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ABSTRACT 
Purpose: The authors aimed to design a distributed Lambda model (DLM), which is well-adapted to 

implement three-dimensional (3-D) Finite Element descriptions of muscles. 

Method: A muscle element model was designed. Its stress-strain relationships included the active 

force-length characteristics of the λ model along the muscle fibers, together with the passive 

properties of muscle tissues in the 3-D space. The muscle element was first assessed using simple 

geometrical representations of muscles in form of rectangular bars. Then, it was included in a 3-D 

face model, and its impact on lip protrusion was compared with the impact of a Hill-type muscle 

model.. 

Results: The force-length characteristic associated with the muscle elements matched well with the 

invariant characteristics of the λ model. The impact of the passive properties was assessed. Isometric 

force variation and isotonic displacements were modeled. The comparison with a Hill-type model 

revealed strong similarities in terms of global stress and strain. 

Conclusion: The DLM accounted for the characteristics of the λ model. Biomechanically no clear 

differences were found between the DLM and a Hill-type model. Accurate evaluations of the λ model, 

based on the comparison between data and simulations, are now possible with 3-D biomechanical 

descriptions of the speech articulators because to the DLM. 

Key Words: Equilibrium Point Hypothesis; Feldman’s λ Model; Muscle active force; Muscle 

passive force; finite element method; Speech motor control ; Biomechanical orofacial model. 
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INTRODUCTION    
 

A number of studies using biomechanical orofacial models showed that the physical properties of the 

main speech articulators and their interactions with external structures are determining factors in a 

number of important characteristics of speech production: the prototypical articulatory configurations 

associated with each sound, the stability of these configurations, and the shape of the articulatory 

paths and the formant trajectories in transitions between these configurations. Perkell (1996) found 

that the stability of the control of the two most frequent vowels in world languages ([i] and [a]) could 

be largely due to the strong nonlinearities of the relationships between muscle activation and the 

degree of constriction in the vocal tract. Perrier, Perkell, Payan, Zandipour, Guenther & Khaligi 

(2000) showed that the main directions of tongue deformations observed in speech movements in the 

mid-sagittal plane — characterized by the well-known front-raising and back-raising factors found by 

Harshman, Ladefoged & Goldstein. (1977) — originated from intrinsic anatomical and biomechanical 

properties of the tongue muscles. Perrier, Payan, Zandipour & Perkell (2003) found evidence that the 

presence and shape of the articulatory loops observed in vowel-velar consonant-vowel sequences in a 

number of languages are strongly influenced by tongue biomechanics, including its muscular anatomy 

and contact with the palate. Stavness, Gick, Derrick & Fels (2012) found that the most frequent /r/ 

variants in English are those that correspond to the minimum amount of volume displacement, relative 

strain, and relative muscle stress. 

These results emphasize the need to include realistic and reliable biomechanical descriptions of the 

orofacial motor system in models of speech production. The speech articulators that are the most 

influential in achieving the fine tuning of the vocal tract’s shape, which determines acoustic properties 

of speech (see Fant, 1960; Stevens, 1998), are the tongue, lips, velum, and pharyngeal constrictors. 

These articulators are all made of soft tissue, which is mostly muscle tissue. To model the 

biomechanical behavior of soft tissues, the finite element method (Bathe, 1996) has been proven to be 

extremely efficient, accurate, and reliable (e.g., Payan, 2012). This method uses a numerical technique 

to compute an approximate solution to a set of partial differential equations. It relies on a 
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discretization of the continuum domain (Ω) to be simulated. This discretization, called a mesh, is the 

partition of Ω into simpler geometrical bodies known as elements defined by a set of vertices or 

nodes. Being able to formulate muscle models in the context of the finite element method is an 

important challenge for speech production modeling. 

In biomechanics, the reference muscle model is the Hill-type model (Mc Mahon, 1984; Zajac, 1989), 

and a number of finite element formulations of this model have been proposed (Weiss, Maker & 

Govindjee, 1996; Cheng, Brown & Loeb, 2000; Blemker, Pinsky & Delp, 2005) including for models 

of orofacial articulators (Wilhelms-Tricarico, 1995; Koolstra & van Eijden, 2001; Stavness, Lloyd, 

Payan & Fels, 2011). However, in motor control research in general, and in speech motor control 

research in particular, another muscle model, the lambda (λ) model, is often used, mainly because it is 

embedded in a theory of human motor control, the Equilibrium Point Hypothesis proposed by 

Feldman (1986). For a number of reasons that will be discussed in the next section, we believe that for 

speech motor control modeling, the λ model is more appropriate than Hill-type models. 

We previously proposed using the λ model in finite element models of speech articulators (Payan & 

Perrier, 1997; Sanguineti, Laboissière & Payan, 1997; Buchaillard, Perrier & Payan, 2009; see also 

Sanguineti, Laboissière & Ostry, 1998). In these models, the active part of the muscle was 

functionally modeled as a set of force generators acting as external forces applied onto the nodes of 

the finite element structure. However, this functional approach did not account for the fact that the 

muscles are part of the continuum. To increase the realism of the description, and, in particular, to 

provide a better account of the active-force-generation mechanisms of a muscle and their 

consequences on the mechanical properties of muscle tissue, we developed what is, to the best of our 

knowledge, the first finite-element formulation of the λ model, in which the muscle model is part of 

the factors that determine the stress-strain characteristic of the tissues.  

In this paper, we first briefly describe the λ model and reasons why we consider it to be well-suited to 

speech production modeling, and then we describe the finite-element formulation of the model. Some 
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classical evaluations of this formulation are then proposed, followed by a preliminary comparison of 

this formulation with a formulation of a Hill-type model. 

THE λ λ λ λ MODEL: A WELL-SUITED MODEL FOR SPEECH MOTOR 
CONTROL MODELING 
 

In Hill-type models, the mechanical properties of the muscle (i.e., the relation between force and 

strain) are based on measures recorded from ex-vivo muscles that are artificially tetanized (i.e., 

maximally activated) with external electrical stimulations. The force-strain relations for smaller levels 

of activation are not measured. They are estimated and functionally modeled with various 

intermediate multiplicative or additive accounts (Zajac, 1989; Winters, 1990; Shapiro & Kenyon, 

2000). In speech production, orofacial muscles generate levels of force that are far from their maximal 

force reached in tetanized conditions. The control variable of Hill-type models is the level of the force 

itself. It is known, however, that the actual muscle force is a consequence of a combination of 

influences due to descending commands from the central nervous system (CNS) and afferent signals 

associated with muscle length (via muscle spindles) and the rate of change in muscle length (via Golgi 

tendons) (McMahon, 1984). Speech motor control has been shown to be very resistant to 

perturbations such as changes of the head position with respect to the gravity field (Shiller, Ostry & 

Gribble, 1999), or unexpected perturbations of the mandible (Folkins & Abbs, 1976) or the lower lip 

(Abbs & Gracco, 1984; Gomi, Honda, Ito & Murano, 2002). We believe that part of the stability of 

speech motor control is due to low-level feedback from the muscles to the motoneuron pool. Hence, 

we think that Hill-type models are not the most appropriate muscle models for speech motor control 

modeling. The λ model seems to be more appropriate, for several reasons. 

The λ model includes hypotheses about the nature of the control variables and a description of the 

muscle-force-generation mechanisms. It is based on a study of physiological measurements of force-

length relationships in in-vivo muscles in deafferented cats (Feldman & Orlosvky, 1972) and on 

experimental data from human subjects in unloading tasks (Feldman, 1986). Both types of 

measurements have been done for different levels of muscle activation. The control variables do not 
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specify force levels directly. The control variables are threshold muscle lengths (λ) above which 

active force generation begins. For a muscle, the specification of a λ value corresponds to the 

selection of a specific force-length relationship. Thus, the actual muscle force results from the 

combined influences of the λ value and of afferent inputs associated with muscle length, rate of 

change in muscle length, and cutaneous reflexes (Feldman & Levin, 1995; Pilon, De Serres & 

Feldman, 2007). In a given external force field, the λ value determines the muscle length at which the 

mechanical equilibrium point of the motor apparatus is reached. According to the Equilibrium Point 

Hypothesis, movements are controlled by shifting this mechanical equilibrium point. From this 

perspective, movements are the result of the attraction of the motor apparatus toward the specified 

equilibrium point, and continuous movements are the consequences of successive displacements 

towards a discrete sequence of equilibrium points. Such a movement-generation principle suggests the 

existence of a discrete representation of the motor task in the CNS.  

A fundamental consequence of this hypothesis is that, once the CNS has specified the time variation 

of the λ values of all the muscles included in the motor apparatus, the movement’s trajectory and its 

timing are fully determined by muscle mechanics, including feedback loops from mechanoreceptors, 

interacting with external dynamical constraints, such as external loads, frictions, or accelerations 

(Ostry & Feldman, 2003). Trajectories are therefore assumed to be the consequences of the 

specification of the λ values; they are not the motor goals.  

By controlling for movements and positions of the motor apparatus in a given external force field via 

the specification of a sequence of equilibrium points, the Equilibrium Point Hypothesis intrinsically 

predicts that a large amount of different motor command patterns and muscle forces can be associated 

with the same sequence of intended spatial positions. The Equilibrium Point Hypothesis accounts for 

the principle of co-activation of agonist and antagonist muscles, which enables the same mechanical 

equilibrium point of the motor apparatus to be reached for various levels of force in each muscle. 

Different patterns of co-activation associated with the same goal will generate different movements 

toward the goal, with various velocity profiles and/or various trajectories. To account for this 
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variability, two macro-parameters determine movement in the Equilibrium Point Hypothesis: an R 

(reciprocal) parameter that specifies the intended equilibrium point and a C (co-activation) parameter 

that determines the dynamic properties of the motor apparatus and influences the timing and velocity 

of the movement (i.e., the way to move toward the intended equilibrium point) (Feldman & Levin, 

1995). 

We believe that the following basic principles of the Equilibrium Point Hypothesis make this theory 

very suitable for explaining speech motor control: 

(1) The discrete representations underlying the generation of movements enable a link 

between the discrete phonological characterization of the speech sequence and the 

continuous articulatory and acoustic signals that carry the phonological information from 

the speaker to the listeners. 

(2) The fact that movements are supposed to be intended towards dynamic attractors, defined 

in terms of mechanical equilibrium points, tends to provide stability to the motor system 

and to facilitate the preservation of equifinality under various movement conditions (see 

Feldman & Latash, 2005, for a discussion of equifinality in the context of the Equilibrium 

Point Hypothesis).  

(3) The disassociation between the R parameter that specifies the intended equilibrium points 

and the C parameter that influences the dynamic conditions of the movement is very 

useful to explain the variability observed for the same sequence of phonemes, pronounced 

under various speaking-rate or clarity conditions (see for example Matthies, Perrier, 

Perkell & Zandipour, 2001). 

Using a two-dimensional (2D) biomechanical model of the tongue (Payan & Perrier, 1997) that is 

driven and controlled by the principles of the Equilibrium Point Hypothesis, some interesting 

properties of speech movements that had been observed in experiments with several subjects were 

simulated: looping articulatory patterns observed in vowel-velar consonant-vowel sequences (Perrier 

et al., 2003), variability in articulatory trajectories for the same goals depending on the speaking rate 
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or the stress (Perrier, Payan, Buchaillard, Nazari & Chabanas, 2011), and relations between trajectory 

curvature and velocity (Perrier & Fuchs, 2008). The results all suggested that the Equilibrium Point 

Hypothesis is well-adapted to model speech motor control.   

The Equilibrium Point Hypothesis is also one of the most controversial theories for motor control. 

The main criticisms are twofold. A first set of criticisms is about the fact that the Equilibrium Point 

Hypothesis rejects the hypothesis that the determination of motor commands that are adapted to a 

given movement would involve, in the brain, an inverse computation using a complex internal 

dynamic model of the motor apparatus (Gomi & Kawato, 1996, Wolpert, Miall & Kawato, 1998). 

This debate, which is beyond the scope of this paper, has been discussed elsewhere (Perrier, 2006; 

Perrier, 2012). The second set of criticisms is about using the λ model for muscle-force generation, 

which is intrinsically associated with the Equilibrium Point Hypothesis. In simple terms, those who 

are opposed to using the λ model claim that simulations of experimental data with this model would 

require an unrealistically high stiffness in the model (Gomi & Kawato, 1996; Hinder & Milner, 2003) 

and high gains in the feedback loops from muscle spindles, Golgi tendons, and cutaneous receptors 

(Wolpert et al., 1998). Feldman and colleagues have argued that these authors may have used 

biomechanical models of the motor apparatus that were too simple and unrealistic (Gribble, Ostry, 

Sanguineti & Laboissière, 1998; Feldman & Latash, 2005). Designing a finite element method 

formulation of the λ model is an important step to resolve this debate. Indeed it will enable extensive 

and quantitative tests of the λ model under many conditions, by comparing simulations and 

experimental data.  

METHOD 
 

We aimed  to design an active muscle element that is suited to the Finite Element Method used to 

model soft tissues such as the tongue, the lips, the velum or the pharyngeal constrictors. This model 

has to account for the passive elastic properties and the active force generation mechanisms of a 
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muscle, as described in the λ model. To be able to compare this model with Hill-type models, we also 

designed a muscle element accounting for the properties of Hill-type models. 

Rationales 
 

Functional Muscle Models 

In functional models, muscle behaviors are represented by macroscopic descriptions of the 

input/output relationships, without considering the details of the mechanisms underlying force 

generation (McMahon, 1984).  

Adjustable-stiffness models 

Basic Hill-type models belong to this group. In this model, the total muscle force (Fm) is expressed as 

the sum of a force in a parallel elastic element (FPE) and a force in a contractile element (FCE): 

Fm=FPE+FCE   (1) 

The force in the contractile element is a function of muscle length (l), muscle velocity (v), time (t), 

and a control variable called henceforth Ac: 

FCE=f(l,v,Ac,t)   (2) 

Classically, in Hill-type models (Zajac, 1989; Cheng et al., 2000), this force is expressed in a 

multiplicative way as a product of three distinct and independent functions: a force-length function 

(FL), a force-velocity function (Fv), and a time-varying, centrally specified activation function (called 

henceforth activation dynamics) (fac): 

FCE=FL(l)×Fv(v)×fac(Ac,t)  (3) 

where FL and Fv account for intrinsic biomechanical properties of the muscles, and fac accounts for the 

time-varying central contribution to the level of the control variable.  

In Hill-type models, the force-length characteristic of a muscle, FL(l), is based on a series of 

measurements obtained in isometric conditions for different lengths, when the muscle produces its 
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maximum voluntary force (MVF) (Zajac, 1989). The shape of this curve is parabolic and is similar to 

the force-length characteristic of the sarcomeres (Figure 1, thick solid line). In order to describe the 

contractile force at the same length but for smaller levels of activation, the usual method consists of 

multiplying the MVF-length characteristic by a factor that is less than 1 (Figure 1, dotted curves).  

--------------------- (Figure 1 around here) ------------------------ 

This multiplicative account of the contractile force can be categorized as an adjustable-stiffness model 

(Shadmehr & Arbib, 1992) in which the contractile element is assumed to behave like a nonlinear 

spring whose stiffness varies depending on muscle activation, rate of muscle length change, and time 

(see Appendix 1).  

Adjustable-starting-length models: Feldman’s model 

In other muscle models, the contractile force is assumed to be a general nonlinear function of Ac, 

muscle length, and velocity. Shapiro & Kenyon (2000) proposed a multiplicative representation in 

which the control variable and the muscle length are not separable variables): 

FCE=h(Ac,l,t)×g(v)   (4) 

In adjustable-starting-length models, the control variable Ac is specified as a length quantity 

(Shadmehr & Arbib, 1992). It determines the function h by specifying the muscle length value l for 

which the active force is equal to zero. This is the case for the λ model (Feldman, 1966, 1986). In 

such models, in contrast to the Hill-type model (see Appendix 1), muscle stiffness is not directly 

controlled: it also depends on muscle length (l) and the rate of muscle-length change (v), due to reflex 

loops associated with mechanical receptors such as muscle spindles and Golgi tendons. 

The λ model states that the muscle starting length (i.e., the zero-force-point length) λ is the activation 

command centrally specified by the CNS. For a given λ value, muscle behaves under the influence of 

the stretch-reflex mechanism. Based on experimental measurements from a deafferented cat 

gastrocnemius muscle (Feldman & Orlovsky, 1972), Feldman proposed that the stretch reflex 
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mechanism is associated with a force-length characteristic in the form of an exponential curve, called 

the invariant characteristic (Feldman, 1986): 

Factive_Feldman=Fmax(exp([l(t-td)- λ
*+µv(t-td)]

+/lc)-1)  (5) 1 

where Fmax is the maximum force generated by the muscle, l(t) is the muscle length at time t, λ* is the 

starting (also called “threshold”) length (see Appendix 2), lc is a characteristic length, v(t) is the rate of 

muscle length change at time t, and µ is a damping coefficient. In this equation, both muscle length 

and muscle-length-change rate are delayed by a duration td, to account for the physical delay in 

feedback propagation along afferent fibers.  

To take into account the passive mechanical properties of the muscle, a passive force should be added 

to the active force, similar to what is proposed for Hill-type models with the force FPE, in equation (1). 

Examples of schematic representations of the impact of the passive components are shown in Figure 

2. The invariant characteristic curves at zero velocity (static conditions) are plotted without (dotted 

curves) and with the inclusion (solid curves) of the passive component (represented by the dashed 

curve). Each force-length curve is fully specified by its activation parameter (i.e., by the threshold 

length λ, above which active muscle force is generated). If movement occurs due to external force, 

without any change in the control variable, the stretch-reflex mechanism will maintain the force-

length relation on one of the invariant characteristics.  

--------------------- (Figure 2 around here) ------------------------ 

To account for the sliding filament theory (Huxley, 1957) the force described by the IC curves is 

multiplied by a term that varies between 0 and 1 as a function of the rate of muscle-length change (see 

Appendix 3).  

Comparison of the theoretical characteristics of adjustable stiffness (Hill-type) and adjustable 
starting-length muscle models 

                                                      
1 The expression [G]+ is equal to zero if the quantitity G is negative, and it is equal to G, otherwise.  
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To study the difference between adjustable stiffness Hill-type models and the λ model, we plotted for 

each type of muscle model a set of muscle force-length curves for different activation levels (Figure 

3). Let us now consider an arbitrary example of possible force and length variations of a muscle that 

would be moving voluntarily against an external load. The hypothetical length variation is represented 

in Figure 3 by the thick, bold black line that connects the resting length value of the muscle (length = 

1) to the length value 0.6, when the force varies from 0 to 0.35 N. This thick line crosses the force-

length characteristic of both types of muscle model, and the intersection points are very close across 

models. Hence, the displacement of the external load corresponding to this path in the force-length 

plane is achievable by both types of muscle models. This can be done with realistic changes in the 

centrally specified control variable, namely the multiplying factor Ac for Hill-type models and the 

threshold length λ for the λ model, in a way that generates similar movement patterns both in terms of 

displacement and muscle force. 

--------------------- (Figure 3 around here) ------------------------ 

Summary 

In Hill-type models, the force is directly controlled with a control variable that scales the reference 

curve (Figure 1), and the stiffness is linearly related to the control variable. In the λ model, the control 

variable λ specifies the force-length characteristic (Figure 2). As a result, muscle force and muscle 

stiffness are under the combined influence of the control variable, the muscle length, and the rate of 

change in muscle length. In both kinds of models, the active force-length characteristic is combined in 

an additive way with the passive force length characteristic of muscle tissues, and the sliding-filament 

theory is accounted for with a non-linear function describing the relationship between force and 

muscle--change rate. 

Hence, the principles underlying the choice of the control variables and the way muscle force and 

muscle stiffness are controlled are clearly different in these two models. The mechanical 

characteristics are based on two different kinds of experimental data. The comparison of their 

respective static force-length characteristics, as shown by their superimposition in Figure 3, does not 
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show large differences in the range of force levels (moderate) and muscle length (somewhat smaller 

than the rest length) commonly used in speech production. This observation suggests that their 

respective mechanical impacts on tongue, lip and velum shapes and positions should not be very 

different. 

Finite Element Modeling of the λλλλ Model: Distributed Lambda Model 
(DLM) 

The finite element method requires a discretization of the soft body in a number of small elements. 

Hence, formulating the λ model in such a modeling framework necessitates moving from the lumped 

original description of the model (equation [5] and Appendix 3, Equation [9]) to a “distributed 

description” in the direction of the muscle fibers. In a distributed model, all lumped quantities of the 

physical object are replaced with distributed representations:  

- The force term is replaced with the Cauchy stress σ, which is the limiting value of the ratio of 

the force ∆F along the muscle-fiber direction to the cross-sectional area ∆A of the muscle (σ= 

lim(∆F⁄∆A) ∆A→ 0 ). 

- Length is replaced with the stretch ratio value, which is the ratio of the current muscle length to 

its initial length (SR=l/l0).  

Starting from equation (5), the active Cauchy stress becomes: 

σactive_Feldman=σmax (Apcsa/A)(exp([SR(t-td)-SRthreshold+µ ��� (t-td)]
+  (l0/lc))-1)   (6) 

 

In this relationship σmax=Fmax/Apcsa, where Apcsa is the physical cross-sectional area of the muscle, and 

σmax is the maximum stress generated by the muscle. The threshold length λ* is replaced with the 

threshold stretch ratio (SRthreshold= λ* /l0) and the velocity term becomes the strain rate ��	� (��� =v/l0).  

With this new expression some parameters of the original λ model take on new meanings. For 

example, the ratio l0/lc shows how long the resting length l0 is in comparison to the characteristic 

length lc. According to equation (5), the lc value influences the derivative of the invariant 
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characteristics: the smaller the lc value, the stronger the derivative of the invariant characteristics. The 

derivative of the invariant characteristics corresponds to the stiffness of the active part of the muscle 

in the muscle-fiber direction due to the stretch reflex mechanism, when the muscle is stretched above 

the threshold length λ. Therefore, the ratio l0/lc can be physically interpreted as follows: the longer the 

resting length in comparison to the characteristic length, the stronger the stiffness of the stretch reflex, 

and the faster the attraction movement toward the equilibrium position determined by the resting 

length.  

In the proposed three-dimensional (3D) distributed lambda (λ) model (DLM), a muscle is represented 

with a set of volumetric elements in which muscle fibers are embedded in a matrix of surrounding 

passive tissues. These surrounding passive tissues are modeled with hyperelastic materials in 

agreement with previous approaches (Wilhelms-Tricarico, 1995; Gerard, Ohayon, Luboz, Perrier & 

Payan, 2005). In line with our previous work (Nazari, Perrier, Chabanas & Payan, 2010; Buchaillard 

et al. 2009) a simplified, five-parameter Mooney-Rivlin model is used for such passive tissues. The 

muscle fiber/soft tissue matrix interaction is modeled with a hyperelastic transversely isotropic 

material (Weiss et al. 1996). In this matrix, a specific passive property is modeled along the direction 

of the muscle fibers, to take into account the passive properties of the fibers themselves (McMahon, 

1984), while the properties of the surrounding passive tissues are modeled in the directions orthogonal 

to the fibers. The equation for the specific passive property along the fibers is taken from Blemker et 

al. (2005). Interaction between the muscle fibers and the soft tissue matrix is taken into account by 

considering the shear terms to strain energy as proposed by Criscione, Douglas & Hunter (2001). 

In the literature, the characteristic length lc, in the form of the c parameter of the original formulation 

of the λ model (c=1/lc) varies between 9 mm (Laboissière,  Ostry & Feldman, 1996) and 25 mm 

(Buchaillard et al., 2009). In our model, we used Buchaillard et al.’s (2009) value. 

This framework was implemented as a user-defined, 3D element in ANSYS® mechanical software. 

Further details about the mathematical formulation of the DLM and its formulation can be found in 

Nazari (2011). 
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RESULTS 
  

The results are organized into two main parts. In the first part, the ability of the DLM to account for 

the main features of the original λ model is assessed. These main features are:  

1) The shape of the invariant characteristics: for the assessment of the DLM, the force-length 

relationships were measured, with and without the passive contribution, and they were 

compared to the original invariant characteristics.  

2) The ability of the λ model to account for the activation of isometric and isotonic agonist and 

antagonist muscles: to assess the DLM, a model including agonist-antagonist muscle pairs 

was designed, with which agonist-antagonist co-activation without movement (isometric), and 

movement with a constant agonist-antagonist global force level were simulated. 

In the second part, the DLM and a Hill-type muscle model were integrated into a sophisticated, 3D 

biomechanical model of the face (Nazari et al., 2010; Nazari, Perrier, Chabanas & Payan, 2011). A 

preliminary comparison of these muscle models was carried out by simulating lip protrusion gestures, 

similar to those used in the production of rounded vowels, such as /u/ or /y/. This gesture was selected 

because it corresponds to a quite complex shaping of the lips in which mechanical soft tissue 

properties play an important role (Nazari et al., 2011). The characteristics of the simulated movements 

obtained with these two models were compared in terms of stress, strain, and energy. 

Assessment of the DLM 
 

Force-length curves: Comparison with original invariant characteristics. 

To measure the force-length relationships of the DLM, the following method was used. A simple 

fixed-end bar (with an arbitrary resting length equal to 0.1m) was designed as a series of DLM muscle 

elements. These elements all generated a force along the same direction, namely the main axis of the 

bar (Figure 4). An external force was applied to the free extremity of the bar along the direction of the 

fibers; when all the muscle elements were activated according to a given λ value, the corresponding 
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displacement of the free extremity was measured. Figure 4 illustrates an example of this. The left 

panel shows the bar at rest, and the right panel shows the lengthening of the bar under the influence of 

the external force. 

--------------------- (Figure 4 around here) ------------------------ 

 By varying the amplitude of the external force within a sufficiently large range it was possible to plot 

the force-length curve corresponding to the selected λ value. Different values of λ were considered in 

order to cover a sufficiently large range of muscle activations, and the force-length curve was 

determined for each of them.  

For a given external force and a given λ value, the displacement was influenced by the passive 

properties of the DLM along the direction of the external force, which in this specific example was 

also the direction of the fibers. These passive properties were characterized by the global passive 

force-length relationship of the muscle along the fibers’ direction, which is shown in Figure 5a (dotted 

curve). They resulted from the combined influences of the passive property of the tissues along the 

muscle fiber direction (Figure 5b, dotted curve) and of the passive force–length relationship of the 

surrounding tissues (Figure 5c, dotted curve). To be able to evaluate the respective importance of 

these passive properties and their combination, these passive force-length curves were depicted 

together with an example of theoretical invariant characteristic in the λ model. It can be seen that the 

passive influences are not negligible. 

--------------------- (Figure 5 around here) ------------------------ 

In Figure 6a an active force-length curve generated with the DLM without the effect of passive 

properties (dotted curve) was plotted for a given λ value, together with the corresponding theoretical 

invariant characteristic (equation [5]) in the λ model (solid line). This shows a good match between 

the numerical formulation and the original λ model. In Figure 6b the effect of total muscle force 

including the passive properties (Figure 5a) is shown for the DLM. It can be observed that with the 

inclusion of the passive properties the muscle starting length was slightly shifted to the right, which 
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corresponds to an increase of the actual threshold length, λ*, as compared to the centrally specified 

control variable λ. This passive influence comes in combination with the effect of the proprioceptive 

feedback, the inter-muscular interaction, and the cutaneous feedback (Appendix 2, equation [8]).  

The effect of the passive properties is shown for various values of λ in Figure 7. When the λ value 

increases above the bar length at rest (r=0.1m), the effect of the passive properties on active force-

length curve becomes more important.  

--------------------- (Figure 6 around here) ------------------------ 

 

--------------------- (Figure 7 around here) ------------------------ 

Isometric force variations and isotonic displacements  

An important and well-known characteristic of the λ model is its capacity to generate, with an 

agonist-antagonist muscle pair, isometric force changes (i.e., a change in force in the absence of 

movement) or isotonic displacements (i.e., displacements without any change in the global amount of 

force produced in the agonist-antagonist pair). Isometric force variation is obtained with the co-

activation of the two muscles, (i.e., the coordinated changes of the λ commands in the same 

direction). Isotonic displacement is obtained by a reciprocal change in the λ commands to the two 

muscles. In this section, the DLM is evaluated along these lines.  

We aimed to build a model in which the interaction between muscles within an agonist-antagonist pair 

could be investigated. Two muscles with the same length at rest (0.1m) were attached together at one 

extremity, while their other ends were fixed (Figure 8). The λ value was set to 0.08m for one muscle 

(agonist) and to 0.09m for the other muscle (antagonist). Since the two muscles had identical 

properties, the theoretical invariant characteristics predicted a displacement of 0.005m in the direction 

of the muscle controlled by the smaller λ value. In our simulations, with the force-length relationship 

represented in Figure 6a (i.e., without passive influences), a displacement was generated, as expected, 
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toward the agonist muscle, but the amplitude was equal to 0.0047m. This amplitude difference arose 

from the finite element discretization. Indeed, with an increased mesh density (five times larger), the 

displacement amplitude became 0.0049 m, which is closer to the expected value.  

These results were different when the global passive properties (including fibers and surrounding 

tissues, Figure 5a) were taken into account (see Figure 6b). Indeed, the reached equilibrium position 

corresponded to a displacement of the attachment point equal to 0.0044 m for the low density mesh. 

This is in line with the observations presented in Figure 6b, since the increase of λ* due to the 

inclusion of passive properties induces a decrease of the level of force. 

--------------------- (Figure 8 around here) ------------------------ 

Once the model reached the equilibrium position, the λ values of both muscles were modified in the 

same way, to simulate agonist-antagonist co-activation. Table 1 shows the position of the attachment 

point associated with variations in λ values. The more the λ values decreased, the more the global 

force in the muscle pairs increased. The position of the attachment point stayed essentially constant, 

with a maximum variation of 0.0001m, which is around 2% of the global displacement from the 

position at rest. This corresponds well with an isometric agonist-antagonist co-activation.  

Starting from the same initial equilibrium position (0.0044m from the position at rest) the λ value of 

the agonist muscle decreased, while the λ value of the antagonist muscle increased by an equal 

amount. This was done in 10 successive steps with a maximum λ shift of 0.005m. Table 2 

summarizes the results of the corresponding simulations. Each change in the λ values generated a 

change in the equilibrium position, and the final distance of the attachment point with respect to the 

rest position was nearly twice as large as in the initial equilibrium position (2 × 0.0044=0.0088m). 

During this displacement, the global force level remained essentially constant, with a maximum 

variation of 0.16N, which is less than 1%. This result agreed quite well with the characteristics of an 

isotonic displacement controlled by an agonist-antagonist muscle pair.  

--------------------- (Table 1 around here) ------------------------ 
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--------------------- (Table 2 around here) ------------------------ 

In sum, the behavior of the DLM is in very good agreement with the theoretical behavior specified by 

the original λ model. 

Application of the DLM in a biomechanical face model to produce lip 
protrusion  

 

Hill-type models and the λ model differ in two basic features. First, the nature of the control variable 

is different. Hill-type models control the force directly, while the λ model controls the threshold 

muscle length that determines the relation between force and length. Second, the experimental 

foundation of the active force-length curve is different. In the Hill-type models it is based on 

measurements of isometric maximal voluntary force for various muscle lengths. In the λ model it is 

based on experimental measurements of force and length variations in unloading tasks for various 

levels of activation. Evaluating the consequences of the nature of the control variable is beyond the 

scope of the current study. In previous papers, we have shown why we consider the λ model to be 

useful in the context of speech motor control (Perrier et al., 1996a; Perrier et al., 1996b; Payan & 

Perrier, 1997; Buchaillard et al., 2009). Building realistic biomechanical muscle models will be part 

of our methodology to further address this issue in the future.  

In the current study, we aimed to provide a first quantitative comparison of the mechanical behavior 

of the two muscle models. To do so, we implemented the DLM and a Hill-type model in a 

sophisticated biomechanical finite element model of the face (Nazari et al., 2010) (Figure 9a). The 

implementation of the Hill-type model was based on Blemker et al.’s (2005) formulation. In line with 

our preceding work (Nazari et al., 2011) we studied more specifically the consequences of the 

orbicularis oris peripheralis muscle (Figure 9b) on the lip protrusion gesture, which is crucial in the 

production of rounded vowels. This gesture is particularly interesting in the context of this 

comparison, since it involves a complex behavior of muscle tissue acting as a sphincter while 

generating a forward movement. It has been shown (e.g., Kim & Gomi, 2007; Nazari et al., 2011) that 
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the correct achievement of this gesture is highly dependent on the stiffness properties of the muscle 

tissue. 

--------------------- (Figure 9 around here) ------------------------ 

The values of the control variables were carefully selected, in order for the face model to reach very 

similar final lip shapes for both muscle models. The obtained lip shapes were realistic and correspond 

well to the shapes that were experimentally observed in human subjects when lips were protruded. 

The simulated lip shapes are plotted in Figure 10 (both muscle models provided the same shape). 

--------------------- (Figure 10 around here) ------------------------ 

Our mechanical evaluation of the results was based on the computation of the 3D von Mises stresses 

and strains, which provide information about the global amount of stress and strain in the 3D soft 

body. The relation between these stresses and strains provides information about the required energy 

to shape the 3D soft body: for a given strain, the higher the von Mises stress, the higher the energy. 

These mechanical variables were measured for all muscle activation levels in the final shape. The 

measurements were collected on three nodes of the face mesh, namely the lip corner, the central node 

of the upper lip, and the central node of the lower lip. These three points are classically considered to 

assess lip shaping (Abry & Boë, 1986). 

The time patterns of stress and strain behavior and the stress-strain curves are shown in Figures 11 

and 12 for the three nodes and for different levels of muscle activation. Some small differences can be 

observed between the muscle models. For the Hill-type model, the stress and strain tended to vary 

more quickly at the beginning of the movement and slow down at the end of the movement (Figures 

11 and 12, the two upper panels). This aspect was stronger for low activation (Figure 11) than for high 

activation (Figure 12). This is consistent with the fact that for the Hill-type model, the control 

variables act directly on the force level. Consequently these differences in timing do not seem to be 

primarily related to the specific biomechanical properties of the muscle models. Looking at the 

relation between stress and strain (lower panels), there was no clear difference between the two 

models. The curves were very similar, which suggests that the mechanical behaviors of the two 
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models were very close, in terms of deformation of the lips and displacement of the selected nodes, as 

well as in terms of the energy required to generate the movement. 

--------------------- (Figure 11 around here) ------------------------ 

--------------------- (Figure 12 around here) ------------------------ 

DISCUSSION 
 

Different muscle models have been proposed to study the complex control mechanisms of muscle 

mechanics by the CNS. The models all aimed to implement and/or explain the state of the muscle in 

response to CNS commands under the influence of external physical factors. In all the early models, 

for the sake of simplicity in calculations, a muscle was modeled as a one-dimensional (1D) actuator, 

generating active force, connected in parallel and in series with some springs and dashpots to simulate 

passive physical influences. With the development of fast computers and powerful numerical 

methods, it has become possible to design more sophisticated models with 3D details. All those 

general, 1D muscle models could be reformulated and fine-tuned to match the new demands of more 

realism in physical descriptions. In doing so, some parameters in 1D models would get new meaning. 

At the same time, it would shed light on some details that may have been neglected due to 

oversimplification.  

Currently, the 3D extension of Hill-type models is a well-developed subject in the field of 

biomechanics. This is not the case for the λ model, where the design of improved numerical 

descriptions of this model is required for its correct assessment in the context of debates about the 

Equilibrium Point Hypothesis. Our main goal in the present study was to fill this void and develop an 

extension of the λ model to meet these new needs. To do so, it was necessary to elaborate a new 

description of the model as a distributed version, which we called the Distributed Lambda Model or 

DLM. The DLM has given more physical meaning to some parameters of the λ model. It has helped 

to extract these parameters from a microscopic view and from experiments done at microscopic 

scales. It has also provided ideas for the design of potential new experiments to characterize these 
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parameters. The main advantage of this modeling approach is the use of the λ model in powerful 3D 

numerical models such as the finite element method.  

The DLM was shown to provide a very good account of the main properties of the λ model. In the 

absence of passive influences, the static force-length relations along the fiber direction, obtained for 

various values of the control variables, were in very good agreement with the original invariant 

characteristics proposed by Feldman (1986). It was possible to simulate, with a very good precision, 

isometric force changes and isotonic position changes. In addition, the DLM has allowed the 

quantitative study of the effect of muscle passive properties on the force-length characteristic along 

the fiber direction via their impact on the actual threshold length λ* (Figure 6b). When muscle 

contracts (i.e., when its length becomes smaller than its resting length), passive tissue properties cause 

a small increase in threshold length: the force generated for a given muscle length is somewhat 

smaller than the force predicted by the invariant characteristics. In muscle extension, when the length 

is larger than the resting length, this effect becomes rapidly prominent and it decreases the threshold 

length considerably. In the context of speech production, when muscles are active they generally 

contract. If they become elongated and active, their length stays quite close to their resting length. 

Hence, in speech production the impact of passive tissue properties on force-length relationships 

appears to be limited. Therefore the approximation of the force-length relations with equations (5) and 

(8) (Appendix 2) appears to be accurate. For other motor tasks, the effect of passive tissue properties 

should be considered with care in the range of movements involving muscle length beyond resting 

length.  

We also provided a first biomechanical quantitative comparison of Hill-type models and the λ model. 

It suggested that in the range of voluntary movements used in speech production, in which muscles 

act mainly in contraction, there is not much difference between these two approaches in terms of 

stress, strain, and energy. Since we have shown that these differences are negligible, the use of the λ 

model in speech production appears to be perfectly justified from a biomechanical point of view as an 

alternative model to the Hill-type models. For motor tasks, in which muscles are likely to work in 
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elongation, the Hill-type models give a better account of the trend for the muscle force to saturate 

above a certain level of elongation. Hence, combining the biomechanical properties of the λ model for 

contraction or small elongation with those of Hill-type models for significant elongation could be a 

powerful way to model muscle mechanical behaviors for a large range of movements. Proposals for 

Hill-type models and adjustable starting length muscle models along these lines have been made in 

the past by Winters (1990) and Shapiro & Kenyon (2000). 

CONCLUSION 
We have elaborated a distributed version of Feldman’s λ model of muscle mechanics and its control. 

This model, the DLM, proved to behave in good agreement with the experimental data provided by 

Feldman (1986), while realistically integrating the influence of the passive properties of muscles and 

their surrounding tissues. The integration of both a Hill-type model and the λ model in a 3D 

biomechanical face model provided a useful basis for studying the impact of muscle mechanics on 

speech facial gestures. Our preliminary results suggest that there are only few, small differences in 

normal speech articulatory movements, such as protrusion or rounding, between these two models. 

The DLM opens the way to further speech production studies that associate simulation work and 

experimental studies, to provide quantitative evaluations of motor control hypotheses related to the 

nature of control variables (e.g., force, stiffness, or starting length), their specification from the 

definition of the motor task (e.g., with/without internal models), and their variations in time during the 

production of speech sequences.  
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APPENDIX 1 

Adjustable stiffness muscle models 

According to Equation 3, since the three functions, Fv(v), FL(l) and fac(Ac,t), are supposed to be 

independent, the stiffness (i.e., the length derivative of the force) is expressed as:	 

����

�	
=	��
�� × ���
�� , �� ×

���
	�

�	
  (7) 

Thus, for given mechanical properties of the muscle (i.e., for given functions Fv(v) and FL(l)), change 

in muscle activation directly results in change in stiffness. This multiplicative account of the 

contractile force is called adjustable-stiffness (Shadmehr & Arbib, 1992): the contractile element is 

assumed to behave like a nonlinear spring whose stiffness varies with muscle activation, velocity and 

time. Under isometric condition, (i.e., when v is equal to zero; muscle length does not change during 

contraction), the stiffness varies linearly with fac. 

APPENDIX 2 

Starting muscle length in the λλλλ model 

In successive versions of the λ model (Feldman & Levin, 1995; St-Onge et al., 1997), inter-muscular 

interaction resulting in activation or inhibition of interneurons was taken into account functionally via 

a ρ parameter that modifies the λ value into a λ* value (see Equation 8). Very recently (Pilon et al., 

2007) the cutaneous feedback, which acts in addition to the feedback arising from muscle spindles 

and/or Golgi tendons, was also integrated into the ρ parameter. Pilon et al. (2007) also propose 

another shift (noted ε(t) in Equation 7) due to history-dependent changes in intrinsic properties of the 

motor neurons. Under the combination of these effects, the actual starting length ( λ’ ), which 

determines the force level for a given value of the centrally specified control variable λ, is given by: 

λ
' =λ-ρ+ε(t)   (8) 
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APPENDIX 3 

The sliding filament theory in the λλλλ model 

In order to account for the sliding filament theory (Huxley, 1957) the force described by the invariant 

characteristic curves was also scaled multiplicatively by Hill’s (1938) hyperbolic force-velocity term 

(Laboissière et al., 1996; Payan & Perrier, 1997, St-Onge et al., 1997) whose values vary between 0 

and 1 (see Equation 4). This term increases the damping characteristic of the model. The new 

equation below gives the final expression of the muscle force, including all the different contributions: 

F=Fpassive+Factive_Feldman* (f1+f2tan-1(f3+f4v/l0)+f5v/l0)   (9) 

where l0 is the resting length i.e. the length at which the muscle can generate its maximum voluntary 

force, and f1 to f5 are constants used to fit the force-velocity characteristic of the muscle. Note that the 

velocity used in hyperbolic term is the current value of the velocity and not a delayed one as in 

Equation 5. Indeed, according to the sliding filament theory, this hyperbolic force-velocity term does 

not correspond to a feedback contribution, but to the direct impact of velocity on the mechanical 

properties of the actin-myosin bridges. 
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Tables 

Table 1. Isometric agonist-antagonist co-activation in the model of Figure 8 

Displacement (m) Force (N) 

Lambda Threshold 

(Agonist) (m) 

Lambda Threshold 

Antagonist (m) 

-0.0044 17.70 0.08 0.09 

-0.0044 18.47 0.0795 0.0895 

-0.0044 19.26 0.079 0.089 

-0.0044 20.06 0.0785 0.0885 

-0.0044 20.88 0.078 0.088 

-0.00444 21.71 0.0775 0.0875 

-0.0044 22.56 0.077 0.087 

-0.0045 23.43 0.0765 0.0865 

-0.0045 24.31 0.076 0.086 

-0.0045 25.20 0.0755 0.0855 

-0.0045 26.12 0.075 0.085 
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Table 2. Isotonic agonist-antagonist displacement in the model of Figure 8 

Displacement (m) Force (N) 

Lambda Threshold 

(Agonist) (m) 

Lambda Threshold 

Antagonist (m) 

-0.0044 17.70 0.08 0.09 

-0.0049 17.71 0.0795 0.0905 

-0.0053 17.73 0.079 0.091 

-0.0057 17.74 0.0785 0.0915 

-0.0062 17.76 0.078 0.092 

-0.0066 17.77 0.0775 0.0925 

-0.0070 17.79 0.077 0.093 

-0.0074 17.81 0.0765 0.0935 

-0.0079 17.82 0.076 0.094 

-0.0083 17.84 0.0755 0.0945 

-0.0088 17.86 0.075 0.095 
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FIGURES CAPTIONS 

 

Figure 1. Force-length relations in Hill-type muscle models: Changes in activation levels are 

associated with a group of contractile force curves (dotted curves); the addition of passive 

properties (dashed curve) provides the global force-length curves (solid curves) 

Figure 2. Invariant characteristics (ICs) as defined in the λ λ λ λ model (Feldman, 1986) at zero 

velocity: the dashed curves depict the passive force-length relations; the solid curves depict the 

global force-length relations after addition of the active parts (dotted curves) to the passive 

characteristics. 

Figure 3 Comparison between the λλλλ model and a Hill-type model: the bold solid path shows an 

example of force and length variations associated with a voluntary concentric contraction of the 

muscle (muscle length decreases) caused by changes in motor commands. 

Figure 4. Experimental procedure for the measurement of the force-length relationship in the 

DLM: An external force is applied to a fixed-end muscle bar at rest and for a given λλλλ value 

(Panel a) and the displacement of the free extremity of the bar is measured after a new 

equilibrium position has been reached (Panel b). 

Figure 5. Force-length relations in the DLM: Influence of the passive tissues. For matter of 

comparison, the solid line curve shows an example of invariant characteristics in the original 

λ λ λ λ model: (a) Total passive force-length relation along the fibers (dotted curve). (b) Passive force-

length relation due to fibers properties. (c) Passive force-length relation due to the properties of 

surrounding tissues, which corresponds to a simplified Mooney-Rivlin hyperelastic constitutive 

law. 

Figure 6. Force-length relations in the DLM - Global assessment: (a) For same λλλλ value, 

comparison of an example of force-length curve in the DLM (dotted curve) in the absence of 

passive influences, and of the force-length curve of the original λλλλ model (described in Equation 
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5) (solid curve). (b) Global force-length curve (dotted lines) including the influence of passive 

components compared to the force-length curve of the original λλλλ model (solid curve). 

Figure 7. Global force-length curves in the DLM for various λλλλ values (dotted) as compared to 

the corresponding ICs in the original λλλλ model. The effect of passive properties tends to increase 

when λλλλ increases, especially when λλλλ becomes larger than the length at rest (0.1 m). 

Figure 8. Modeling of an agonist-antagonist muscle pair. 

Figure 9. (a) Biomechanical face model. (b) Implementation of the orbicularis oris peripheralis 

(OOP) muscle. 

Figure 10. Example of the shape of the face reached under the activation of the OOP for both 

muscle models. 

Figure 11. Comparison between a Hill-type model and the λλλλ model for low levels of activation: 

equivalent stress-strain curves for three selected points on the lips: lip corner, middle point 

lower lip, and middle point of the upper lip (low activation). 

Figure 12. Comparison between a Hill-type model and the λλλλ model for high levels of activation: 

equivalent stress-strain curves for three selected points on the lips: lip corner, middle point 

lower lip, and middle point of the upper lip. 
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Figures 

 

Figure 1. Force-length relations in Hill-type muscle models: Changes in activation levels are 

associated with a group of contractile force curves (dotted curves); the addition of passive 

properties (dashed curve) provides the global force-length curves (solid curves) 
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Figure 2. Invariant characteristics (ICs) as defined in the λ λ λ λ model (Feldman, 1986) at constant 

velocity: the dashed curves depict the passive force-length relations; the solid curves depict the 

global force-length relations after addition of the active parts (dotted curves) to the passive 

characteristics. 
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Figure 3 Comparison between the λλλλ model and a Hill-type model: the bold solid path shows an 

example of force and length variations associated with a voluntary concentric contraction of the 

muscle (muscle length decreases) caused by changes in motor commands. 
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(a) (b) 

 

Figure 4. Experimental procedure for the measurement of the force-length relationship in the 

DLM: An external force is applied to a fixed-end muscle bar at rest and for a given λλλλ value 

(Panel a) and the displacement of the free extremity of the bar is measured after a new 

equilibrium position has been reached (Panel b). 
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(a) 

(b) (c) 

Figure 5. Force-length relations in the DLM: Influence of the passive tissues. For matter of 

comparison, the solid line curve shows an example of invariant characteristics in the original 

λ λ λ λ model: (a) Total passive force-length relation along the fibers (dotted curve). (b) Passive force-

length relation due to fibers properties. (c) Passive force-length relation due to the properties of 

surrounding tissues, which corresponds to a simplified Mooney-Rivlin hyperelastic constitutive 

law. 
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(a) (b) 

Figure 6. Force-length relations in the DLM - Global assessment: (a) For same λλλλ value, 

comparison of an example of force-length curve in the DLM (dotted curve) in the absence of 

passive influences, and of the force-length curve of the original λλλλ model (described in Equation 

5) (solid curve). (b) Global force-length curve (dotted lines) including the influence of passive 

components compared to the force-length curve of the original λλλλ model (solid curve). 
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Figure 7. Global force-length curves in the DLM for various λλλλ values (dotted) as compared to 

the corresponding ICs in the original λλλλ model. The effect of passive properties tends to increase 

when λλλλ increases, especially when λλλλ becomes larger than the length at rest (0.1 m). 
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Figure 8. Modeling of an agonist-antagonist muscle pair. 
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(a) (b) 

 

Figure 9. (a) Biomechanical face model. (b) Implementation of the orbicularis oris peripheralis 

(OOP) muscle. 
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Figure 10. Example of the shape of the face reached under the activation of the OOP for both 

muscle models. 
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Figure 11. Comparison between a Hill-type model and the λλλλ model for low levels of activation: 

equivalent stress-strain curves for three selected points on the lips: lip corner, middle point 

lower lip, and middle point of the upper lip (low activation). 
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Figure 12. Comparison between a Hill-type model and the λλλλ model for high levels of activation: 

equivalent stress-strain curves for three selected points on the lips: lip corner, middle point 

lower lip, and middle point of the upper lip. 

 


