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Résumé.— Nous étudions les interactions entre des macromolécules flexibles et des batonnets en
solution. Si le solvant est un bon solvant pour les chaines flexibles, on peut utiliser une théorie de
champ moyen et le coefficient du viriel mutuel est proportionnel au produit des masses moléculaires
des deux polymeres. Si le solvant est un solvant 4, les deux polyméres interagissent comme des
sphéres dures quand la dimension de I’espace est un peu inférieure a trois. Il existe des corrections
logarithmiques en dimension trois. Dans ce cas, le coefficient du viriel mutuel est calculé par la
méthode de renormalisation directe de des Cloizeaux.

Abstract.— We study the interactions between flexible and rodlike macromolecules in solution. If
the solvent is a good solvent for the flexible chain, a mean-field theory can be used and the mutual
virial coefficient is proportional to the product of the masses of the two polymers. If the solvent is a 8
solvent, the two polymers interact as hard spheres when the space dimension is slightly smaller than
3. Logarithmic corrections to the hard sphere behavior are found in three dimensions. In this case the
mutual virial coefficient is calculated with the use of des Cloizeaux direct renormalization method.

1. Introduction.

In a previous work [1], we have studied the
interactions between macromolecules of differ-
ent chemical species A and B in a dilute solu-
tion. The main result is that both in a common
good solvent and a common O solvent, linear
flexible polymer chains interact as hard spheres
as soon as the A-B monomer-monomer interac-
tion is repulsive : the second virial coefficient

G aB between A chains and B chains with equal
radii R, is proportional to the volume R? (d is
the space dimension), the proportionality con-
stant being universal. This is related to the fact
that the free energy of two overlapping chains
is larger.than the thermal energy kT and thus
that limited interpenetration is allowed between
different chains. This same problem can be gen-
eralized to the case where polymers A and B
are not linear chains but are fractal polymers [2]
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characterized by their fractal dimensions d5 and
dp respectively [3], i.e. the radius of gyration of
polymer ¢ varies with its degree of polymeriza-
tion as R; = N, ,.l/ d (d; = 2 for a Gaussian chain,
d; = 1 for a rod like chain and d; ~ 1/vp =~ 5/3
for a linear chain in a good solvent).

In a mean field Flory-like model [4], the two
polymers occupying the same volume of radius
R = Ry = Rp have Ny Np/R? contact points.
The free energy of two interpenetrating chains
is proportional to this number of contact points

NaNg
R
where vap (> 0) is the excluded volume between
A and B monomers(l) ; whenever d > da + dp,
the interpenetration free energy is asymptoti-
cally going to zero and a mean field theory may
be used to evaluate the mutual virial coeffi-
cient Gap ; when d < ds + dp, the interpen-
etration free energy is larger than kT and only
limited interpenetration is possible : the poly-
mers interact as hard spheres. This is indeed
the case for two linear chains in a © solvent
da = dp = 2,2da > d = 3 or in a good sol-

vent dA = dB ~ 5/3

In this paper, we are more specifically inter-
ested in the case where the A chains are flexible
linear polymers either in a good or a O solvent
and the B chains are rodlike molecules. The
dilution of rodlike molecules in a linear chain
matrix might be of some use in the field of non
linear optics : the rods could be oriented and
provoke the optical anisotropy while the linear
chains after a temperature quench below their
glass transition would freeze the system in this
anisotropic configuration. As in most polymer
blends, a solvent is needed to favor the com-
patibility of the mixture. In this context, it
is important to understand in details the in-
teractions between rodlike and flexible macro-
molecules. Other important practical applica-
tions include the production of oriented films
and fibers which can be used in resin reinforce-
ment at the molecular level (molecular compos-
ites).

If the flexible chain is in a good solvent
da+dg = 14+5/3 = 8/3 < 3 and a mean
field theory may be used to calculate the mu-
tual virial coefficient Gap. Equation (1) gives :

F = Tvap ~ Tvan Réatde—d (1)

(*) We use temperature units where the Boltz-
man constant k is equal to 1.
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GAB%T’UAB NANB (2)

Notice that this result is independent of the
fractal dimension of the two polymers (as soon
as da + dg < 3). In particular if A and B are
two rods ds + dg = 2 and equation (2) is the
usual Onsager result (up to a numerical constant
which we have not determined here).

If the flexible chain is a pure Gaussian chain
or a chain in a © solvent, dy + dg = 3, we are
in a marginal case : for two polymers of equal
radius R, we expect a virial coefficient Gop pro-
portional to the volume R3 but with logarith-
mic corrections. Below 3 dimensions we expect
a hard sphere behavior.

In the following we calculate, using
des Cloizeaux direct renormalization method [6-
7], the logarithmic corrections to the mutual
virial coefficient Gpg in a © solvent in 3 di-
mensions. We also study the universal hard
sphere behavior of Gap in 3-¢ dimensions ; this
could be used for chains and rods trapped at
an interface (in a Langmuir monolayer) or for
comparison with computer simulations in 2 di-
mensions. Finally, we discuss qualitatively the
demixing phase separation between flexible and
rodlike macromolecules.

2. Virial coefficient between a Gaussian
chain A and a rodlike chain B.

We first assume that the flexible chain A is
a pure Gaussian chain with no interactions be-
tween the monomers. Following des Cloizeaux
[6], we introduce the Gaussian surface S : the
end to end distance R? = Naa®? (a is the
monomer size) is equal to :

R?=dS (3)

In a continuous model, the flexible chain
is represented by a continuous curve r(s) where
s is a Gaussian area ranging from 0 to S. The
propagator of the chain is

r2

1
p(r,s) = Wexp -2 (4)

The rod has a length L (proportional to the
number of monomers Ng). The flexible chain be-
ing isotropic, the rod orientation is of no impor-
tance, we fix it along the z axis. The rod is
represented by a continuous segment r’(£) = e, £
where £ is a length ranging from 0 to L and e,
the unit vector along the z axis.
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The repulsive interactions between chains
and rods are described in terms of a pseudopo-
tential.

s L
VaB = TbAB/o ds/0 deé[r(s)-r' (£)] (5)

bap is proportional to the standard ex-
cluded volume parameter between monomers
vaB. Dimensional analysis on equation (5) gives
bap = (length)dns . We recover here the result
announced earlier that d = 3 is an upper crit-
ical dimension : upon renormalization of the
unit length, bap increases with the unit length
if d < 3 and the interaction potential Vg is not
relevent, it decreases if d > 3 and may be treated
as a perturbation.

In order to have a well defined asymptotic
limit, we fix the ratio of the radii of the two poly-
mers 0 = R/L = (d5)!/%/L and we let both L
and S go to infinity. The radius ratio o is a
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Diagrammatic expansion of the second virial coeffi-
cient between chains and rods Gag.

parameter which could be measured experimen-
tally for instance in an elastic light scattering
experiment.

The diagramatic expansion of the mutual
virial coefficient G p is shown in the figure. It
leads to :

S 5—31 L ll
GAB = bABSL - 2b2AB/ d31 / d82/ dfl dfgp(fgez,s'z) (6)
0 0 0

0

The first term is the mean field result of equation (2) with slightly different notations ; the
second term is the first order perturbation. The integrals over the Gaussian areas of the flexible
chains have short distances divergences, they must be calculated as Cauchy principal parts.

After a direct calculation in real space, we obtain :

Gag = bpaBSL {1 - 7r1_d/22_l¥b,\}353_;d—

1

(2_§) <ﬂ> + f(o) (M
2 2

where f{o) is a regular function of the radius ratio o for space dimensions d close to 3.

2

2

O b

erfc(z) being the complement error function

g o
erfc(z) = %/; etdt

We now use des Cloizeaux direct renormal-
ization method to obtain the value of the virial
coefficient Gap in the asymptotic limit where S
goes to infinity. We first consider a space dimen-
sion d = 3—¢ close to 3.

The Fixman expansion parameter is defined

2uo?

d
3-3

1/2 _ _
_4_ ) ——-—ldu%i— ! u7 Y du (™
2

as z = bap SG~9/2(27)(1-9/2, We also define a
dimensionless virial coefficient gap.

G 1-d
ABd — (27[')T

()T

Up to second order in z and leading order
in € the perturbation calculation (7) gives :

gAB =
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gAB = 2 (1 - Zﬁ) (8)

£

Below three dimensions, we expect no inter-
prenetration between chains and rods and gas
must go to a universal fixed point value when S
or z goes to infinity. This fixed point is deter-
mined by calculating w(gap) = z d/dz gas

2
w (gAB) = gAB — ;gfua 9)

At the fixed point ¢g*, w(g*) =0 or
(10)

For long but not infinite chains we also ob-
tain the correction to the scaling behavior

« cst
gaB =9 T ga

(11)

where the crossover exponent A given by
the derivative of w at the fixed point ¢g* is equal
to €/2 up to first order in €.

Below three dimensions, up to first order in
¢ the mutual virial coefficient is thus

d—1
2TR%\ 2 € cst
- E(1-S)  ar
Gas (d) La(l SA) (11)

In the more realistic case where the space
dimension is exactly d = 3, with the same defi-
nitions of the reduced virial coefficient gog and
the Fixman expansion parameter z.

(12)

This requires the introduction of a short
distance cutoff in the Gaussian areas sq ~ a?
such that § = NaSo. The Behavior of gap in
the asymptotic limit is given by

gAB = z(l -2 LogNA)

dgaB

w(gaB) = dTogNs -dis (13)

As expected the fixed point is at gap = 0 ;
in the vicinity of this fixed point

1

= — 14
gAB Log NA ( )

The mutual virial coefficient is :

G .2 LR _ 2rLS
AB = 3" LogNa LogNa

(15)
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This gives the logarithmic corrections to
the mean field result of equation (2). Up to
this first order, the mutual virial coefficient is
independent of the local monomer interaction
bag. The value of the mutual virial coefficient
gap does not explicitely depend on the radius
ratio o ; this is due to our particular choice
of a volume to define the reduced virial coeffi-
cient gap. Calculations at higher order may ex-
plicitely depend on o as can be seen from equa-
tion (7). The asymptotic limit is then meaning-
ful if 1/LogNa < 0 < LogN,.

The values (11’) and (15) of the mutual
virial coefficient are valid strictly speaking for
Gaussian chains without any interactions. In a
real O solvent both two-body and three-body
interactions between different monomers of the
flexible chain must be taken into account. These
A-A interactions must be considered while cal-
culating the various partition functions. How-
ever, when we calculate the mutual virial coeffi-
cient Gap which is a ratio of partition functions,
the contribution of all A-A interactions factor-
izes out if we limit the expansion to second order
in the interaction parameters. The diagramatic
expansion of Gap in a © solvent is the same
as for Gaussian chains as shown in the figure.
Furthermore if we limit the expansions to low-
est order, we may approximate the radius of the
flexible chain by its Gaussian value (In a sense
[9], this is the definition of the ©® compensation
temperature). At lowest order in €, we may thus
use at the © point the results obtained for a
Gaussian chain in equations (15) and (11’) (In
Eq. (11°) the actual radius of chains A° (R) and

not the Gaussian radius Ry = (d,S')l/2 should
however be used).

3. Discussion.

We have calculated the virial coefficient
Gap between flexible and rodlike macro-
molecules in a solvent which is either a good sol-
vent or a @ solvent for the flexible chain when the
monomer-monomer interaction is repulsive. In
both cases, Gap is proportional to the product
of the molecular masses of the two molecules, the
proportionality constant being the monomer-
monomer interaction in a good solvent and the
inverse of the logarithm of the molecular mass
in a @ solvent.
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In a more concentrated solution as in
usual polymer blends, these repulsions can pro-
voke a segregation between the two types of
molecules. If the solution is still dilute and re-
aains isotropic when this demixing phase tran-

sition occurs, the free energy of the mixture per
unit volume may be written as :

1
E = Cp LogCa + Cpg LogCp + _Q—ZG”C‘CJ'

T
(17)
where C, and Cp are the number densi-
ties of flexible and rodlike chains respectively
and G;; (i,j = A, B) are the virial coefficient be-
tween ¢ and j chains. The first two terms repre-
sent the free energy of an ideal solution of A and
B chains and we have made a virial expansion
of the interaction energy : the virial coefficient
between flexible chains G5 vanishes in a @ sol-
vent and is proportional to their volume R3 in a
good solvent ; the virial coefficient between rods
Gpgp has been studied by Onsager and varies as
the square of the rod length L? ; the mutual
virial coefficient G o is given by equation (2) in
a good solvent and equation (11°) in a # solvent.
A detailed study of the free energy [11,12]
would lead to the determination of a phase dia-
gram of the solution. This is beyond the scope
of this work and we will limit our discussion to
the stability of the homogeneous phase. This is
done by studying the concavity of the free en-
ergy (16). We obtain the so-called spinodal line

1 1
(C—,A- + GAA) (Z,-B— + GBB) =Gig (17)

A necessary condition for the spinodal to
exist is that the determinant GaaGpp — Gip

i,j
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be negative. This is indeed true both in a
good and a @ solvent (GiB > GAAG'BB) and
we thus expect phase separation between chains
and rods.

This conclusion however is based on equa-
tion (16) for the free energy which assumes both
that the solution is dilute and isotropic. At
higher concentrations, this free energy must be
modified in two ways :

i) the virial expansion for the flexible chains
is valid only if the concentration C, is smaller
than the overlap concentration. In the semi-
dilute regime, concentration correlations be-
tween A chains must be taken into account ;

ii) the solution remains isotropic only if the
rod concentration Cg is smaller than the On-
sager concentration. Above the Onsager con-
centration, the rods order in a nematic phase.

A more complete theory should take these
two effects into account. Qualitatively, we still
expect a segregation between chain and rods but
we also expect a nematic-isotropic phase tran-
sition of the rods. We hope to study in details
the complete phase diagram of the solution and
the interplay between these two transitions in
a future work. This phase diagram has already
been studied within the framework of a lattice
model by Flory [13].
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