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Résumé. — Nous étudions un probléme particulier de vulcanisation de chaines en solutions semi-diluées ou
on a ajouté une concentration p d’agent vulcanisateur. Ce probléme est équivalent a la percolation d’éléments
ayant une fonctionnalité f dépendant & la fois de la longueur N des chaines initiales et de la concentration C
en monoméres. Notre approche nous permet de tenir compte des effets de volume exclu et de concentration en
monomeéres. Nous montrons que les exposants critiques de percolation peuvent étre observés dans certaines
conditions. Alors que la théorie de Flory prévoit une région critique extrémement étroite pour la vulcanisation
du liquide polymérique, et qu’on n’observe dans ce cas que les exposants de champ moyen, nous montrons que
la largeur de la région critique, ainsi que le point de gel, dépendent fortement de la concentration. Ceci nous
permet d’envisager la concentration C* de recouvrement d’un autre point de vue. Nous discutons également
le gonflement des gels ainsi obtenus.

Abstract. — We consider a particular case of vulcanization of polymer chains in a semi dilute solution where
a concentration p of vulcanizing agent has been added. This problem is equivalent to the percolation of elements
having a functionality f depending both on the length N of the initial chains and on the monomer concentration C.
Our approach allows us to take into account excluded volume effects as well as monomer concentration effects.
We show that the critical percolation exponents can be observed under certain conditions. Whereas Flory’s
theory for vulcanization in the melt predicts a very small critical region and only mean field exponents can be
observed in this case, we show that the width of the critical region, as well as the gel point, depend strongly on
concentration. This allows us to consider the overlap concentration C* from a different point of view. We also

discuss the swelling of these gels.

Introduction. — Gelation and vulcanization pro-
blems have been studied for a very long time both
theoretically [1]-[3] and experimentally [2], [3]. Only
connectivity properties were considered, linked to the
existence of a gel phase above a threshold (gel point).
Not all the solvent effects were taken into account
by these approaches. Thus the problem, as it was
studied, was purely geometrical [2]. On the other
hand, polymer solutions have also been studied
extensively these last few years [5]-[10] and it was
shown that solvent effects are very important for the
conformation of the chains [9]-[11]. But there was no
satisfactory theoretical connection between these
two problems, although it was known through
swelling properties, for instance, that solvent effects
may have dramatic effects on gels. However, very
significant progress has been made very recently
[11], [12].

We wish to consider here a special case of gelation,
namely the gelation of chains, or vulcanization :

(*) On leave of absence from C.E.N. Saclay.

We start with a polymer solution where a very small
amount p of a vulcanizing agent is added. Under the
influence of this agent, the polymer chains cross-link.
Above a threshold p,, there is an infinite branched
chain (gel). The purpose of the paper is mainly to
show that critical exponents can be observed under
certain conditions in the vicinity of the threshold.
Flory [2] considered this problem first, for chains in
the melt. De Gennes [13] showed recently that in this
case, the observed exponents should be classical.
This is due to the narrowness of the critical region,
and was related to the length N of the chains. In the
following, we are g()ing to analyse the preceding
problem in a different way, and to extend it to the
case of semi dilute solutions. Let us emphasize that
the problem which we are considering here is the
gelation of chains. So we suppose that the number
of cross-links of a chain with the others is small. The
changes in our approach when this number increases
are briefly discussed in the conclusion.

Let us end with a word of caution. The properties
we are discussing in the semi dilute case are valid
for short time scales. The experimental situation we
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have in mind is the following : we suppose that the
agent is photoactive. Then the mixture made of the
polymer solution and the cross-linking agent is
flashed for a very short time, during which the cross-
linking process occurs. We suppose that there is no
further cross-link.

1. Vulcanization in the melt. — Let us first consider
the case of a polymer melt. This has been studied by
Flory [2] and de Gennes [13] who showed that only
mean field exponents should be observed. Let us
consider this from a slightly different point of view.
We know that in the melt all the monomers are in
contact, leading to a mean field value for the radius
of gyration, for instance.

R? ~ NI? )]

where / is the statistical length.

Our starting point is a remark made by de Gennes
[13] that in the problem of chain percolation, there
is an elementary length which is the radius of a chain.
So what we are going to do is to reduce the chain
percolation problem to a polyfunctional condensa-
tion [14]. This is achieved by two scale-transforma-
tions :

1) on the lengths

r-or = i (20)
2) on the arc lengths
n-n = % . (2b)

Thus a chain is replaced by its centre of mass, (or by
a renormalized monomer). So, in the renormalized
problem, we have points at each site ; each point has
a functionality f = N, and each bond has a proba-
bility p of being present. As N is very large, we expect
mean field theory to be valid. The threshold is

p.~ N1 ©)]

which is Flory’s result [2]. (So we check that p is very
small indeed.) Different characteristic quantities [14]
can be calculated in the renormalized problem. The
corresponding expression in the initial chain perco-
lation problem is obtained by using relations (2a)
and (2b). Let Jp be a small quantity. The mean radius
of a branched molecule is

~ 6_[) e 1/2 4
6~ (2) @

which is de Gennes’ result [13]. The mean size of a
branched molecule, which is the number of mono-
mers in this molecule, is

Z~ (‘5—"> Tty ©)
Pe
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The mean number of molecules per site (i.e. branched
polymer concentration) is

2-ap
N ~ (éf_’) TN ©)

c

The gel fraction, which is the probability that a
monomer belongs to the infinite molecule is

5p\Pe
o~ (2
(Pc) M

(© is the number of monomers belonging to the
infinite molecule divided by the total number of
monomers, o it is scale invariant). Here, o, B, Vps
v, are exponents in the percolation problem. Their
numerical values depend on the value of &p relative
to the critical region.

For our purpose here, we only need the mean
field values (¢, = — 1, B, = y, = 1 v, = 3) in order
to determine the width of the critical region by a
Ginzburg argument. To do this, we evaluate the
relative fluctuation x = { §v? Y/{ v »? of the number
of connected monomers in a volume &3

This relative fluctuation x is easily shown to be [13]

x~ZO0? ég“'C’l ®

where C is the monomer concentration. Here C ~ 74,
In the mean field region, the fluctuations are negli-
gible (x < 1). By using (4) to (8) and the mean field
values for the exponents, we easily find for the mean
field region (x < 1) :

% > N3

c

d=173). )

So the critical region is defined by

op < op*
op*
Pc

~ N—l/3 (10)

which shows that the critical region is very narrow
for usual polymer chains (note that p, ~ N~' < 1).
We are going to see that this is no longer true in
semi dilute solutions.

2. Semi dilute solution. — In the melt, all the mono-
mers were equally reactive because each was sur-
rounded by other monomers in contact with it. This
situation is no longer valid in semi dilute solutions :
a given chain no longer has N contacts with the other
chains (including contacts with itself) but a smaller
number, depending on the monomer concentration C.
This is very important because only monomers in
contact can make cross-links. The situation before the
cross-linking process may be described as follows.
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(A more detailed discussion of semi dilute solutions
can be found in refs. [9] and [10]) :

— For small distances, solvent effects, i.e. excluded
volume effects, are present. The chain behaves as if
it were alone. This is what we called a blob. If we
suppose that it contains g statistical elements and has
a radius ¢,

é ~ g3/5 ~ C—3/4 (11)
¢ can be seen as the mean distance between two
successive contacts of a chain.

— For larger distances, due to the contacts bet-
ween chains, the excluded volume effect is screened.
This may be seen in the following way : if we take
the blob as a statistical element, the semi dilute solu-
tion looks like the melt. In particular, the radius of
gyration is

RZ ~ E 62
g

~ NC~ V4, (12)

This is a hint which shows us how to attack the vulca-
nization problem : in the semi dilute case, a trans-
formation amounting to taking the blob as a statis-
tical element reduces the problem to the usual case
of melts as considered in section 1.
This transformation can be written :
for distances
(13a)

r
r— r'=z~rc3/4

for arc lengths

5/4 .

(13d)

, n
n-on ~—~nc

g
In this transformation, the length N of a chain becomes

N—-»N’=§~NC5/“. (14)

Because all the monomers are not equally reactive,
p remains unchanged in the transformation [16].
(This transformation does not change the probability
that two blobs cross-link.) Notice that in the trans-
formed problem, the renormalized monomers (i.e.
the blobs) are equally reactive.

The problem has now been reduced to that which
we studied in section 1. In terms of the variables r’
and n’ the results are the same as in section 1. Let
us just quote those we need (in terms of r and n)
for our purpose of applying the Ginzburg criterion :

~ (NC3I%)=1 ~ < o 15
pe ~ (NC™ ~ (S 1s)

where we have introduced the overlap concentration
c* separating the semi dilute from the dilute regimes.
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Note that p. goes to a constant of order unity as ¢
goes to c* (see Fig. 1). The threshold can be written
in a scaled form :

(16)

Gel

S ol

A
N \ L

c* a3 c

Fig. 1. — Phase diagram between the sol phase for low values of
the concentration C and the vulcanized (gel) phase. The critical
region is very narrow (of under N ') for the concentrated solutions
and becomes longer and longer as concentration is decreased.
When C goes to C*, p goes to some constant value, independent
of N and C, smaller than, but of order unity.

with
x73 if x> 1
Je) ~ {1 if xo1 (17
in the same way
-
Z ~ (%_p) °N (18a)
Bp
o~ (i-”) ‘ (185)
Op\7"® 2 —1s8
ég ~ p_ N'4¢ . (18¢)

Here again, let us emphasize that these results are
valid only when chain percolation is considered :
we suppose that the number of cross-links per chain

- is finite (and small), which is usually the case near

the threshold. In order to determine the width of the
critical regions, two arguments may be given :

(a) Let us first consider the problem in the coordi-
nates of the centre of mass. In these coordinates, the
problem reduces to the polycondensation of f func-
tional units. Now, f is the number of contacts of a
chain with the others. So the effective coordination
number is

f~ NC3* . 19
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This number is very large in the melt, but decreases
very strongly when the monomer concentration is
decreased. So we expect the critical region to become
wider.

(b) This can be made more precise by applying the
Ginzburg criterion. Let us use relations (18)

(‘yp=ﬁg=1’v2=%)

Together with (9), for d = 3, we get for the mean
field region :

<%)>3/2 N™12 =58 < 1.

Leading, for the critical region, to

op < op*

S p* c*\3/12
()
Relation (20) shows very clearly that although the
width of the critical region is very narrow in the bulk,
where relation (10) is recovered, it depends strongly
on concentration. In particular, when ¢ goes to c*,
the critical region becomes very important (note that
in this case, p, goes to 1). As a result, the critical
percolation exponents may be observed in the vulca-
nization of chains if the concentration of the solution
is adequately chosen.

Let us remark that excluded volume effects, only,
have been taken into account in this section. We
know that the temperature effects also are present.
These are complicated by the presence of elastic
forces in the gel as'is briefly discussed in the following
section. A more detailed analysis of these effects will
be given elsewhere.

(20)

3. Swelling of the gel. — An interesting aspect of
the preceding approach is that it allows us to discuss
the swelling of the gels. Let us start with a gel with
a given concentration p, just above the threshold p,
and let us vary the monomer concentration by adding
some solvent. Figure 2 shows the initial conformation
of the gel :

e For small scales (r < &), the chain behaves as
if it were alone. This is the blob.

e For larger scales, contacts with other chains
screen out the excluded volume interaction, and the
behaviour of the chain is random.

o At still larger scales, we find the permanent net-
work structure. This last structure depends mainly on
the value of p. As the cross-links are permanent, their
distribution cannot change when the concentration is
decreased. The change in the structure can take place
only via local rearrangement of the chains, if pos-
sible. When we decrease ¢, the size ¢ of the blob
increases (see eq. (11)) and so do both the radius of
gyration of a chain and &,. This corresponds to the
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Fig. 2. — A representation of the vulcanized state :

o for small distances (blob) the behaviour is that of a single chain ;
e at longer distances, inside a chain the behaviour is random ;
o for large scales the permanent network structure is present.

swelling of the network. The process can take place
as long as the equilibrium number of contacts bet-
ween chains is larger than the number of cross-links.
Near the threshold, there is almost one permanent
cross-link per chain. So if we want to decrease the
concentration below c*, elastic forces due to the
presence of permanent cross-links will restore the
equilibrium concentration corresponding to a number
of contacts equal to the number of cross-links. This
may also be understood through our transformation
in section 1 and 2. In a concentrated solution, the
probability of having a junction is a function of
pNc># only [18] :

p = g(pNc'*) @n

where g(r) is some function. The condition which is
imposed here is p = const. (> p.) when the concen-
tration c is decreased, in order to keep this condition
satisfied, the system changes the effective value of p.

Pest NC3* =p.

(This corresponds to an enhanced probability of
finding a cross-linking agent at the contact points
when the system is diluted.)

The process can take place as long as p.; is less
than unity, leading to a minimum concentration pro-
portional to ¢*. (For this concentration, the proba-
bility of finding a cross-linking agent at a contact
point is unity, because of the permanent nature of
the cross-links.)

C,., oc* ~ N~45 22)

equ

At this point let us remark that this approach is valid
only if we consider the gelation of chains. In concen-
trated solutions, it holds only for low values of p
(p ~ N~ in the melt). If p is increased drastically,
we can eventually reach the percolation of blobs.
Then the scale changes (egs. (2)) are not expected to
be useful and the whole approach breaks down. This
might allow us to distinguish between light gels (per-
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colation of chains) and strong gels (percolation of
blobs). The difference between the two cases vanishes
near c* but seems to be very strong in concentrated
solutions. Among others, we see that the swelling
properties are not the same : a strong gel is not
expected to swell as dramatically as a light gel. The
local motions of the chains in a strong gel also seem
much more restricted than in a light gel.

4. Conclusion. — We have considered the vulcani-
zation of chains in semi dilute solutions. We have
shown that critical percolation exponents can be
observed in these solutions, whereas they are not if
vulcanization is performed in the melt. This is due to
the fact that by an appropriate transformation, this
problem is equivalent to the polycondensation of
J-functional units. The functionality f is the number
of contacts of a chain with the others, (including
contacts with itself). Whereas, in the melt f= N,
leading to a very narrow critical region, in a semi
dilute solution, f'= NC>* decreases very strongly.
A widening of the critical region results, and critical
exponents can be observed.

A more precise definition of ¢* may be obtained
in this way. If the vulcanization agent can react only

VULCANIZATION AND CRITICAL EXPONENTS
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with polymer chains, and if we consider the vulcani-
zation problem with p = 1, starting from dilute
solutions, c¢* is the vulcanization threshold. For
instance the viscosity of the solution diverges at c*
[17]. This provides a more precise definition of c*
than the usual cross over definition and this approach
also allows us to discuss the swelling of gels. We
argued that the gel swells to an equilibrium concen-
tration proportional to c*.

The whole approach is valid only if we consider
gelation of chains. This leads us to distinguish bet-
ween light gels, which we have considered here, and
strong gels, corresponding to the gelation of blobs.
The difference between them vanishes at ¢* but beco-
mes very sharp in concentrated solutions when the
density p of cross-linking agent has to be much greater
(about N times in the gel) to get the latter case. In
particular, the swelling and dynamic properties should
not be the same for both.
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