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DEFECT MODEL OF THE SMECTIC A-NEMATIC PHASE TRANSITION

W. HELFRICH

Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 3, D-1 Berlin 33, Germany

(Reçu le 28 mars 1978, accepté le 18 juillet 1978)

Résumé. 2014 On montre que des transitions de phase en trois dimensions et brisant l’ordre par
lignes de défaut polaires peuvent être modelées sur le modèle xy, au moins si l’interaction des lignes
n’est que stérique. L’analogie est prouvée pour un réseau par un développement de haute température
à spin 1/2. Le modèle défaut est appliqué à la transition smectique A-nématique qui est supposée
être effectuée par des boucles de dislocations smectiques. Les fluctuations critiques du directeur
à T  Tc sont interprétées comme une manifestation de ces boucles. L’élasticité smectique très
particulière fait différer le comportement critique de celui du modèle xy usuel.

Abstract. 2014 It is shown that phase transitions in three dimensions breaking up an ordered state
by polar defect lines can be modelled on the xy model, at least if the interaction of the lines is only
steric. The analogy is established for a lattice model by means of a xy high-temperature expansion
for spin 1/2. The defect model is applied to the smectic A-nematic transition which is interpreted
as a breakup of order by smectic dislocation loops. Critical director fluctuations at T  Tc are
explained as a manifestation of these loops. Critical behaviour is shown to differ from that of the
conventional xy model because of the peculiar elastic interaction of smectic dislocations.
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1. Introduction. - There have been various attempts
to describe phase transitions as a breakup of order
by defects. Such a picture is clearly possible (and
well-known) for the simplest version of the classical
Ising model where the local magnetic moments point
either up or down. The microscopic state of the system
may be specified by indicating the orientation of each
moment or, equally well, in terms of the defects

represented by the boundaries separating regions of
opposite magnetization.

Defects were also invoked in other, less obvious

cases of which we quote only a few examples.
Feynman [1] has speculated some time ago that the
superfluid-fluid transition of ’He might consist in

the unlimited growth of vortex lines. There are

theories [2] which interpret melting as the abrupt
generation of numerous dislocations. In two dimen-
sions the phase transition of the plane-rotator model,
a special case of the xy model, has been attributed [3]
to the generation of free point vortices in the orienta-
tion pattern. With an eye to the theory of phase
transitions, Toulouse and Kléman [4] have recently
published a scheme giving the topologically stable
defects (walls, lines, or points) as a function of the
dimensionalities d and n of space and order parameter,
respectively.

Attractive as it may seem, the interpretation of
phase transitions in terms of defects is not always

straightforward and, perhaps, not generally useful.
A serious difficulty is the long range of the elastic
interaction between line and point singularities in

magnetic and similar systems. For the plane rotator
the interaction energy between points, with d = 2,
and between unit lengths of lines, with d = 3, varies
logarithmically with separation. The situation is even
worse for d = 3, n = 3 where the topologically stable
defects are points whose interaction energy is pro-
portional to their spacing. Furthermore, points and
lines cannot always be unambiguously defined in

discrete spin lattices. Only magnetic inversion boun-
daries are free of these problems : being walls for
d = 3, lines for d = 2 and points for d = 1, they are
well-defined and interact only via excluded volume
or self-avoidance.

In the following we wish to show that the smectic
A-nematic (A-N) phase transition may be profitably
described by a defect model involving smectic dislo-
cations. Up to now the transition has been treated
by mean-field theory [5, 6] or in terms of the conven-
tional xy model [7, 8]. It has received unusual atten-
tion because it is thought to be complicated by a
coupling of the smectic order parameter to the
fluctuation modes of the director [8]. (The director
denotes the orientation of the long molecular axes
in liquid crystals.) The coupling has been predicted to
necessitate a weak, but detectable, first-order tran-
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sition [9, 10]. Experimentally, some materials [11, 14]
were found to display second-order transitions within
currently possible accuracy (ca. 3 mK). The critical
exponents often do not agree with either mean-field
or xy theory ; and the role of impurities is not yet
clear. Strong indications of anisotropic scaling, i.e.
two difièrent critical exponents for the correlation
lengths parallel and perpendicular to the director,
were obtained in at least one experiment [12] and a
theoretical explanation was suggested [10].
The defect model we are going to propose permits

the critical director fluctuations in the smectic phase
to be understood as a manifestation of local disrup-
tions of the smectic order. The latter are produced by
thermally generated, fluctuating dislocation loops.
If the critical rise of director fluctuations near the
nematic phase is indeed not an independent effect,
it need not alter the character of the transition.
As a consequence, the A-N transition could be of

truly second order, which would agree with some
experimental findings.
Our defect theory also derives from the xy model.

This is because dislocations in smectic A phases are
polar much like vortex lines in ’He or the plane
rotator model. In smectics a given line may possess
either of two opposite Burgers vectors, while vortices
are characterized by either of two senses of rotation.
It is shown that a high-temperature expansion,
apparently of a hitherto unknown kind, of the spin
1 j2 xy model leads to graphs made up of loops of
polar lines. The graphs are essentially the same as
those employed in the well-known high-temperature
expansion of the classical Ising model [15]. The

partition function is formed by collecting and weight-
ing all possible graphs consisting of one or more
closed loops, subject to excluded volume restraints.
In contrast to the Ising case, each closed loop in a
graph is counted twice instead of once, which just
allows for the polar character of the lines. Upon
reversing the temperature scale, the graphs may be
identified with configurations of some physical defect
lines.

Apparently, the high-temperature expansion of the
three-dimensional xy model resembles a low-tempe-
rature defect picture of the same model, a symmetry
shared with the two-dimensional Ising model. The
long-range elastic interaction of vortex lines poses a
problem which is probably resolved by screening
effects, as shown below. Elasticity enters differently
when the defect model is applied to the A-N transition.
Due to the unique elasticity of smectic phases their
dislocations have a limited interaction range. Steric
interaction will be shown to have the same range but
a greater strength than elasticity. Accordingly, even
an isolated smectic dislocation loop should in general
not collapse because of elastic forces. On the other
hand, the peculiar parabolic elasticity of smectics is
not negligible and could produce anisotropic scaling,
at least at temperatures below the transition.

2. High-temperature expansion. - Before treating
the xy model it seems useful to write down the high-
temperature expansion of the spin 1/2 Ising model.
The Ising Hamiltonian may be expressed by

The operator Zk acts like the Pauli matrix of the z

component (QZ) on the spin state of lattice site k,
J &#x3E; 0 is a coupling parameter, and ( ij ) denotes

summation over all nearest-neighbour pairs of sites.
For the partition function we need the exponential

where fl = 1/kT. All spin operators commute, so we
may separate into bond exponentials

Expansion and use of

lead to

exp( - PHI) =

where

and P is the total number of nearest-neighbour bonds
in the system. Then the partition function is

Because of (4) and

a high-temperature expansion of Z, in powers of v,
gives non-vanishing contributions only for closed
walks. In complete analogy to the above-mentioned
classical model we obtain

here lV is the total number of lattice sites and g,(p) the
number of configurations or graphs that can be
constructed of p bonds. Only those graphs are counted
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that consist of one or more closed loops and utilize
the same bond no more than once.

The factor v, may be reinterpreted as the Boltzmann
factor associated with the energy of forming one line
element which is represented by a single nearest-

neighbour bond. This amounts to a drastic redefini-
tion of temperature, including an exchange of the
low- and high-temperature sides of the transition.
As the temperature dependence of u,, also changed,
does not influence critical behaviour we arrive at a

system in which some order appears to be broken up
by defect lines. Their interaction is only steric and
they are closed to form loops whose size is limited at
low temperatures, but is likely to reach infinity at the
transition point.
For topological reasons dislocations and many

other physical defect lines must, in fact, be closed
when they are of finite size. Nevertheless, the high-
temperature expansion of the Ising model does not
provide a satisfactory statistical theory for smectic
dislocations. These lines are polar, i.e. they may
possess either of two opposite Burgers vectors.

Polarity requires that every loop be counted twice
in forming the partition function. (We do not consider
smectic dislocations of higher order.)

The requirement of double counting of loops is
satisfied by a spin 1 /2 high-temperature expansion
of the xy model. It is analogous to that employed
for the Ising model. The Hamiltonian Hxy, couples
two spin components instead of one. It may be

expressed by

where xk and yk, like zk above, are operators acting
on the respective components at site k. Let us expand
the exponential

substitute (10) for Hxy, and imagine the powers to be
written explicitely with all permutations of the spin
operators. If a product of operators contains at least
one pair of adjacent bonds, it is always possible to
match it with another permutation that divers only by
a positional exchange of two adjacent bonds, say (ij)
and (jk), and contains no other bonds involving i, j,
or k between the two. We then use the following
commutation relations of the spin operators, deriving
from those of spin matrices,

and

To abbreviate, we write the sum of the pair of operator
products in the form

showing only where the two members difer. Removing
the parentheses by splitting up into components
gives eight terms. Because of (12), notably (12a), the
terms mixing components cancel each other and the
sum reduces to

Upon splitting up all bond operators into compo-
nents, it is readily seen that only those operator pro-
ducts are left in which adjoining bonds are represented
by the same component everywhere. Therefore, the
exponential (11) may be separated into exponentials
for each bond,

The star indicates that all terms must be dropped that
contain diffèrent components in any adjoining bonds.
The succession of bonds in fi * can be chosen at will
as all bonds commute in the remaining terms. This is
true even if the same bond occurs more than once and
with digèrent components because (12a) entails

We still have to deal with the bond exponentials.
Using

(cf. (4)), we obtain



1202

By means of a further relation between the spin
operators,

we replace xi xj yi yj with - zi zj . The total expo-
nential may then be expressed by

where the following abbreviations have been used

We now proceed to the high-temperature expan-
sion. The partition function of the xy model

is again expanded in powers of the factors in front of
the spin operators. It is readily seen that only closed
walks can contribute. Due to the restrictions spelled
out for fl* we are not allowed to change from x to y
and vice versa within one loop. Disregarding the zi Zj
term for the moment, we find that each closed loop
in a graph must be counted twice to take account of the
two spin components. This agrees with what has
been demanded at the outset for polar defect lines.
With contiguous loops there is a problem of loop
identity, e.g. if two loops have two points of contact.
It is probably not serious as regards critical behaviour,
especially critical exponents. To circumvent it we
could use an artifical lattice having three bonds per
site (e.g. a stack of planar hexagonal lattices connect-
ed by suitably chosen bonds sitting in the middle of
the sides of the hexagons). Alternatively, we could
introduce a range of steric defect interaction such
that each lattice site cannot be passed by more than
one line. Another difficulty arises from the presence
of the z; zi term. We first note that loops contain-
ing any component changes, including those to and
from z, cannot contribute to (24) because of

and the cyclically conjugated relations (cf. (8)).
Incidentally, this permits us to cancel the star of il in
(24) and the restrictions thereby denoted [16]. It

follows that each loop has to be counted a third time
for the z component. However, in view of

resulting from (22) and (23), z loops have a smaller
weight than do the others. The relative weight of the z
contribution falls off expondntially with loop size.

Therefore, it seems safe to conclude that z loops are
irrelevant to critical behaviour as regards critical

exponents. The critical point, if one exists, should be
characterized by the first appearance of infinite loops.
No other characterization seems possible in a model
forbidding lattice points to be passed more than once.

If the z loops are disregarded, the partition function
of the high-temperature expansion of the xy model
may be written as

Each Ising graph, i.e. each graph of nonpolar lines,
is counted 2, 4, 8, ... times, the exponent of 2 equal-
ing the number of loops. (The restriction to nonconti-
guous loops could be extended to the Ising model.)
Taking z loops into account, one sees immediately
that the additional loops, mostly very small, should
raise the transition temperature as they hinder the
formation of other loops.
We may conclude that any phase change in three

dimensions brought about by self-avoiding and polar
defect lines should belong to the universality class of
the familiar xy model. However, the high-temperature
expansion does not contain any elastic interaction
which is definitely a property of physical defect lines.
The elastic effect is of long range (logarithmic) for
ordinary vortex lines, as was pointed out before. An
exception is made by vortices in type II supercon-
ductors where it falls off exponentially. Smectic
dislocations are also special : their elastic interaction
potential is, on average, inversely proportional to

their spacing. With the help of scaling arguments it is
shown next that in this particular case steric and
elastic effect should have the same range if a pair of
dislocations or an isolated loop is considered. A
subsequent estimate at minimum spacing indicates
steric repulsion to outweigh elastic attraction. For

large loops existing in thermal equilibrium the elastic
effect should be further reduced by the polarizability
of a medium of smaller loops. Therefore, the above
high-temperature expansion seems to be a useful basis
for a defect theory of the A-N transition. Final
modifications resulting from the peculiar elasticity
of smectics and possibly leading to anisotropic
scaling do not seem to be in conflict with these general
expectations.

3. Self-energy and interactions of smectic dislo-
cations. - Edge and screw dislocations can occur
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in smectics as well as in solids. Starting from de
Gennes’ [17] theory of edge dislocations, Kléman
and Williams have shown that the elastic self-energy
and the interaction energy of smectic edge [18] and
screw dislocations [19] are finite. This is a remarkable
distinction from dislocations in solids, disclinations
in liquid crystals, and almost all vortex lines, whose
elastic energies diverge logarithmically with the dia-
meter of the strain field.
The self-energies per unit length, Ws, of straight

edges and screws were calculated to be [18]

and [ 19]

if only the contributions of lowest power of 1 /r to the
strain are considered, r being the distance from the
core. K and B are the bulk elastic moduli of layer
curvature and compression, respectively, A=(K/B)1/2
is de Gennes’ penetration length, and d the Burgers
vector, i.e. the mean thickness of the smectic layers.
The core radii r, may differ for the two types of dis-
locations and could be chosen such as to give the
actual self-énergies. The penetration length has been
generally found roughly equal to d. It might be inferred
from (28) and (29) that the self-energy of the screw
is much smaller than that of the edge. In the absence
of any experimental data and for reasons of simplicity
we may take the energies per line element to be equal.
The length of a screw element is d, i.e. of the order
of one or two molecular length, while that of an edge
element should be equal to the diameter of the gene-
rally rodlike molecules.

If z is the coordinate normal to the unperturbed
layers, a straight edge dislocation coinciding with the y
axis interacts with a parallel edge dislocation at (x, z)
through the potential [18]

per unit length. The plus or minus sign holds for equal
or opposite Burgers vectors, respectively. As a result,
the interaction is essentially limited to two parabolic
regions in the xy plane whose boundaries are given by

for the dislocation going through the origin. Within
these regions the interaction energies vary as (1/r)1/2,
while the average interaction energy on a whole circle
varies as 1 /r, r being the separation of the dislocations.

Perfect screw dislocations are normal to the
smectic layers. The interaction energy of a pair of
screws, if they are not too closely spaced, may be
expected to vary as l/r2. The dependence is obtained

by multiplying the square, - (1 /r2)2, of the maximum
layer dilation in the centre plane, - 1 /r2, by a charac-
teristic area proportional to r2. The situation is

mathematically complicated by the fact that we are
facing a nonlinear problem, the total strain being
not simply the superposition of the strains of the
single lines. For reasons to become clear below,
elastic interaction potentials dropping faster than 1 /r
should in general not matter in. our defect model.

In order to study steric interaction we begin with
simple systems. We imagine a straight edge dislocation
and a second dislocation resulting from a self-avoiding
random walk confined to a cylinder of radius r

around the straight line. Alternatively, the straight
line may be replaced by another random walk confined
to the same cylinder. In both cases the two dislocations
are assumed to avoid also each other and to be

infinitely long. Because of the steric effect the random
walks will progress along the cylinder whose axis
is taken to be the y axis. Elasticity is entirely disre-
garded at this stage. Relying on the general ideas of
scaling as applied to polymer chains [20, 21] we now
assert the following :

1. - If the radius r is made larger and the edges
of the Kadanofi’ blocks are increased proportionally,
the distribution of chain configurations is independent
of r. Of course, the chains have to be viewed through
Kadanofi’s hypothetical microscope whose resolution
is supposed to scale with r.

2. - The decrease in entropy caused by confining
the chains to the cylinder remains the same for a given
section of cylinder when the section length scales with
the radius. Therefore, the entropy decrease per unit
length of cylinder, AS, varies as

Any logarithmic corrections are neglected, as is usual
in scaling theory. They are assumed to allow for the
fact that the diameter of the dislocations does not
scale with the cylinder (see below).

After the random walks have taken place we turn
on elastic interaction, recalling that its average energy
is proportional to 1 /r per unit length of straight and
parallel edge dislocations. Simple considerations show
that the proportionality remains unchanged if one or
both disclinations were produced by random walks,
provided reference is made to unit length of cylinder.
The contribution of screw interaction is neglected
because of its faster drop with r. Accordingly, we have
for the average elastic interaction energy

The number of line elements or lattice bonds involved
in a random walk per unit length of cylinder increases
with r, but the exponent of the expected power law
is irrelevant to the proportionalities (32) and (33).
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The actual elastic interaction between smectic dis-
locations is governed by the more complicated
equation (30). For a discussion of this case it is

advantageous to consider an infinite random walk
following a straight edge dislocation that coincides
with the y axis. The random walk is confined to a

rectangular cross section, the boundaries being given
by Zl  z  z2 ; - xo  x  xo. We take all three
constants to be positive and stipulate z2 - zi  zi,
z1 » xo » 2(À 1 Z 1)1/2 . There is then another, aniso-
tropic scaling procedure afiècting entropy and elastic
energy in the same way. For (Z2 - Zl) ~ z 1 /2 and
xo - Z 1/2 1 we have under the earlier assumptions

and

If zl 1 is large enough, letting (z2 - zi) - zl 1 while

keeping xo - Zl/2 should not affect the proportiona-
lities (34) and (35).
The study of the two idealized versions of our

simplified model suggests that either elastic attraction
or steric repulsion dominates the interaction of two
smectic dislocations. These concepts should not change
in an important manner if allowance is made for the
elastic self-interaction of dislocations. Applying them
to an isolated dislocation loop made up of a fixed
number of line elements, we expect it to collapse if
elasticity is predominant. Modelling the A-N transi-
tion on the xy high-temperature expansion seems to
be ruled out in such a case.

Since steric and elastic interactions are propor-
tional to the same power of r, an estimate of the

strength of the steric effect can be made for minimum
line separation. It is thus possible to use very simple
models. For instance, we may take one dislocation
to be straight and restrict the random walk of the
other to the edges of an infinite series of equally
oriented cubes. The cubes are lined up with opposite
corners on top of each other parallel to the straight
dislocation. The restriction corresponds to a confine-
ment of the random walk to the bottom of a parabola
of maximum elastic interaction. For simplicity we
now demand that the restricted random walk be only
forward with respect to the straight line, which

automatically makes it self-avoiding. To derive the
entropy decrease caused by the confinement we

compare this walk to one permitted to expand into
the lattice, but again moving only forward. The period
of the series of cubes is 3 1/2 a, a being the lattice

parameter or the length of a cube edge. Collecting
the contributions of the three levels of cube corners
and subtracting them from those of a free forward
walk, we obtain for the entropy change s per cube

The resulting entropy change per unit length of the
straight dislocation is

Clearly, the estimate is very crude, but refinements
are difficult and do not appear to change the result
by more than a factor of two. Equation (37) is used
below for a comparison with the elastic effect.

In a more realistic approach we would have to let
the dislocations or random walks form their confi-

gurations under the simultaneous influence of steric
and elastic interactions. This is a very difficult problem,
but it resembles the following simpler one : we intro-
duce a straight edge dislocation and assume the other,
flexible dislocation to be a diffusion path, neglecting
steric and elastic self-interaction. The elastic interac-
tion between the dislocations is taken to be of the

averaged type, i.e. ~ 1/r, and to be « kB T per line
element. Then the preference of edge elements with
attractive interaction over those with repulsive interac-
tion is slight and varies as 1 /r in the flexible line,
giving rise to an average attractive interaction pro-
portional to 1/r2 per line element, down to some

radius roof hard-core repulsion. The différence
between the probabilities for a path element to be
either an attracted or a repelled edge may be expressed
by

if one uses (30) upon averaging the potential over
circles of constant r. Here a is the length of a path
element, the self-energies of edge and screw elements
are taken to be equal, and the diffusion path is thought
to be on a cubic lattice one axis of which is parallel
to the straight dislocation. The resulting average
attractive potential per edge element is

A diffusion equation allowing for source and sink
regions can now be constructed ; it looks like a two-
dimensional Schrôdinger equation at zero angular
momentum :

here § may be regarded as a wave function or a
quantity proportional to the (three-dimensional) den-
sity of line elements. The solution without node, i.e.
that of smallest E  0, is the solution of our diffusion
problem. Substituting 03C8/(r) = R(r)jr1/2, we may write
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Bound states R(r) are known to exist whenever A &#x3E; 0

[22]. The spread ri of the lowest state which solves
our diffusion problem obeys the inequality

This may be seen by putting e = 0, tf¡(r 0) = tf¡(r 1) = 0
and solving (40) with the ansatz 03C8~ r-", which
yields n = ± iÂ 1/2. Obviously, the ratio rl/ro rises

rapidly with decreasing À, the latter being always
smaller than unity, according to our initial assump-
tions.
The diffusion model can be extended to the case

of a flexible line interacting with the straight edge
dislocation through the parabolic potential (30). Using
trial functions, e.g. two-dimensional Gaussians, one
again finds bound states, i.e. states whose total energy
in the quantum-mechanical sense is negative, to exist
for any strength of interaction. We may conclude
from the diffusion model in conjunction with the
earlier scaling arguments that we are generally dealing
with a borderline case. If elastic interaction would

drop a little faster with separation than (30), then
two smectic dislocations in thermal equilibrium would
not be bound to each other. However, they could
still collapse in the case of a predominance of the
elastic over the steric effect at small spacings. If the
drop of elastic interaction were a little slower than

(30) the lines would definitely be bound to each other,
although they need not collapse in the proper sense.
At the borderline there is still residual binding, but
the mean separation increases very rapidly, in fact

exponentially, with the square root of the strength
of elastic interaction, if it is permitted to generalize
(42). What applies to a pair of dislocations should
equally hold for a single dislocation loop in thermal
equilibrium. However, the scaling arguments and the
diffusion model also suggest that the residual binding
to the parabolic interaction potential should lead to
loop distortions depending on loop size, which could
give rise to anisotropic scaling and other effects. This
will be discussed in the next section, together with
the problem of how the many dislocation loops
expected to exist just below the phase transition
interact with each other.

4. Estimâtes and discussion. - As stated earlier,
the defect model of the A-N transition must satisfy
the condition that a single pair of dislocations or a
single loop do not collapse. To check this point we
estimate the steric and elastic interaction energies of
two dislocations, one being a straight edge and the
other a random walk. For minimum spacing of the
order of one lattice parameter the steric part of the
interaction energy per unit length of straight line is

according to the rough estimate (37), and the elastic
part is

as obtained from (30) for the bottom of the potential
trough. Inserting typical numbers T = Tc = 300 K,
d=Â=20Á,a=5Á,andK= 1 x 10-6dyne.cm-1,
we get the ratio

which favors steric repulsion over elastic attraction.
However, the ratio is not very far from unity, which
predicts a marked effect of elasticity on loop shape
and orientation even for fairly small loops.
Another requirement to be met by the defect model

concerns the self-energy of the lines. If the critical

temperature Tc is indeed characterized by the first

appearance of infinite lines, the self-energy at T, must
be balanced by the free energy due to the freedom
of a line to choose its path. Considering a single line
element, we may write the condition in the form

where n lies between the coordination number of the

lattice and unity. Using equation (28) with

and T, = 300 K, we find (46) to be satisfied for n x 4.
However, the very reasonable result may be fortuitous
since the actual self-energies of line and screw elements
are not known and may differ from our estimate and
from each other.

Based on equation (46) it is possible to appraise
the size of the largest loops at temperatures just below
the critical point. The free energy of a smectic dislo-
cation loop (apart from the entropies of placing and
closing [23]) may be expressed by

where N is the number of line elements and taken to
be large. Assuming lEg to be independent of tempe-
rature and using (46), we write

As F should rarely be larger than a few kB T we may
expect the largest commonly occurring loops to

consist of a number of elements N a. which is roughly
given by
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An approximate formula for the corresponding loop
radius,

is obtained from diffusion theory. The neglect of
steric and elastic interactions should not change the
order of magnitude of the result as long as pmax is
small enough. (Eq. (50) is basically a formula for the
correlation length whose critical exponent in the
three-dimensional xy model is 2/3 rather than 1/2.)
Insertion of a = 5 Á, Tc = 300 K, and Tc - T = 3 mK,
about the lower experimental limit, gives pmaX 1500 Â.
We emphasize once more the crudeness of this esti-
mate which just points the way toward more rigorous
calculations.

Before dealing with the possible effects of the
elastic interaction of smectic dislocations we briefly
digress to the problem of elasticity in the three-dimen-
sional plane rotator model. There the defects are

vortex lines which we assume to break up the uniform

alignment (ç = const.) encountered at low tempera-
tures. The interaction energy between loops and
between segments of one loop scales, at fixed shape,
with the loop radius p, apart from a factor In (p/po)
in the case of self-interaction. An effect of this range
cannot be offset by steric forces. However, it is

partially screened because each loop, except for
the smallest ones, is embedded in a medium of other

loops. The strength of screening will be a function of
loop size. Expressing it by the inverse of the effective
elastic modulus C(p) for strains in the orientation
field of the plane rotator, we conjecture for large
enough loops

for p  pmax and, correspondingly,

in a uniform external strain field. In keeping with the
concept of scaling we assume the correlation length ç
to be equal or proportional to the maximum loop
size in the sense of the last paragraph. To justify (51)
it is advantageous to use the complete analogy
of vortex loops in the plane rotator model to current
loops. The phase angle 9 of the rotator may be viewed
as a magnetic potential (which is not single-valued)
and the strain field be regarded as a magnetic field
H = - grad (p. It has to be kept in mind, however,
that the potential Q and field H are used here solely
for the purpose of analogy and do not represent the
actual magnetic state of the system. If a uniform
strain field H is applied, the loops will tend to deform
and align. The corresponding polarizability if the
medium is given by a formula like

if the distribution of loops in thermal equilibrium is
that of our xy defect model without elastic interaction.
We have written (52) in a complicated fashion to
explain the physics : ( 1 /p3) dp In p is proportional to
the density of loops belonging to a certain generation
dp/p = d In p, an assertion based on the general idea
of scaling. p4 stands for the square of the magnetic
moment of a loop of radius p ; it enters because

Langevin’s theory of polarizability is used. Equa-
tion (52) is of course valid only forp.,,,. » Po, Po being
the minimum loop size. It follows from (52) that the
effective screening increases with loop size and, in

fact, exactly matches the increase of elastic interaction
as obtained without screening. Apparently, a screen-
ing of this type permits the use of our defect model
even for the plane rotator (e.g. 4He) phase transition.
Necessary adjustments, e.g. of the critical tempera-
ture, should not affect the critical exponents. We do
not pursue here these interesting questions any
further.
The elastic interaction between smectic dislocation

loops is very distinct from that between vortex lines.
With the averaged potential (~ 1/r) the energy of
interaction of digèrent loops or of the segments of
one loop is virtually independent of size in the absence
of screening. Actually, we have an interaction which
is more or less restricted to parabolas in the case of
a straight edge. In the parabolas the interaction

potential varies as 1/r1/2. The force on the sides of
the potential trough goes with 1 /r, thus having locally
the same power as in the vortex model.
We are now in a position to start discussing the

smectic A-nematic phase transition in more detail.
The principal advantage of the defect model has
been stated earlier : the critical part of the director
fluctuations at T  T, need no longer be considered
a separate phenomenon ; it simply reflects the pre-
sence of smectic dislocation loops. The following
attempt to find relationships between critical expo-
nents is very tentative and restricted. It serves to

show how anisotropic scaling could come about.

Needless to say, any calculation of critical exponents
requires extremely sophisticated mathematical
methods and is far beyond the scope of the present
work.

Let us take a look at the elastic moduli B and D

of layer compression and of molecular tilt with res-
pect to the layer normal [8]. For isotropic dislocation
loops one expects just below the transition

These dependences and their derivation in terms of
the defect model are analogous to (51) and easy to
understand. Next we tum on elastic self-interaction
of the loops, omitting interaction between loops and
preserving loop density as a function of the number
of constituent line elements. On the basis of our
earlier discussion we may expect the loops to shrink
in the direction of the unique axis and, perhaps, to
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expand in the plane of the layers. More specifically,
elasticity is likely to deform large loops into platelets
or curved bands whose faces are preferably parallel
to the unique axis. Because of the parabolic interac-
tion potential the deformation should become stronger
as the loops grow larger. If all this is correct, both
the magnitude and the temperature dependence of
B -1 1 and D -1 may be expected to be smaller than
with isotropy. The reductions should be stronger for
B -1 than for D -1 as these quantities are rising func-
tions of the areas which the platelets or loop sections
project onto the plane of the layers (for B -1) or some
planes perpendicular to it (for D - 1).
Allowing next for elastic interaction between loops,

we note that any temperature dependence of B affectes
elastic self-interaction by way of screening. Evidently,
considering single loops is not enough, but a self-
consistent calculus is required to derive B. The density
of loops as a function of temperature will also ditlèr
from that of the purely steric model, and this has to
be taken into account.

We now show by contradiction that the maximum
dimensions of smectic dislocation loops will not

grow isotropically for T - T,, in contrast to the cases
of purely steric interaction or compensatory screening
of elasticity. If loop growth were isotropic, we could
definitely expect B-’ 

1 to diverge. However, B-’ 1

should be bounded by const. (T,, - T )- y or, more

likely, a weaker power law, v z 2/3 being the critical
exponent of the correlation length in the three-dimen-
sional xy model. According to (30) the strength, i.e.
the product of depth and width, of the parabolic
interaction potential of a straight edge dislocation is

proportional to B 1/2, independent of z. (In extreme
cases the parabolic interaction of a straight edge dis-
location may practically act like a one-dimensional a
potential). An infinitely long free dislocation is bound
to the parabolic potential by residual binding, as

discussed earlier. Here we take the mean spacing
along z to be freely variable and consider, as its func-
tion, the spread Ax in the direction perpendicular to
the potential trough. The spread is bounded by
const. B - 1/2 (if a d potential is assumed and the
diffusion model applied) or const. B - l4 zl2 (the
width of the potential trough (30)), whichever is

larger. We now recall the limitation of B as a function
of Tc - T and assume the mean separation of the
free dislocation from the straight edge to vary with
temperature as ç, the correlation length in the ordinary
xy model. Then the relative spread x/ç goes to zero
for Tc - T --&#x3E; 0. The result, when translated to large
dislocation loops, leads to the conclusion that loop
growth, if infinite in all directions, cannot be isotropic.
An alternative theory would be one of limited loop
growth in z direction associated with residual binding.
It would definitely imply the non-divergence of B - 1,
in disagreement with experiment and also improbable
for theoretical reasons.
The use of a straight edge dislocation in our reason-

ing is not quite satisfactory. However, it can be shown
that the elastic interaction potential of more realistic
dislocations similar to diffusion paths is unlikely to
invalidate the argument. The potential of an edge
element turns out to be proportional to

at large distances r = (x2 + y2 + z2)1l2, thus being
of .paraboloidal character. One may also wonder
whether power laws are to be expected for the depen-
dence of B and other quantities on Tc - T. The fact
that the parabola of elastic interaction represents
itself a power law seems to be an argument for them.

Experiments [12] yielding B - (T, - T)o. 33 and
D - (Tc - T)o.5o notably the finding that the critical
exponent of B is smaller than that of D and both are
smaller than v = 2/3, seem to agree with our expec-
tations. In recent theoretical work [9, 10] the A-N
transition has been predicted to be always disconti-
nuous although the discontinuity may be very small.
The experimental situation is ambiguous. In our

defect model we see, as yet, no mechanism making
a first-order transition inevitable. However, the impli-
cations of the increase of loop anisotropy with loop
size have to be studied for a final answer to this and
other questions.

5. Conclusion. - The defect model of the smectic
A-nematic phase transition describes the transition as
a breakup of the smectic layered structure by smectic
dislocations. It is based on Kandanofi"s , concépt of
geometric scaling applied to large dislocation loops
in thermal equilibrium. In the present work only the
low-temperature side of the transition has been consi-
dered. Although some checks of the defect theory did
not reveal any inherent contradictions, there remain
many open questions. In particular, the use of a
lattice model is probably a poor approximation for
small loops because it does not take into account that
a loop usually involves the local addition or removal
of a smectic layer. Fortunately, for large loops, i.e.
in the vicinity of the critical point, this problem seems
not too serious as the thickness of one layer becomes
negligible in comparison with loop size.
We may summarize our results as follows :
1. - All theories attributing some phase transition

to the breakup of order by polar defect lines can be
modelled, with certain reservations, on a spin - 1/2
high-temperature expansion of the xy model. Since
the topologically stable defects of the three-dimensio-
nal xy model as represented by the plane rotator are
just polar lines, this high-temperature expansion and
the defect model are identical in some essential
features. The three-dimensional xy model shares the

analogy of defect description and high-temperature
expansion with the two-dimensional Ising model.
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2. - The hitherto troublesome problem of the

critical increase of director fluctuations in the smectic

phase just below the phase transition does not exist
in the defect model. The critical fluctuations of the
director are no longer independent, though coupled
to those of the smectic order parameter. Instead, they
are simply a manifestation of the fluctuating smectic
dislocation loops.

3. - The elastic interaction of defect lines is gene-
rally very important. We have seen that it may be

sufficiently screened in a thermal bath of many loops,
but only in the case of the vortex or plane-rotator

model. The unique parabolic elasticity of smectics
was shown to rule out isotropic xy behaviour. There-
fore, anisotropic scaling or some other deviation from
normal xy behaviour is to be expected.
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