CFL time steps for different Heaviside approximations and fixed ∆x,∆y.

We analyze the amount of parts that pass the obstacle, i.e. the outflow at the end of the
obstacle (xd, yd). The time-dependent mass function U(t) counts the measured parts that are
located in the region Ω0

U(t) =
1

N

N∑
i=1

XΩ0(x(i)(t), y(i)(t)) XΩ0(x, y) =

{
1, (x, y) ∈ Ω0

0, otherwise
(6.2)

where Ω0 = {(x, y) ∈ R2| x ≤ xd} is the left sided region upstream the obstacle and
(x(i)(t), y(i)(t)) is the position of part i, i ∈ 1, . . . , N , at time t. The time-dependent mass
function describing the outflow to the solution of the conservation law is given by

Uρ(t) =
1∫

Ω0
ρ(x, 0) dx

∫
Ω0

ρ(x, t) dx. (6.3)

The outflow curves obtained using Roe scheme, Lax-Friedrichs scheme and the outflow mea-
sured experimentally are shown in Figure 3. The parameters chosen for each scheme are those
given in Table 1. Figure 4 displays the L∞ norms of the solution over time.
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Figure 3 – Outflow.
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Figure 4 – Time evolution of the L∞

norm of the approximate solutions.

The outflow curve given by Roe scheme for both approximations of the Heaviside function
is closer to the experimental data, due to the fact that the scheme captures more congestion,
as indicated also by the L∞ norm. With Roe scheme, as expected, the density piles up even
more when using the inverse tangent approximation. We observe that a maximum principle
is not verified. On the contrary, with the polynomial approximation, higher densities are
avoided, since the collision operator is activated earlier. Due to the influence of the viscosity
coefficients, an opposite behaviour is observable with the Lax-Friedrichs scheme. Results for
the L∞ norm of the solution are quite promising using the polynomial approximation, whereas
the viscosity of the scheme is too large in the case of the inverse tangent approximation. The
L∞ norm of the solution is constantly decreasing over time because of diffusion.

Figure 5 displays the parts’ positions in the experiment and the density distribution
computed with Roe and Lax-Friedrichs scheme using the polynomial Heaviside approximation
at time t = 1.5s. The density plot of the Roe scheme matches the experimental data quite
well: regions with higher densities mostly coincide with regions in the experiments, where the
parts are side by side. In contrast, the Lax-Friedrichs scheme produces a more widely spread
density distribution. Even the parts on the upper section of the belt, which are transported
to the right with the velocity of the conveyor belt, are not correctly portrayed.

Figure 5 – Experimental data (left), results of the Roe scheme (middle) and the Lax-
Friedrichs scheme (right) at t = 1.5 s.

Since the Roe scheme using the sharper approximation of the Heaviside function provides
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the best result in comparison to the experimental data, we analyse its behaviour for ∆x,∆y →
0. Table 2 shows the error norms of the outflow of the simulations with the Roe scheme and
the inverse tangent approximation of the Heaviside function compared to to the outflow given
by the experimental data.

∆x = ∆y CFL time step L1-error L2-error L∞-error

4 · 10−2 9.47 · 10−4 0.42 0.26 0.20
2 · 10−2 4.73 · 10−4 0.16 0.10 0.10
1 · 10−2 2.37 · 10−4 0.09 0.07 0.09
5 · 10−3 1.18 · 10−4 0.07 0.05 0.07

Table 2 – Error norms of Roe scheme, with the inverse tangent approximation of the
Heaviside function (6.1), against experimental data.

The scheme is evaluated for different space step sizes and their corresponding CFL time
steps. We observe that the error of the Roe scheme decreases as the space step decreases,
suggesting the convergence of the outflow to the experimental data, compare also Figure 6.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

Time

A
m

ou
n
t

of
p

ar
ts

in
fr

on
t

of
ob

st
ac

le

Space step 4 · 10-2

Space step 2 · 10-2

Space step 1 · 10-2

Space step 5 · 10-3

Experiment

Figure 6 – Outflow computed by Roe scheme with different space step sizes using the
inverse tangent approximation of the Heaviside function (6.1).
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Appendix A Technical Lemma

Lemma A.1. Let η ∈ (C3 ∩W3,∞)(R2;R). Then, for n = 0, . . . , NT , for i, j ∈ Z, the
following estimates hold: ∥∥Jnk ∥∥L∞ ≤ ε for k = 1, 2, (A.1)∣∣∣Jn1 (xi+1/2,j)− Jn1 (xi−1/2,j)

∣∣∣ ≤ 2 ε∆x
∥∥∥∇2η

∥∥∥
L∞
‖ρn‖L1 , (A.2)∣∣∣Jn1 (xi+1/2,j)− Jn1 (xi+1/2,j+1)

∣∣∣ ≤ 2 ε∆y
∥∥∥∇2η

∥∥∥
L∞
‖ρn‖L1 , (A.3)∣∣∣Jn2 (xi,j+1/2)− Jn2 (xi,j−1/2)

∣∣∣ ≤ 2 ε∆y
∥∥∥∇2η

∥∥∥
L∞
‖ρn‖L1 ,∣∣∣Jn2 (xi+1,j+1/2)− Jn2 (xi,j+1/2)

∣∣∣ ≤ 2 ε∆x
∥∥∥∇2η

∥∥∥
L∞
‖ρn‖L1 ,∣∣∣Jn1 (xi+3/2,j)− 2 Jn1 (xi+1/2,j)− Jn1 (xi−1/2,j)

∣∣∣ ≤ 2 ε (∆x)2
(
c1‖ρn‖L1 + c2‖ρn‖2L1

)
, (A.4)∣∣∣Jn2 (xi,j+3/2)− 2 Jn2 (xi,j+1/2)− Jn2 (xi,j−1/2)

∣∣∣ ≤ 2 ε (∆y)2
(
c1‖ρn‖L1 + c2‖ρn‖2L1

)
,∣∣∣Jn1 (xi+1/2,j)−Jn1 (xi+1/2,j+1)−Jn1 (xi−1/2,j)−Jn1 (xi−1/2,j+1)

∣∣∣ ≤ 2 ε∆x∆y C, (A.5)∣∣∣Jn2 (xi,j+1/2)−Jn2 (xi+1,j+1/2)−Jn2 (xi,j−1/2)−Jn2 (xi+1,j−1/2)
∣∣∣ ≤ 2 ε∆x∆y C,

where we set

C = c1‖ρn‖L1 + c2‖ρn‖2L1 , c1 = 2
∥∥∥∇3η

∥∥∥
L∞
, c2 = 3

∥∥∥∇2η
∥∥∥2

L∞
. (A.6)

Proof. The proof of (A.1) is immediate.
Pass now to (A.2). For the sake of simplicity, introduce the following notation:

D+ =

√
1 +

∥∥∥(∇η ∗ ρn)(xi+1/2, yj)
∥∥∥2
, D− =

√
1 +

∥∥∥(∇η ∗ ρn)(xi−1/2, yj)
∥∥∥2
.

Hence, ∣∣∣Jn1 (xi+1/2, yj)− Jn1 (xi−1/2, yj)
∣∣∣ (A.7)

= ε

∣∣∣∣∣∣∆x∆y

D+

∑
k,`∈Z

ρnk,` ∂1η(xi+1/2−k, yj−`)−
∆x∆y

D−

∑
k,`∈Z

ρnk,` ∂1η(xi−1/2−k, yj−`)

∣∣∣∣∣∣
≤ ε

∣∣∣∣∣∣∆x∆y

D+

∑
k,`∈Z

ρnk,`

(
∂1η(xi+1/2−k, yj−`)− ∂1η(xi−1/2−k, yj−`)

)∣∣∣∣∣∣ (A.8)

+ ε∆x∆y

∣∣∣∣ 1

D+
− 1

D−

∣∣∣∣ ∑
k,`∈Z

∣∣∣ρnk,`∣∣∣∣∣∣∂1η(xi−1/2−k, yj−`)
∣∣∣. (A.9)

Consider (A.8): since D+ ≥ 1 and∣∣∣∂1η(xi+1/2−k, yj−`)− ∂1η(xi−1/2−k, yj−`)
∣∣∣ ≤ ∫ xi+1/2−k

xi−1/2−k

∣∣∣∂2
11η(x, yj−`)

∣∣∣ dx ,
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we obtain
[(A.8)] ≤ ε∆x

∥∥∥∂2
11η
∥∥∥
L∞
‖ρn‖L1 . (A.10)

On the other hand, to estimate (A.9), compute∣∣∣∣ 1

D+
− 1

D−

∣∣∣∣ =
|D+ −D−|
D+D−

.

Introduce a(x) = ∇η ∗ ρn(x) and b(z) = (1 + ‖z‖2)1/2, for z ∈ R2. In particular compute

b′(z) =
‖z‖

(1 + ‖z‖2)1/2
and observe that

∣∣b′(z)∣∣ ≤ 1. Then

|D+ −D−| =
∣∣∣b(a(xi+1/2))− b(a(xi−1/2))

∣∣∣ =
∣∣∣b′(a(x̃i)) a

′(x̃i) (xi+1/2 − xi−1/2)
∣∣∣

=

∣∣∣∣∣ a(x̃i)

(1 + a(x̃i)2)1/2
(∂x∇η ∗ ρn)(x̃i) ∆x

∣∣∣∣∣
≤ ∆x ‖ρn‖L1

∥∥∥∇2η
∥∥∥
L∞
. (A.11)

Therefore,

ε∆x∆y

∣∣∣∣ 1

D+
− 1

D−

∣∣∣∣ ∑
k,`∈Z

∣∣∣ρnk,`∣∣∣∣∣∣∂1η(xi−1/2−k, yj−`)
∣∣∣ ≤ ε∆x

∥∥∥∇2η
∥∥∥
L∞
‖ρn‖L1 . (A.12)

Inserting (A.10) and (A.12) into the estimate of (A.7) yields the desired result.

Consider now (A.4). Introduce the following notation: for µ ∈ {−1; 1; 3} set

Dµ =

√
1 +

∥∥∥(∇η ∗ ρn)(xi+µ/2, yj)
∥∥∥2
.

Thus

Jn1 (xi+3/2,j)− 2 Jn1 (xi+1/2,j) + Jn1 (xi−1/2,j)

= − ε

(
(∂1η ∗ ρn)(xi+3/2,j)

D3
− 2

(∂1η ∗ ρn)(xi+1/2,j)

D1
+

(∂1η ∗ ρn)(xi−1/2,j)

D−1

±
(∂1η ∗ ρn)(xi+3/2,j)

D1
±

(∂1η ∗ ρn)(xi−1/2,j)

D1

)

= − ε

((
1

D3
− 1

D1

)
(∂1η ∗ ρn)(xi+3/2,j) +

1

D1

(
(∂1η ∗ ρn)(xi+3/2,j)− (∂1η ∗ ρn)(xi+1/2,j)

)
+

1

D1

(
(∂1η ∗ ρn)(xi−1/2,j)− (∂1η ∗ ρn)(xi+1/2,j)

)
+

(
1

D−1
− 1

D1

)
(∂1η ∗ ρn)(xi−1/2,j)

)
.

Consider the terms separately, forgetting for a moment the ε in front of everything. Focus
first on the terms with common denominator D1:

1

D1

(
(∂1η ∗ ρn)(xi+3/2,j)− (∂1η ∗ ρn)(xi+1/2,j) + (∂1η ∗ ρn)(xi−1/2,j)− (∂1η ∗ ρn)(xi+1/2,j)

)
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=
∆x∆y

D1

∑
k,`∈Z

ρnk,`

(
∂1η(xi+3/2−k, yj−`)− ∂1η(xi+1/2−k, yj−`)

+∂1η(xi−1/2−k, yj−`)− ∂1η(xi+1/2−k, yj−`)
)

=
∆x∆y

D1

∑
k,`∈Z

ρnk,` ∆x
(
∂2

11η(x̂i+1−k, yj−`)− ∂2
11η(x̂i−k, yj−`)

)
=

∆x∆y

D1

∑
k,`∈Z

ρnk,` ∆x

∫ x̂i+1−k

x̂i−k

∂3
111η(x, yj−`) dx

≤ 2 (∆x)2
∥∥∥∂3

111η
∥∥∥
L∞
‖ρn‖L1 , (A.13)

with x̂i−k ∈ ]xi−1/2−k, xi+1/2−k[. We are left with(
1

D3
− 1

D1

)
(∂1η ∗ ρn)(xi+3/2,j) +

(
1

D−1
− 1

D1

)
(∂1η ∗ ρn)(xi−1/2,j). (A.14)

Add and subtract to (A.14) (
1

D−1
− 1

D1

)
(∂1η ∗ ρn)(xi+3/2,j).

Hence, (
1

D3
− 2

1

D1
+

1

D−1

)
(∂1η ∗ ρn)(xi+3/2,j) (A.15)

+

(
1

D−1
− 1

D1

)(
(∂1η ∗ ρn)(xi−1/2,j)− (∂1η ∗ ρn)(xi+3/2,j)

)
. (A.16)

Consider first (A.16): exploiting also (A.11), we obtain

[(A.16)] =
D1 −D−1

D1D−1
∆x∆y

∑
k,`∈Z

ρnk,`

(
∂1η(xi−1/2−k, yj−`)− ∂1η(xi+3/2−k, yj−`)

)
=
D1 −D−1

D1D−1
∆x∆y

∑
k,`∈Z

ρnk,`

∫ xi−1/2−k

xi+3/2−k

∂2
11η(x, yj−`) dx

≤ 2 (∆x)2
∥∥∥∇2η

∥∥∥2

L∞
‖ρn‖2L1 . (A.17)

As far as (A.15) is concerned, focus on the terms in the brackets:

1

D3
− 2

1

D1
+

1

D−1
=
D1D−1 − 2D3D−1 +D3D1

D3D1D−1

=
D−1(D1 −D3)−D3(D−1 −D1)±D3(D1 −D3)

D3D1D−1

=
(D−1 −D3)(D1 −D3)

D3D1D−1
− D−1 − 2D1 +D3

D1D−1
. (A.18)

Inserting the first addend of (A.18) back into (A.15) yields

(D−1 −D3)(D1 −D3)

D3D1D−1
(∂1η ∗ ρn)(xi+3/2,j) ≤ 2 (∆x)2

∥∥∥∇2η
∥∥∥2

L∞
‖ρn‖2L1 , (A.19)
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where we exploit (A.11) twice and use the fact that
(∂1η ∗ ρn)(xi+3/2,j)

D3
≤ 1. Concerning the

second addend of (A.18), focus on its numerator: with the notation introduced before (A.11),

D−1− 2D1 +D3 = b
(
a(xi+3/2)

)
− 2 b

(
a(xi+1/2)

)
+ b

(
a(x−1/2)

)
= b′

(
a(x̌i+1)

)
a′(x̌i+1)(xi+3/2 − xi+1/2)− b′

(
a(x̌i)

)
a′(x̌i)(xi+1/2 − xi−/2)

= ∆x
(
b′
(
a(x̌i+1)

)
(∂1∇η ∗ ρn)(x̌i+1)− b′

(
a(x̌i)

)
(∂1∇η ∗ ρn)(x̌i)

)
±∆x b′

(
a(x̌i)

)
(∂1∇η ∗ ρn)(x̌i+1)

= ∆x
[
b′
(
a(x̌i+1)

)
− b′

(
a(x̌i)

)]
(∂1∇η ∗ ρn)(x̌i+1)

+ ∆x b′
(
a(x̌i)

) [
(∂1∇η ∗ ρn)(x̌i+1)− (∂1∇η ∗ ρn)(x̌i)

]
= ∆x b′′

(
a(xi+1/2)

)
a′(xi+1/2) (x̌i+1 − x̌i) (∂1∇η ∗ ρn)(x̌i+1)

+ ∆x b′
(
a(x̌i)

)
∆x∆y

∑
k,`∈Z

ρnk,`
(
∂1∇η(x̌i+1−k, yj−`)− ∂1∇η(x̌i−k, yj−`)

)
= ∆x b′′

(
a(xi+1/2)

)
a′(xi+1/2) (x̌i+1 − x̌i) (∂1∇η ∗ ρn)(x̌i+1)

+ ∆x b′
(
a(x̌i)

)
∆x∆y

∑
k,`∈Z

ρnk,`

∫ x̌i+1−k

x̌i−k

∂2
11∇η(x, yj−`) dx

where x̌i ∈ ]xi−1/2, xi+1/2[ and xi+1/2 ∈ ]x̌i, x̌i+1[. Now insert this estimate back into (A.18)
and (A.15): since

∣∣b′′(z)∣∣ ≤ 1,∣∣∣∣D−1 − 2D1 +D3

D1D−1
(∂1η ∗ ρn)(xi+3/2,j)

∣∣∣∣ ≤ 2 (∆x)2

[
‖∂1∇η‖2L∞‖ρ

n‖2L1 +
∥∥∥∂2

11∇η
∥∥∥
L∞
‖ρn‖L1

]
.

(A.20)
Collecting together (A.13), (A.17), (A.19) and (A.20) yields∣∣∣Jn1 (xi+3/2, yj)− 2 Jn1 (xi+1/2, yj) + Jn1 (xi−1/2, yj)

∣∣∣
≤ 2 ε (∆x)2

(
2
∥∥∥∇3η

∥∥∥
L∞
‖ρn‖L1 + 3

∥∥∥∇2η
∥∥∥2

L∞
‖ρn‖2L1

)
.

�
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[11] S. N. Kružhkov. First order quasilinear equations with several independent variables. Mat. Sb.
(N.S.), 81 (123):228–255, 1970.

[12] M. Lécureux-Mercier. Improved stability estimates for general scalar conservation laws. J. Hy-
perbolic Differ. Equ., 8(4):727–757, 2011.

[13] M. Lécureux-Mercier. Improved stability estimates on general scalar balance laws. ArXiv e-prints,
July 2013.

[14] R. J. LeVeque. Numerical methods for conservation laws. Lectures in Mathematics ETH Zürich.
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