Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity

Three-dimensional photon confinement in photonic crystals of low-dimensional periodicity

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Photonic crystals of one- or two-dimensional periodicity can be used to achieve three-dimensional photon confinement in dielectric waveguides with modal volumes of the order of a cubic half-wavelength. Since photonic crystals of low-dimensional periodicity do not have full three-dimensional bandgaps, the microcavities undergo increasing radiation losses with decreasing modal volumes. High-Q resonant modes can be generated by reducing the strength of the photon confinement. Increasingly, larger modal volumes lead to lower radiation losses and more efficient coupling to waveguide modes outside the cavity.

References

    1. 1)
      • H.A. Haus . (1984) Waves and fields in optoelectronics.
    2. 2)
      • G. Feiertag , W. Ehrfeld , H. Freimuth , H. Kolle , H. Lehr , M. Schmidt , M.M. Sigalas , C.M. Soukoulis , G. Kiriakidis , T. Pedersen , J. Kuhl , W. Koenig . Fabrication of photonic crystals by deep X-ray lithography. Appl. Phys. Lett. , 11 , 1441 - 1443
    3. 3)
      • P.R. Villeneuve , S. Fan , J.D. Joannopoulos , K.Y. Lim , G.S. Petrich , L.A. Kolodziejski , R. Reif . Air-bridge microcavities. Appl. Phys. Lett. , 2 , 167 - 169
    4. 4)
      • M. Kanskar , P. Paddon , V. Pacradouni , R. Morin , A. Busch , J.F. Young , S.R. Johnson , J. Mackenzie , T. Tiedje . Observation of leaky slab modes in an air-bridged semiconductor waveguidewith a two-dimensional photonic lattice. Appl. Phys. Lett. , 11 , 1438 - 1440
    5. 5)
      • T.F. Krauss , B. Vögele , C.R. Stanley , R.M. De La Rue . Waveguide microcavity based on photonic microstructure. IEEE Photonics Technol. Lett. , 2 , 176 - 178
    6. 6)
      • H.S. Sözüer , J.P. Dowling . Photonic band calculations for woodpile structures. J. Mod. Opt. , 231 - 239
    7. 7)
      • H. Yokoyama , S.D. Brorson . Rate equation analysis of microcavity lasers. J. Appl. Phys. , 4801 - 4805
    8. 8)
      • S. Fan , J.N. Winn , A. Devenyi , J.C. Chen , R. Meade , J.D. Joannopoulos . Guided and defect modes in periodic dielectric waveguides. J. Opt. Soc. Am. B , 7 , 1267 - 1272
    9. 9)
      • K.M. Ho , C.T. Chan , C.M. Soukoulis , R. Biswas , M. Sigalas . Photonic band gaps in three dimensions: new layer-by-layer periodic structures. Solid State Commun. , 413 - 416
    10. 10)
      • S. Fan , P.R. Villeneuve , R.D. Meade , J.D. Joannopoulos . Design of three-dimensional photonic crystals at submicron lengthscales. Appl. Phys. Lett. , 11 , 1466 - 1468
    11. 11)
      • J.S. Foresi , P.R. Villeneuve , J. Ferera , E.R. Thoen , G. Steinmeyer , S. Fan , J.D. Joannopoulos , L.C. Kimering , H.I. Smith , E.P. Ippen . Photonic-bandgap microcavities in optical waveguides. Nature , 143 - 145
    12. 12)
      • E. Yablonovitch , T.J. Gmitter . Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. , 24 , 3380 - 3383
    13. 13)
      • H. Yokoyama , K. Ujihara . (1995) Spontaneous emission and laser oscillation in microcavities.
    14. 14)
      • C.C. Cheng , A. Scherer . Fabrication of photonic band-gap crystals. J. Vac. Sci. Technol. B , 6 , 2696 - 2700
    15. 15)
      • E. YABLONOVITCH , T.J. GMITTER , K.M. LEUNG . Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. , 17 , 2295 - 2298
    16. 16)
      • K.S. Kunz , R.J. Luebbers . (1993) The finite-difference time-domain method for electronics.
    17. 17)
      • S.G. Romanov , N.P. Johnson , A.V. Fokin , V.Y. Butko , H.M. Yates , M.E. Pemble , C.M. Sotomayor Torres . Enhancement of the photonic gap of opal-based three-dimensional gratings. Appl. Phys. Lett. , 16 , 2091 - 2093
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-opt_19982467
Loading

Related content

content/journals/10.1049/ip-opt_19982467
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address