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Résumé. 2014 Nous étudions l’instabilité d’ondulation dans un smectique A sous cisaillement parallèle aux couches.
Nous cherchons la dilatation au seuil d’apparition d’une ondulation dont le vecteur d’onde fait un angle 03B8 avec la
direction de l’écoulement. Nous trouvons une relation intégrale qui montre que la dilatation est nécessairement
positive. Nous développons une méthode de perturbations pour calculer la dilatation explicitement en fonction
de l’angle 03B8 et du taux de cisaillement. Nous montrons qu’une ondulation de vecteur d’onde perpendiculaire à la
direction de cisaillement n’est pas affectée par l’écoulement et apparait pour un seuil de dilatation minimum et
égal à la valeur statique. Nous concluons qu’une texture rectangulaire se développe pour des dilatations plus
grandes en accord avec le réseau de domaines focaux observé expérimentalement.

Abstract. 2014 We study the undulation instability in a smectic A in the presence of shear flow parallel to the layers.
We look for the dilation at the threshold where an undulation appears with a wave vector inclined at an angle 03B8
to the direction of flow. We find an integral relation showing that the dilation is necessarily positive. We develop
a perturbation method to calculate the dilation explicitly as a function of the angle 03B8 and the shear rate. We show
that an undulation with wave vector perpendicular to the shear direction is not affected by the flow and has a
minimum threshold dilation equal to the static value. We conclude that a rectangular texture develops at higher
dilations in agreement with the rectangular focal domain pattern observed experimentally.
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Introduction. - We deal with a smectic A liquid
crystal subjected to a dilative strain perpendicular
to the layers. Above a certain threshold value of the
dilation, the layers develop a static undulation with
some wave vector q of arbitrary orientation within
a plane parallel to the layers [1, 2, 3, 4].
We want to ask and find an answer to the question :

what happens to the undulation and how is the
threshold modified when the sample is dilated while
being simultaneously sheared parallel to the layers.

1. Formulation of the problem - Consider a

smectic sample of thickness 2 d sheared betwen two
plane parallel plate moving at equal and opposite
velocities ± Vo. Homeotropic anchoring keeps the
smectic layers parallel to the plates (Fig. 1). The flow
is described by the equation of Navier-Stokes [5] :

where V is the velocity field, P the pressure, and
G = (0, 0, G) is a volume force density due to the

Fig. 1. - Sample geometry.

smectic layer elasticity. Equation (1) is valid under
the assumptions that all viscosities can be replaced
by a single coefficient ?1, that the mass density p
is constant and thus the incompressibility condition
can be written as :

Let u be the displacement of the layers in the z-direc-
tion ; then the elastic free energy density F can be
written as [6] :
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where B is the bulk modulus and K is the splay modulus. The force density G is the negative functional deri-
vative of the energy density with respect to the displacement and can be explicitly written as :

The flow is coupled to the layer displacement by the
permeation equation which, for an isothermal pro-
cess, is :

where Å.p is the permeability [5].
Thermal effects will be neglected throughout.
For stationary shear without dilation equation (1)

has the obvious solution :

where Vo is the speed of the plates.
Now consider a sample that, while being sheared,

is suddenly dilated by an amount 2 6. If the dila-
tion a = 6/d is big enough the undulation instability
develops.

In order to study this instability, we write the layer
displacement in the form of a Fourier expansion :

which represents a homogeneous dilation with a

superposed undulation of the layers having a fre-

quency (D and a wave vector q = (q cos 0, q sin 0, 0)
in the (xy) plane inclined at an angle 0 to the direc-
tion of shear x.
The threshold corresponds precisely to the point

where the imaginary part of (o changes sign from
negative to positive. Thus we may assume that the
undulation does not decay and take m real. We also
assume that the undulation is not attenuated and

take q real as well. The phase velocity of the undu-
lation is c = colq. A detailed discussion of these

aspects will be published elsewhere [8]. In what

follows, the Fourier terms will be treated as a small
perturbation. We write the velocity field as :

where v = (vx, vy, v_,) is a non-stationary perturbation.
Then, equation (1) can be rewritten as :

The incompressibility condition becomes :

The solution has to satisfy the boundary condi-
tions :

We may calculate G and v_, from the equations (3)-(5).
Linearizing and omitting the exponential factors we
obtain :

We wish to find an ordinary differential equation
for the function f(z).
A general calculation is too cumbersome to be

useful. Yet, the mathematical problem can be sub-
stantially simplified while preserving its physical
content by making the following assumptions :

(A .1 ) All functions vary much slower along z

than along x or y, or equivalently, the wave length
of the undulation is small compared to the sample
thickness.

(A.2) Permeation can be neglected
Permeation may, however, be important near the

plates [9, 10]. A quantitative criterion for negligible
permeation is :
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which is always satished These assumptions will here
be justified a posteriori. They are discussed in another
paper [8].
From equations (9a, b) we eliminate the pressure

terms by taking cross derivatives. We substitute v_,
from (13) into the incompressibility condition (10)
to obtain two equations which we solve for vx and vy :

Now we can eliminate the pressure from equa-
tions (9b, c) to find :

or, with (12), more explicitly :

where Å. = (K/B)1/2 ’" 10-7 cm is a characteristic

length and T = ,,/ B ’" 10-1 s is a characteristic
relaxation time.
We shall endeavor to solve it in the following

sections.

2. Integral relation. - Before solving the funda-
mental equation (18) we shall rewrite it in an integral
form which will allow us to see some interesting
features.
We multiply (18) by f *, the complex conjugate

of f, and integrate the product across the sample
thickness. Since, according to (11), f vanishes at the
boundaries, integration by parts yields, for the real
and imaginary parts respectively, the relations :

The right hand side of (19) is manifestly positive,
whence it follows that the applied strain must be
dilative (a &#x3E; 0) to bring about the undulation insta-
bility with, as well as without shear.

Relation (19) implies that there must be at least
one level zo within the sample where the phase velo-
city equals the x-component of the flow velocity :

Consider the «transversal» case 0 = Tc/2 which
corresponds to an undulation with a wave vector
perpendicular to the direction of It he shear q = (0, q, 0).
The velocity fields is now given by the trivial

solution (6), thus v = 0. The fundamental equation
reduces to :

which is simply the static equilibrium condition.
The solution is well known [1] :

I 

where

Equation (19) becomes trivial and yields for the
wave vector q the equation :

Hence the threshold values for the dilation a and the
wave vector q become, respectively :

and

Equation (20) trivially implies the vanishing of the
phase velocity c = 0. That means that the undulation
does not propagate. This is a non trivial result which
we will prove to be generally valid.
We are now ready to justify our simplifying assump-

tions (A .1 ) and (A. 2). Typical orders of magnitude
for the quantities involved are : 2 d = 100/lm,
A= 10-’ cni, jl=l poise, 4= 10-"g-1 cm’ s,
hence k - 300 cm-1 and q, - 5 x 104 cm-1. Conse-
quently, k  q, thus (A. 1) is satisfied. Also

thus (A. 2) is valid by an enormous margin.

3. Solution of the fundamental equation. - The
fundamental equation (18) can, in principle, be for-
mally solved in terms of Airy functions or, in a slightly
more general case, in terms of parabolic cylinder
functions. These, however involve complex para-
meters and variables and seem to be useless for a

physical interpretation. Besides, in view of the approxi-
mations already made, the virtues of an o exact »

solution are rather doubtful. Therefore we prefer to
adopt a different approach and treat the shear per-
turbatively. More specifically, we assume that the
speed Vo is sufficiently small so that the term contain-
ing the product z. f in the fundamental equation (18)
can be treated as a small perturbation. As a quanti-
tative criterion we find immediately on inspection of
equation (18) the strong inequality
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and substituting for q its statical threshold value (27) :

With the quoted values of the constants we find a
limiting speed of the order of 5 x 10-2 cm/s. Under
normal experimental conditions, when a undulation
pattern can be observed, (29) is satisfied.
We now return to the fundamental equation (18).

Quite generally, we may assume that its solution
takes the form :

where fo is a constant length and §(z) is the new
unknown function to be determined. Substitution
of (30) into (18) yields for 0 the equation

Let us introduce the dimensionless quantities :

and

Then (31 ) can be rewritten as

Its general solution is

From the boundary conditions

it follows that

and

The fundamental equation (18) implies that the
real and imaginary parts of f must have opposite
parities. Consequently, 0 must be an odd function
of Z. Therefore, we find once more (39) and also :

The vanishing of C is equivalent to the vanishing
of the phase velocity c and hence the vanishing of
the frequency :

It is noteworthy that the orientation angle 0 did not
enter our considerations at all.
From basic symmetry arguments we have thus

unambiguously shown that, at threshold, the undu-
lation does not propagate; it remains stationary,
irrespective of the mutual orientation between its
wave vector q and the direction of the flow.
We are now ready to write down the explicit solu-

tion to the fundamental equation (18) :

where all multiplicative constants have been absorbed
into the small parameter e (typically e - 10- 3). The
imaginary part is clearly a small correction. This

justifies our perturbation approach. Finally, restor-
ing dimensional variables, we have :

This result has a simple physical meaning. The ima-
ginary part of f (z) represents a perturbation of the
sinusoidal wave form of the undulation, expressed
in terms of a phase shift t/J(z). Straightforward substi-
tution into the real part of (7) yields for the layer
displacement :
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where I is a numerical constant given by

In order to establish the threshold values we mini-
mize (46) with respect to q.
A simple perturbative calculation yields :

for the threshold dilation, and

for the threshold wave vector.

Although the actual numerical values of the cor-
rection are negligible, these results are of great phy-
sical interest. The threshold dilation increases with
the square of the velocity compount and has a mini-
mum equal to the static value for 0 = a/2. Thus the
rotational symmetry in the plane is broken and,
consequently, the first undulation to appear must be
transversal, i.e., it must have a wave vector perpen-
dicular to the flow. This agrees with what is observed.

Likewise, the threshold wave vector has a (V cos 0)’
dependence, but now it is a maximum in the trans-
versal direction 0 = 7C/2.

4. Conclusion. - There are two important conclu-
sions to be drawn from the foregoing considerations.
At moderate shear rates, i.e. as long as some undu-

lation pattern can be established, the undulation

stays stationary. This is a novel result which is by no
means a priori obvious. It is valid at least in the

approximation defined by the assumptions (A .1, 2)
and (28) which cover the range of physical interest.
Whereas in the static case all directions parallel

to the layers are equivalent, even a slight shear makes

the transversal direction highly privileged. It has the
lowest threshold dilation, equal to the static value
which thus becomes an absolute threshold. Moreover,
it is the only direction in which the undulation behaves
precisely like a static one. This result is rigorous,
since the coupling between the undulation and the
shear flow exactly vanishes for transversal shear.
When, at some higher dilation, a two dimensional

undulation develops, its second principal direction
must necessarily be perpendicular to the first, hence
it will be parallel to the shear flow. Therefore the
pattern will be rectangular and well aligned throug-
hout the sample and will thus have the aspect of a
two dimensional o crystal ».

This contrasts with a sample subjected to dilation
in the absence of shear where undulations nucleate
at many places and a disordered « glassy » pattern
will be established.
Thus the most important effect of an applied shear

flow is the breaking of the rotational symmetry of
the smectic sample.

Quantitatively we find, that the threshold values
are hardly affected at all.

Experimentally one observes in smectic A liquid
crystals, at high dilation values, two dimensional
undulations which have already developed into defect
patterns, specifically networks of focal parabolas [11].
Clearly, these patterns inherit the symmetry at

threshold. Without shear, the patterns have a « glassy »
aspect [12]. However, even a weak shear applied
prior to the dilation will bring about alignment
along and across the shear direction, while even at
moderately high shear rates the patterns always stay
stationary.

There is perfect agreement between our theory
and experiment.
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