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Résumé. — On discute les propriétés d’équilibre de chaines flexibles adsorbées sur une surface
plane, en supposant que a) 'adsorption est faible (d’ou des épaisseurs de couche adsorbées D rela-
tivement grandes), b) les chaines sont longues, ¢) le solvant est bon, d’ou des effets de volume exclu
qui s’avérent importants, contrairement & une opinion ancienne de Hoeve.

Les répulsions entre monocouches sont incorporées ici dans des lois d’échelle qui vont plus loin
que les théories habituelles de champ moyen (Flory-Huggins). On trouve trois régimes :

(i) Dans la limite diluée (chaines séparées) D est indépendant de I'indice de polymérisation N,
et varie comme 6~ >? (ou  mesure la force de I’attraction effective vers la surface). Avec I'approxi-
mation de champ moyen, on aurait D ~ §~*.

(ii) Il existe un régime semi-dilué ou les pelotes commencent a se recouvrir.

(iii) Le cas principal correspond au plateau de I'isotherme d’adsorption. On montre que dans ce
cas les corrélations locales dans la couche adsorbée sont analogues a celle d’une solution tridimen-
sionnelle. L ’épaisseur D varie comme N§ (In ) ™! ol ¢ est la concentration de la solution en volume.
La dépendance prévue pour D(N) est plus forte que en champ moyen (ot D ~ N'/?) mais pas
incompatible avec certaines données expérimentales.

Abstract. — We discuss the equilibrium properties of flexible chains adsorbed on a flat surface,
assuming that @) adsorption is weak, resulting in large thicknesses D for the adsorption layer, b) the
chains are very long, ¢) the solvent is good, so that excluded volume effects become important (contra-
ry to an early opinion of Hoeve).

The repulsion between monomers are incorporated through a scaling theory which goes beyond
the usual mean field (Flory-Huggins) approximations. The central assumption is that polymer
concentrations in the first layer and in the next layers scale in the same way, (although they do differ by
a constant factor). We can then predict the surface exponents of interest in terms of standard expo-
nents for self avoiding walks ; for the latter we use the Flory values.

One then finds three regimes of adsorption :

(i) In the dilute limit (separate coils) D is independent of the polymerization index N, and varies
with the strength of the effective monomer surface attraction (measured by a small parameter J)
according to D ~ 6~ instead of D ~ §~! in mean field.

(ii) There is a semi dilute regime where the coils begin to overlap, but where D remains essentially
the same.

(iii)) The most important case corresponds to the plateau in the adsorption isotherm : here we
show that the correlations inside the layer are similar to those in a three dimensional system. Then
D ~ Ni(In cg) ! where cg is the bulk concentration. The dependence on N is stronger than in mean
field (D ~ N'/?) but not incompatible with existant data.

1. Introduction. — 1.1 EXPERIMENTAL BACK- rimental literature [1], the processes involved are

GROUND. — Polymer adsorption at a solid liquid
interface is of considerable practical interest for
various surface treatments, for stabilization of colloids,
and for chromatography. It is also an important effect
for certain flows inside porous rocks (and in parti-
cular for oil recuperation).

In spite of this interest, and of a vast body of expe-

only poorly understood. Most usually what is measur-
ed is an adsorption isotherm ; this reveals the adsorbed
chain conformations only indirectly (through depen-
dences on the molecular weight M).
More local information is obtained from ellipso-
 metry [2] and from the hydrodynamic barrier thickness
measured in porous structures or on polymers
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adsorbed on colloidal particles [3]. Usually these
data are taken mainly on the plateau of the isotherm —
i.e. when a certain competition between surface
attraction and steric repulsion between monomers
has established a saturated surface concentration I.
Then the thickness D of the adsorbed layer is often
found to be an increasing function of M (or of the
polymerisation index N), varying for instance like
M*° where a ~ 0.5 in @ solvents, and a can be even
larger in good solvents [4].

A significant theoretical effort has been devoted
to this problem. Unfortunately many of the papers
involve a significant amount of mathematical for-
malism, which masks their real content. We shall
first present a simplified version of these theories in
the next paragraphs; their essential common feature
is their dependence on certain mean field (or self
consistent field) arguments. We shall then show in
section 2 that the deviations from mean field are
important for this problem, and that they lead to
somewhat different power laws.

1.2 ADSORPTION OF IDEAL CHAINS [5a]. — This is
the simplest problem on the theoretical side, and it has
been treated very early. The results are the following :

a) There is a well defined threshold — (in interac-
tion strength at fixed temperature, or in (tempera-
ture) ! at fixed interactions) below which no adsorp-
tion takes place. For instance, in the notation of
Hoeve [7] we may define a number ¢ as the ratio of
the statistical weight for one monomer in the chain
on the first contact layer, to the weight for one mono-
mer in a chain floating in the bulk. Low temperatures
or high surface attractions increase o. Estimates of ¢
for specific lattice models can be found in ref. [5, 6, 8].
The threshold corresponds to ¢ = 1.

b) The region of main theoretical interest cor-
responds to ¢ = 1 + § where ¢ is positive and small.
This defines what we shall call the weak adsorption
regime where the chain is expected to adhere at the
surface by a small fraction of its monomers (Fig. 1).
This is the region where the adsorption thickness D
is large when compared to the monomer size a, and
where a universal description is feasible. These
universality features were emphasized in ref. [9]
together with various analogies :

(i) The similarity between the adsorption problem
and natural DNA denaturation was already noticed
by many authors [7].

(i) More profoundly, what we are dealing with
in both cases is the appearance of a bound state in a
certain equation of the Schrodinger type [9] : this
bound state can be treated quite generally by a scatter-
ing length approach familiar in low energy scattering
of quantum particles [10].

¢) For any (small but positive) 6 (i.e. beyond
threshold) the thickness D is independent of N. This
can be understood as follows : for a single ideal chain
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F1G. 1. — Polymer chains weakly adsorbed on a flat surface :

a) The single chain case : for large molecular mass M the thickness D

is independent of M. b) The many chain case : repulsion between

monomers counteract the surface attraction. The layer thickness
is now larger and M dependent.

confined in a thickness D the chemical potential
(divided by kg T) has the following form

- Na? aN
n= po+ 3‘2" - 6—D— + Hiransiation

(1.1
where u, is the potential for a free chain with a fixed
center of gravity ; The second term is due to the loss of
entropy resulting from confinment : Na®> = R? is the
ideal mean square radius and we assume D < R,.
The precise coefficient can be found in ref. [11] but
here we purposely ignore all coefficients. The third
term in eq. (1.1) states that of the N monomers only
a fraction a/D is in the first layer and benefits from
the effective attraction measured by J. Finally
Kirans.= In (I'/N) + Const. ,

is the standard term for a dilute two dimensional gas of
coils (with concentration I'/N). Optimizing (1.1)
with respect to D one finds (always ignoring coeffi-
cients)

(1.2)

Thus D is large (for small §) and independent of N.
This independence is at variance with most experimen-
tal results : clearly the one chain picture is not suffi-
cient.

-1
Dsingle chain = ao .

1.3 REAL CHAINS IN A GOOD SOLVENT : FLORY
HUGGINS APPROXIMATION [7, 8]. — Here we have a
repulsion interaction between monomers, and as
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soon as the surface concentration I' is finite, there is
competition between this repulsion and the monomer-
surface attraction. In the spirit of a mean field theory
we may now write

Na? aN
u=po + Dz 6—D— + Nv% + Hans, (1.3)
where the excluded volume parameter v is related to the
celebrated Flory parameters [12] by
v=a’1-2y). 1.9
In what follows we shall mainly consider the case
x = 0 (good solvent limit). The basic reason is that
changes in the solvent react simultaneously on two
parameters (v and the adsorption strength o) : thus
data on solvent effects appear too complex to be
unraveled at present.

The term NovI'/D in eq. (1.3) expresses that each
monomer sees a repulsive potential proportional to
the local concentration. ¢ (monomer/cm?®). This is
related to the surface concentration I' (monomers/
cm?) by

I =cD (1.5

from which the form (1.3) results.
Minimizing (1.3) with respect to D we get (always
ignoring coefficients)

a

0 —

where y = I'a? is a dimensionless surface concentra-
tion. The chemical potential is

.7

Equating this to the chemical potential ug of a bulk
solution (concentration cg)

u=po + Kirans. — N(a - )’)2-

v = In (cg/N) (1.8)
we obtain the isotherm in the form
y=d— N [In (y/cg a3):|1/2 . (1.9

This gives a plot y(cg) with a high initial slope, followed
by a flat plateau where the In factor is not very large,
and where y becomes close to 6. Another essential
result concerns the thickness D : comparing (1.6)
and (1.9) we have

Dyjatean ~ aN'?[In (y/cg a®]™12 . (1.10)
Thus (apart from numerical factors of order unity)
the adsorption layer is found here to be comparable
to the ideal coil size. Dpjateau is larger than Dgingie chain-
The plateau corresponds to a nearly exact cancellation
between attractive forces (towards the surface) and
repulsive forces (due to monomer interaction)
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the overall attraction is very small and this is the
source of the large thickness D.

Qualitatively the result (1.10) is in reasonable
agreement with some of the experiments [3-4] and
it has thus been accepted as being basically correct.
However, a closer examination of the data reveals
that the dependence of D on N can differ widely
from an N'? law. In another direction, it has been
recognized recently (through neutron experiments,
and through rigorous theoretical analysis) that bulk
polymer solutions show qualitative deviations from
the Flory-Huggins theory [13-15] : there are delicate
(concentration dependent) correlations between mono-
mers which allow them to avoid each other and modify
the power laws for the osmotic pressure 7(c), etc.
In three dimensions, for semi dilute solutions,
n(c) ~ ¢*?5 instead of m(c) ~ ¢* as expected from
the Flory-Huggins approach. In two dimensional
systems, the deviations from mean field theory are
still much more drastic. Recently, we have discussed
the behaviour of chains, confined in slits or capillaries,
from the point of view of scaling laws [16]. In ref. [16]
we had restricted our attention to non adsorbing walls.
The present paper represents an extension of this
discussion to the case of one single adsorbing wall.
As we shall see, the power laws for adsorption which
emerge from the scaling analysis are rather different
from those of the mean field theory. The relation with
more general scaling theories is described finally
in an appendix.

2. Scaling theory in the weak adsorption regime. —
2.1 THE SINGLE CHAIN PROBLEM. — Let us consider
one flexible chain, weakly adsorbed as in figure 1,
and confined to a layer of thickness D much smaller
than its natural size Ry in the bulk solution. The free
energy (in units of kg T) for such a chain has the
following form (to be explained below)

a\’"? aN
H — U = N(B) - 5—D— + Wirans. - (21)

a) The first term on the r.h.s. of eq. (2. 1) represents
the work which is necessary to confine a self excluded
chain in a slit of thickness D, and has been discussed
in ref. [16]. The reader may also rederive directly
the form of this term if he imposes that it be simulta-
neously

(i) a function of Rg/D only (where Ry = aN3? is
the Flory radius in a good solvent).

(ii) an extensive function of N (as it clearly should
be from figure 1).

Note the difference between this confinment energy
(proportional to D ~>/?) and the confinment energy
of the conventional theory (the second term in
eq. (1.1)) — proportional to D 2.

b) The second term on the r.h.s. of (2.1) represents
the attraction energy towards the surface and retains
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the structure which it had in eq. (1.1). Near the
adsorption threshold, the density profile varies
smoothly in the thickness D, and has but a finite jump
in the first layer : for these reasons we may still say
that the fraction p of monomers in direct contact
with the sutface is p ~ a/D. This leads to the form
written.

From a conceptual point of view, however, there
is a hidden difference in the second term between
the ideal chain situation and the present situation :
namely when we restrict ourselves to self avoiding
walks, this renormalizes the entropy of both free
and adsorbed segments, and the threshold itself is
shifted. The quantity é in eq. (2.1) is measured from
the renormalized threshold.

We emphasize once more that all numerical coeffi-
cients in eq. (2.1) are ignored. Proceeding now to
minimise (2.1) with respect to D we find an optimum

5312 2.2

Dsingle chain = d
very strikingly different from the conventional result
(1.2). The resulting potential is

H = Ko — N&°? + Htrans. (23)

and this allows to derive the initial slope of the
adsorption isotherm

y = cg a® exp(N5°?) . 2.9
If in the future a system is found where the vicinity
of the threshold can be systematically explored — i.e.
where one can vary § by acting on pH, or temperature,
or controlled grafting on the surface — then the
law (2.4) could become of interest.

Another parameter of interest is the size of the chain
measured parallel to the adsorbing surface : this can
be taken directly from ref. [16] and is

1/4
Ry, aN3/4<%) ~ gN3¥4 8% (2.5)

Finally we should recall that our discussion assumed D
smaller than the coil radius Rg in bulk solution.
We have D/Rp ~ 632 N~35 and we are thus led to
the inequality
N2 =K>» 1. (2.6)
2.2 THE PLATEAU REGIME. — Let us assume now
that many chains are adsorbed, and that they build
up a layer of thickness D — large enough so that the
local behaviour inside the layer is similar to the local
behavior in a bulk solution (of local concentration
¢ = I'/D). The chemical potential (per chain, in
units of kg T) is then expected to have the form

a\’? a 3\1.25
#_“OENE —_N55+N(ca)' + Uirans. -

2.7
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The novelty is in the third term : as stated earlier the
osmotic pressure scales like kg Tc(ca)'*® in bulk
solutions. The resulting contribution to the chemical
potential scales like m/c — hence the result. For our
discussion of adsorption, we shall find it more conve-
nient to use the total coverage I' as our variable, and
we shall thus write

(ca®)'25 — <%f)“5 _ (%’.)l'”. @.8)

It will turn out that in the present regime the first
term in the r.h.s. of (2.7) is dominated by the third
term : interchain repulsions are more important than
the confinement energy. Assuming this for the moment,
and minimizing the resulting u at fixed I, we find

wn

D

IR

2.9

a

%l

and

S 5
H— Ho & — N(;) + Htrans. - (210)

Equating this to the chemical potential of the bulk
solution (concentration cg) we reach an adsorption
isotherm of the form

y = SNYS [~Us (2.11)

where / is a short hand notation for the logarithm

Y
=1 .
n<csas>

The isotherm has a flat plateau when [ becomes
not much larger than unity (the limits on / will be dis-
cussed later in eq. (2.15). We have :

~ 1/5
yplateau = 6N / .

This has only a very weak dependence on N, and is
thus not very different from the prediction of the mean
field theory. More interesting differences appear
if we consider the layer thickness : from eq. (2.9, 11)
we have

D(cg) =~ aN$I ™1 . 2.12)
Eq. (2.12) is the central result of this paper. In the
plateau regime where [ behaves essentially as a
constant, D is linear in the molecular mass. Note
however that D/Na ~ § is small : the chains are far
from being fully stretched. A few comments are
appropriate at this point.

a) We treated the interaction energy in the adsorbed
layer as if we were dealing with a three dimensional
solution. This requires that the three dimensional
correlation length £;3(c) be smaller than D. The scaling
form of & is [14] :

&3 = a(ca®)™3* ~ 0(2)3/4..

- 2.13)
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Inserting the values ((2.11), (2.12)) for y and D we

arrive at
6_3 - i 2/5
DELR . (2.149)
Thus our analysis holds provided that
I<K. 2.195

This coincides in fact with the definition of the plateau
regime. We shall see in a later paragraph that when
I ~ K one expects a different (semi dilute) regime.

b) We neglected the confinment energy in eq. (2.7).
Taking the ratio x between this energy and the overall

potential <of order & % per monomer) we find

a 2/3—-1/4 l 2/3
x (3> y~ St (1?) . (2.16)

Since / < K this ratio is indeed small and the appro-
ximation is valid.

¢) We already pointed out that the chains are far
from being totally stretched outwards. It is of interest
to compare the layer thickness D with the size Ry of a
single coil in the bulk solution. The result is
D s s,
o=

2.17)

At the onset of the plateau I is of order K and D/Rg
is small. At higher concentrations cg, / is smaller and D
may become comparable to Rg;.

d) It is also (at least conceptually) interesting to
estimate the lateral size R of one coil, in the present
regime where different coils are strongly overlapping.
From ref. [14, 16] we know that

1/10
R = N2 g(ca®)~1/8 = N1/2 a(-];-[) . (@.18)

In practice the last factor will be very close to unity :
R is very close to the ideal chain size. It may be helpful
to note that

_IS ~ 79/10 pr—2/5
D= PO K . 2.19)
At the onset of the plateau regime (I ~ K) we have
R/D ~ K'? > 1. The coils are flat. At higher concen-
trations D increases slowly while R is nearly constant,
and the coils are slowly changing from oblate to
prolate ellipsoids.

2.3 THE SEMI DILUTE REGIME. — From ref. [16]
we know that coils confined in a slit show a third
regime in between the dilute limit and the three dimen-
sional limit. A similar semi dilute intermediate regime
is expected in the adsorption problem. However,
as we shall see, the laws for y(cg) and D(cg) are not
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very different from what we have already described
in the dilute limit : thus the semi dilute regime will
not manifest itself very conspicuously in the experi-
ments, and we shall discuss it only very briefly.

Starting from the dilute end, we expect the chains
to overlap when the surface concentration exceeds a
certain limit

(2.20)

Iy = N/RE,
vt
3dim
| £
2dim.semi
dilute
dilute P
CBV°3

FIG. 2. — Various regimes in the adsorption isotherm. y is a dimen-
sionless measure of the surface excess. The limits are y, ~ 6/2
and y, ~ y, K~/ where  measures the effective attraction of one
monomer to the surface, and K is a large number defined in eq. (2.6).

where Rg, is the lateral size of a single adsorbed
coil (eq. (2.5)). For I' > I'; (but I' still much smaller
than the plateau values) the correct form of the
thermodynamic potential is

5/3
a a
“_M():N(_D_) +N'D'('y2_5)+ﬂtrans.'

@2.21)

The repulsion between coils is described by the 2
term, for which a full justification can be found in
ref. [16]. Qualitatively, the essential property is that
the osmotic pressure n(c) goes like ¢ in two ‘dimen-
sional solutions (as opposed to the Flory-Huggins
value ¢?). The interaction potential scales like =/c
and is thus proportional to c¢? (or y?).

After minimization of (2.21) with respect to D we
find

g ~ (5 — y)~32 (2.22)

and

s - N(é - y2)5/2 + Hirans. (2, 23)

from which we derive an adsorption isotherm of the

form
I 2/5
P> =6 — (ﬁ) (2.24)
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Note that egs. ((2.22) (2.24)) require / < K in the
semi dilute regime. The thickness is :

3/5
D =~ a(fX) .

Although correct, the formulas (2.24-25) are mis-
leading. Eq. (2.25) for instance, if we ignore the
logarithmic factor /, resembles the Flory radius Rg;
for one single coil in the bulk. However, for the
concentrations of interest, / is in fact large, and D
is smaller than Rpg;.

This can be made more precise if we consider the
upper concentration limit of the semi dilute regime :
the form (2.21) for the free energy holds only when
the system is strongly two dimensional, i.e. when
&3 > D. We can estimate the ratio ¢;/D from
eqs ((2.14), (2.24)) and we find

DRONEONES

(again omitting all numerical coefficients). This ratio
is larger than unity only in a narrow span of values
for //K (roughly between / = 0.5 K and / = K, but
the coefficients quoted are only illustrative). Thus in
practice we always / ~ K in the semi dilute regime
and eq. (2.25) then leads us back to thicknesses D of
order a 632, i.e. similar to those in the dilute limit.

(2.25)

3. Concluding remarks. — Comparing now the
results of the mean field theory with those of the
(slightly more refined) scaling theory we find the
following features :

1) The mean field picture does give us, as usual, a
correct idea of the general trends : @) in the very dilute
limit the layer thickness D is independent of molecular
mass; b) as soon as we get near the plateau of the
adsorption isotherm, the attraction towards the
surface is nearly cancelled by monomer-monomer
repulsions; D becomes then much larger, and N
dependent.

2) However, the power laws deduced from mean
field theory are completely wrong, when we look
either at dependances on adsorption strength (on J)
or on molecular mass (on N). This conclusion is at
variance with certain qualitative remarks of Hoeve [7]
who did not appreciate the possible existence of a
weak adsorption regime in the presence of excluded
volume effects.

Returning now to the data, as reviewed in ref. [4], we
find that the law for D(N) in the plateau regime can
vary rather widely depending on the system under
study — even if we restrict our attention to good sol-
vents. With polystyrene in cyclohexane the data give
D ~ N'2, But with vinyl acetate or methylmeta-
crylate in benzene the increase with N is stronger.
Finally with PS in benzene the dependence is weaker
than N1/2,
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One major source of discrepancy is the following :
all theorists have assumed reversible adsorption,
and this is rarely found in practice. Indeed, theoretical
studies on entangled polymers attached at one end [17]
suggest strongly that entanglement times may become
prohibitively long in certain adsorption experiments.
A more elaborate — kinetic — theory of polymer
adsorption may be required for the future.
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APPENDIX

Relation between single chain adsorption and the
problems of surface magnetism. — Relations bet-
ween the statistics of polymer solutions and those of
magnetic critical points have progressively emerged in
the past few years [18, 13]. The most clear and simple
presentation of these relations — due to G. Sarma — is
contained in an appendix to ref. [15]. The result can
be stated as follows :

Consider a set of atoms (i, j, ...) occupying a set of
fixed positions in space (on a periodic lattice or even
more general arrangements). Each atom carries a
spin S; of square length S? = n. The vector S; has n
independent components (n = 1 corresponds to the
Ising model, n = 3 to the Heisenberg model). Neigh-
boring spins are coupled by a ferromagnetic interaction
of the form

¥’ =—-YJ,;S.S;.

s<i

(A.1)

In the paramagnetic (disordered) state realised at high
temperatures T we can define a susceptibility yx,(7)
as the ratio S;/H of the average moment S; on site i to
the external field H (in the limit of small H). The high
temperature series expansion for y(7) is related to the
generating function for self avoiding walks on the
network (i, j, ...) by the following law

Nioo

N=0 jk,l...

1
Jiijk...JstT—N= TXi (A.2)

n=0

The product of J factors on the left hand side contains
N factors : each choice of a set (i, j, ..., ) corresponds
to a walk of N steps : only self avoiding walks are
included. On the right hand side, the suffix n = 0
means that after calculating y; for a physical magnet
with arbitrary » > 1, one must perform an analytic
continuation of the result to the (non physical)
value » = 0. By this trick the generating function for
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self avoiding walks, when the weight for each step (if)
is a constant J;;, is related to a magnetic problem.

In the case of interest here we shall have magnetic
atoms located on a periodic lattice — for instance a
simple cubic lattice with a unit cell length a. This
lattice is limited to a half space, the boundary being
for instance a (100) plane. The last layer of atoms will
describe the possible sites of adsorption of the polymer
chain. We choose :

Jii=J

2
for all internal bonds between nearest neighbours,
Jij=J>J
for all surface bonds between nearest neighbours,
J;j=0

for all pairs which are not nearest neighbours.

(In the polymer language, the second condition will
ensure that links which stay on the surface are ener-
getically favored.)

For the magnetic problem we know that the
susceptibility y; is finite at high temperatures 7, but
that it diverges when t goes down to the critical point
1,. More precisely we have

wO= Y M (A

where ¢,(N) is a slow function of N (in practice a
power of N). After taking n = 0, each term on the
r.h.s. of (A.3) gives us the partition function Z), for a
self avoiding walk of N steps (with the weight factors
Jij)

Zy = ¢{N) . (A.9)
The chemical potential (for a chain of N units starting
from point i) is thus, in units of kg T :

u=—Nint, — Ing;. (A.5)
The dominant term in the r.h.s. of (A.5) is the first
term. Thus the study of the one chain chemical
potential is reduced to a study of the transition
temperature 7, for the ferromagnet. In the present
problem, with enhanced surface couplings, we know
from various theoretical studies [19] that the following
properties hold :

a) When J/J is smaller than a certain critical
value, r, the material shows a single transition at the
bulk transition point 7.

b) When J,/J > r, or when the parameter

Iy
g = —
r.

(A.6)
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is larger than unity, there is a temperature regime
(3 <T< Tg

where the vicinity of the surface orders magnetically
while the bulk stays paramagnetic. The quantity o
in (A.6) is the exact analog of the ratio introduced by
Hoeve et al. [7] for the chain problem and defined in
section 1.

¢) What is of particular interest for us is the
behaviour of the surface transition temperature t,
as a function of g, when ¢ is just above the threshold
value (¢ = 1 + 0).

Mean field behaviours for this regime have been
discussed in detail by Lubensky and Rubin [19].
More generally, for small §, one expects a variation
of 7, with 6 of the form :

T, = 15 + O™ A.D
In mean field, m(n) = 2 ; beyond mean field, there are
some numerical studies on 7,(0) both for the Ising case
(n = 1) [20] and for the chain problem (» = 0) [21].
But they are not yet precise enough to give us a
definite value of m(n). Our discussion (eq. (2.3))
leads to the prediction :
m(0) = 5/2 (A.8)
Note that m(0) > 2 and D ~ §' ™ diverges more
strongly when 6 — 0 than in the case of an ideal
chain (D ~ 67!). This appears natural : repulsions
increase the size of the adsorbed layer.

At first sight it may appear very surprising that we
should be able to calculate such a critical exponent
by elementary considerations. However, the reader
should keep in mind the fact that our exponents
for the adsorption problem are closely interlinked
with the Flory exponents for excluded volume effects
in a single chain. In the latter problem, the simple
arguments of Flory do lead to exponents which are
numerically excellent for all dimensionalities
d=1,2,3,4,..) : this gives us confidence in the
validity of eq. (A.8).

Note added in proof. — Pr. Silberberg pointed out
that experiments by Garvey, Tadros and Vincent [22]
on poly (vinyl alcohol) adsorbed on polystyrene,
are in rather good agreement with the predictions of
the present paper. They found that a) in the plateau
regime, the concentration in the layer (I'/ D) is compa-
rable to that in a single coil (N/Rg). This is precisely
what can be found from eqs. (2;11, 12); b) the thick-
ness D is somewhat greater than Rg, as expected
(prolate ellipsoid regime). The author is greatly
indebted to A. Silberberg and T. Tadros for discus-'
sions and correspondence on these points.



1452

JOURNAL DE PHYSIQUE

Ne 12

References

[1] See the review by AsH, S. G., in Colloid Science (edited by
Chemical soc. London) 1973, Vol. I, p. 103.
[2] See for instance KILLMANN, E., WIEGAND, H. G., Makromol.
chem. 132 (1970) 239.
[3] Rowranp, F. W., EricH, F. R., J. Polym. Sci. A 4 (1966)
2401 ;
DEsReMAUX, L., CHAUVETEAU, G., MARTIN, M., Compt.
Rend. 4¢ colloque « Artep » (ed. Techuip, 27, rue Ginoux
Paris 15¢) p. 343;
For a recent review see VAROQUI, R., DEJARDIN, P. (to be
published) . ’
OsMOND, D., WALBRDIGE, D., J. Polym. Sci. C 30 (1970) 381.
[4] BuLas, R., RoOTHSTEIN, E., ERICH, F., Ind. Eng. Chem. 57
(1965) 46.
[5] SmMHA, R., FriscH, H., ERRIcH, F., J. Phys. Chem. 57 (1953)
584.
[6] RuBIN, R., J. Chem. Phys. 43 (1965) 2392; J. Nat. Bureau
Standards T0B (1966) 237.
[7]1 Hoevg, C., b1 MARzIO, PEYSER, P., J. Chem. Phys. 42 (1965)
2558 ;
Hoevg, C., J. Polym. Sci. C 30 (1970) 361 ; C 34 (1971) 1.

[8] SILBERBERG, A., J. Chem. Phys. 46 (1967) 1105 ; 48 (1968) 2835.
[9] DE GENNES, P. G., Rep. Prog. Phys. 32 (1969) 187.
[10] See for instance BLATT, J., WEISSKOPF, V., Theoretical nuclear
Physics (Wiley N.Y.) 1952, chap. 2.
[11] Cassassa, E., J. Polym. Sci. B5 (1967) 773.
[12] FLoRY, P., Principles of Polymer Chemistry (Cornell Un. Press.
Ithaca, N.Y.) 1953.
[13] pEs CLOISEAUX, J., J. Physique 36 (1975) 281.
[14] DE GENNES, P. G., Isr. J. Chem. 14 (1975) 154.
[15] DAouDp, M. et al., Macromolecules 8 (1975) 804.
[16] Daoup, M., DE GENNEs, P. G., to be published in J. Physique.
[17] DE GENNES, P. G., J. Physique 36 (1975) 1199.
[18] DE GENNES, P. G., Phys. Lett. 38A (1972) 339.
[19] LuBeNskY, T., RUBIN, M., Phys. Rev. B 12 (1975) 3885.
[20] FisHER, M., in Critical Phenomena M. S. Green ed. (Acad.
Press N.Y.) 1971 ;
BARBER, M., Phys. Rev. B8 (1973) 407 ;
BINDER, K., HOHENBERG, P., Phys. Rev. B 6 (1972) 3461.
[21] Lax, M., J. Chem. Phys. 61 (1974) 4133.
[22] GARvVEY, M., TADROs, T., VINCENT, B., J. Colloid. Interface
Sci. 49 (1974) 57; 55 (1976) 440.




