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VIBRATIONAL FREQUENCIES VIA FROZEN PHONONS *

B.N. Harmon*(l), W.Weber®and D.R. Hamann**

* Kernforschungszentrum Karlsruhe, Institut fiir Angewandte Kernphysik I,
D-7500 Karlsruhe, F.R.G.

**Bell Laboratories, Murray Hill, NJ 07974, U.S.A.

Abstract.~ We have used a first principles linear combination of atomic
orbitals (LCAO) method to calculate the total ground state energy for
crystals of Si, Nb and Mo involving lattice distortions. From these cal-
culations the equilibrium lattice constant, cohesive energy, and bulk
modulus as well as the vibrational frequencies for selected phonons were
determined.

1. Introduction.— Band theoretical methods are finding increased use in the
study of electronic response to lattice distortion (caused by compression,
stress, phonons, etc.). These techniques provide a tool for accurately calcu-
lating from first principles the frequency and charge density response for
phonons at selected wavevectors. These techniques have already been applied to
Si with considerable success using the pseudopotential 152 and LcAO 3 methods.
Here we briefly present our LCAO method and our results for Si and then discuss
the application of the method to metals giving preliminary results for Nb and
Mo.

2. Method.~ We have used the local density approximation for exchange and cor—
relation® combined with a first principles tight binding method, the details of
which have been described elsewhere.37556 The method empldys an atomic

basis composed of Gaussian functions which allow easy analytic evaluation of all
three center integrals. The potential is expanded in a second Gaussian basis
set and is general (i.e., no muffin-tin approximation is made). The calcula~
tions are iterated until the total energy is stable to seven significant digits.
Absolute ertrors, for example those associated with the approximate treatment of
exchange and_correlation, are of course larger, but they are expected to cancel

since we consider only energy differences.

3. Application to Si.~ Si was used as a test case to first avoid complications

caused by a Fermi surface. Using the frozen core approximation the total energy

was evaluated at eight values of the lattice constant and least squares fit with
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a fourth order polynomial. The corresponding equilibrium lattice constant, bulk
modulus and cohesive energy are listed in Table 1. The total energy was -also
calculated as a function of displacement for lattice distortions corresponding
to particular normal vibrational modes. These yield essentially classical
potential wells whose curvature gives the phonon force constant or frequency.
The frequencies for the transverse optic phonoﬁ at T [TO(T)] and the transverse
accoustic phonon at X [TA(X)] are also listed in Table 1. There is good agree-
ment with experiment, and the detailed analysis of the contributions to the
total energy agree with previous studies.!>2 The charge density for the TO(T)

phonon is shown in Figure 1.
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Fig. 1 : The charge density in the
(110) plane for the lattice distor-
tion corresponding to the TO(T)
phonon with a displacement of
~0.137& along the glll) direction.
(atomic units x 107)

DISTANCE  ALONG (001} - ou.

DlSTAM:E Awusmm ou

4, Application To Metals.— For metals small distortions of the lattice cause

changes in the band occupation near the Fermi level which must be accounted for
in calculating changes in total energy. Indeed such effects frequently give
rise to phonon anomalies in transition metals.’” One approach for metals is to
simply keep increasing the number of 4 points sampled until convergence is
reached, however, this is costly and not necessary. Our approach has been to
divide the irreducible Brillouin zone into a number of large tetrahedrons (32
for the H point phonon in Nb and Mo) and take the center of mass %k vectors as a
sample grid. At each iteration a tight binding (TB) fit (see Ref. 7) is made to
the eigenvalues on this grid and is used to determine an accurate Fermi energy
and surface. The occupied volume as determined by the TB fit using 64 smaller
tetrahedrons inside eacn large one is used to weight the I3 points. Calculations
using a mixed basis pseudopotential technique for phonons in Nb and Mo also

confirm the importance of cafefully weighting the 4 points.8

The equilibrium lattice constant, bulk modulus and cohesive energy are
listed in the table and again indicate the method is functioning well for the
evaluation of bulk properties. To date we have only tested the method for the
H-point phonon in Nb and Mo with the results listed in the table. This phonon
in Mo is particularly anomalous as a result of a nesting feature in the Fermi
surface.” The accurate modeling of changes in the Fermi surface as provided by
the TB fit was required before the theoretical frequency was reduced from “9Thz

to 5.7 THz. The frequency was determined by fitting (rms error = 10-6 Ry/atom)
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a parabola to the emergy calculated for displacements of 0.064%, 0.078%, and
0.0928, which are comparable to the displacement caused by the real phonon.
Very small displacements led .to numerical problems because of the linear inter-—
polation used inside the small tetrahedrons, and much larger displacements
caused previously unoccupied portions of bands to dip below the Fermi level,
giving rise to anharmonic or non-parabolic behavior in the total energy vs dis-—

placement curve,

5. Conclusion.~ Our encouraging results suggest that modern band theory tech-
niques are capable of becoming a useful tool in studying the details of elec-

tronic response to certain high symmetry lattice distortionms.
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Table 1. Calculated and experimental properties

a B
Lattice Bulk Cohesive Phonon
Constant Modulus Energy Frequency
(a. u.) (Mbar) (eV/atom) (THz)
gi cale. 10.40 0.89 4,92 4.9 15.0
exp. 10.26 0.99 4,84 TA(X), TO(T)
4.5 15.4.
Np cale. . 6.32 1.62 6.63 6.6% H point
exp. 6.23 1.74 7.57 6.4
Mo calec. 5.99 2.57 6.28 5.7 H point
exp. 5.95 2.63 6.82 5.5

*This is a preliminary value based on a fewer number of small tetrahedrons and
both large and zero displacements so that it is less precise than the value for
Mo (see text),
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