RESEARCH COMMUNICATION

Tetrahydrobiopterin-dependent formation of endothelium-derived relaxing factor (nitric oxide) in aortic endothelial cells

Kurt SCHMIDT,*‡ Ernst R. WERNER,† Bernd MAYER,* Helmut WACHTER† and Walter R. KUKOVETZ* *Institut für Pharmakodynamik und Toxikologie, Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria, and †Medizinische Chemie und Biochemie, Universität Innsbruck, Innsbruck, Austria

Inhibition of tetrahydrobiopterin (H₄biopterin) biosynthesis in endothelial cells almost completely abolished the agonistinduced formation of endothelium-derived relaxing factor (EDRF) (NO). This inhibitory effect could be antagonized when H₄biopterin biosynthesis was restored by activating a salvage pathway. These data indicate that the formation of EDRF strictly depends on the presence of intracellular H₄biopterin, which, in addition to Ca²⁺, may represent a further physiological and/or pathophysiological regulatory of endothelial NO syntheses.

INTRODUCTION

Endothelial cells stimulated with hormones or neurotransmitters release L-arginine-derived nitric oxide (NO) or a labile NO-containing compound (endothelium-derived relaxing factor. EDRF), which causes smooth-muscle relaxation via activation of soluble guanvlate cyclase [1,2]. In mammalian tissues there are at least three isoforms of NO-generating enzymes present, all of which catalyse the conversion of L-arginine into Lcitrulline and NO, but differ in the mechanisms of their regulation. Endothelial cells contain cytosolic- and membraneassociated forms of NO synthases which are both regulated by intracellular levels of free Ca2+ and are dependent on calmodulin [3-5]. NO synthases similar to the cytosolic endothelial enzyme are apparently present in brain [6], lung [7], adrenal gland [8] and platelets [9], and were isolated from rat and porcine cerebellum [10,11]. In addition to these constitutively expressed, Ca²⁺regulated enzymes ('brain-type'), there is a Ca²⁺-independent NO synthase present in activated murine macrophages [12], and tetrahydrobiopterin (H₄biopterin) was identified as a cofactor of this enzyme [13,14]. The cofactor role of H₄biopterin in Ca²⁺independent NO synthesis was also demonstrated in intact cells using cultured murine fibroblasts, where a marked decrease in the cytokine-induced release of $\mathrm{NO_2^-}/\mathrm{NO_3^-}$ was observed after inhibition of H₄biopterin biosynthesis [15].

The H₄biopterin-dependency of the 'brain-type' enzyme, however, is still a matter of debate. In some studies it was found that H₄biopterin shows no stimulatory effect on Ca²⁺/calmodulindependent NO synthase activities [10,16,17], and the authors concluded, therefore, that NADPH represents the sole cofactor of the Ca²⁺-regulated enzyme. In contrast with these reports, others observed an enhanced NO formation by the endothelial enzymes when H₄biopterin was present [5,18], and we found a pronounced stimulation of the isolated brain enzyme by H₄biopterin [11]. These discrepancies may be explained by our recent finding that some amounts of H₄biopterin remain bound to NO synthase in the course of protein purification [19]. Thus a lack of stimulatory effects of exogenously added H₄biopterin does not necessarily reflect a lack of H₄biopterin requirement of NO synthase, since the amount of the enzyme-bound cofactor may depend on the applied homogenization and/or purification procedures.

In the present study we investigated whether the synthesis of EDRF by hormonally stimulated porcine aortic endothelial cells depends on the presence of intracellular H₄biopterin. For these experiments, endothelial cells were preincubated with 2,4diamino-6-hydroxypyrimidine (DAHP), a compound which reduces intracellular H₄biopterin levels by inhibiting GTP cyclohydrolase I, the rate-limiting enzyme in H₄ biopterin biosynthesis [20] and/or sepiapterin, a pteridine which permits H₄biopterin biosynthesis via a salvage pathway [21]. Our data demonstrate that the formation of EDRF depends strictly on the presence of intracellular H, biopterin and suggest that H, biopterin represents a cofactor of endothelial NO synthase(s). Accordingly, EDRF formation and, therefore, vascular-smooth-muscle guanyl cyclase activities, may be affected or modulated by physiological and/or pathophysiological processes associated with the endothelial biosynthesis or the metabolism of reduced biopterins.

MATERIALS AND METHODS

Materials

All tissue-culture media and ingredients were from Flow Laboratories, Meckenheim, Germany, or from GIBCO/BRL G.m.b.H., Eggenstein, Germany. Tissue-culture plates and Petri dishes were obtained from Greiner, Kremsmünster, Austria. DAHP was purchased from Sigma Chemical Co., Munich, Germany, and sepiapterin was from Dr. B. Schircks Laboratories, Jona, Switzerland.

Cell culture

Porcine aortic endothelial cells were isolated by enzymic treatment (0.1 % collagenase) and cultured up to two passages in Opti-MEM (GIBCO/BRL) containing 3 % (v/v) foetal-calf serum and antibiotics as previously described [22]. The identity of the endothelial cells was verified by immunofluorescence (Factor VIII antigen). Before the experiments, endothelial cells were subcultured in six-well plastic plates. After reaching confluence (~ 10⁶ cells/dish) the culture medium was removed and Dulbecco's modified Eagle medium (Flow Laboratories) without

Abbreviations used: H₄biopterin, tetrahydrobiopterin; DAHP, 2,4-diamino-6-hydroxypyrimidine; EDRF, endothelium-derived relaxing factor; PBS, phosphate-buffered saline (0.01 M-sodium phosphate/0.15 M-NaCl, pH 7.4); IBMX, isobutylmethylxanthine.

[‡] To whom correspondence should be addressed.

Table 1. Effect of DAHP and sepiapterin (SP) of intracellular H₄biopterin levels and NO biosynthesis

Confluent monolayers of endothelial cells were preincubated for 72 h in the absence or presence of 20 mM-DAHP or/and 0.1 mM-sepiapterin (SP). Cells were washed with PBS and intracellular H₄biopterin was determined as described in the Materials and methods section. Release of NO was measured spectrophotometrically over a period of 10 min under control conditions and after stimulation with 1 μ M-A23187. Data are means ± S.E.M. (n = 6-12). *P < 0.01 versus the respective value obtained with cells without pretreatment.

Pretreatment	II biomanin	NO biosynthesis (pmol/min per 10 ⁶ cells)	
	level (pmol/ 10^6 cells)	Control	A23187
None	0.40 ± 0.01	20.7 ± 1.58	53.8±3.57
DAHP (20 mм)	< 0.05	21.0 ± 1.44	27.1 ± 2.78*
SP (0.1 mм)	$248.2 \pm 10.88*$	19.8±0.79	54.0 ± 2.30
DAHP+SP	$127.6 \pm 6.00*$	21.5 ± 2.20	52.2 ± 1.71

serum was added, and pretreatment of endothelial cells was performed in the absence or presence of DAHP and/or sepiapterin at concentrations as indicated for 72 h.

Measurement of endothelial cyclic GMP levels

Endothelial cells were washed twice with iso-osmotic Hepes buffer, pH 7.1, containing 2.5 mM-CaCl₂ and 1 mM-MgCl₂ and preincubated for 15 min at 37 °C in 1.4 ml of the same buffer containing 1 mM-isobutylmethylxanthine (IBMX) and 1 μ Mindomethacin as previously described [22]. The incubation was started by adding 100 μ l of the compound to be tested and was stopped after 4 min by removal of the incubation medium and addition of 1 ml of 0.01 M-HCl. Within 1 h, intracellular cyclic GMP was completely released into the supernatant and was measured by radioimmunoassay.

Measurement of NO release

NO was determined by a spectrophotometric assay based on the NO-induced conversion of oxyhaemoglobin into methaemoglobin [23]. For these experiments, endothelial cells were washed twice with iso-osmotic Hepes buffer, pH 7.4, containing 2.5 mm-CaCl₂ and 1 mM-MgCl₂, and were equilibrated for 15 min at 37 °C. The supernatant was removed, and 1.8 ml of a solution of 5 μ M-oxyhaemoglobin in the same buffer and 200 μ l of the compound to be tested were added. The six-well plate was shaken for 5 s, and 1 ml of the supernatant was collected to serve as control (= oxyhaemoglobin). The incubation was then performed for 10 min at 37 °C, the supernatant removed and immediately measured against the control spectrum in a diodearray spectrophotometer (Hewlett-Packard, Vienna, Austria). The difference between the absorbances at 402 and 420 nm was recorded and NO concentrations were calculated by using a molar absorption coefficient of 56 mm⁻¹ cm⁻¹ as determined under the conditions used in this study.

Determination of intracellular biopterin

Endothelial cells from three Petri dishes (diameter 90 mm; approx. 2×10^7 cells) were harvested, washed with iso-osmotic buffer, suspended in 700 μ l of distilled water and frozen in liquid N₂. After 1 h, samples were thawed, centrifuged for 2 min at 14000 g and the supernatant split into two 300 μ l portions. As previously described [15], each fraction of the sample was oxidized with 15 μ l of a solution of 0.1 M-KI and 0.1 M-I₂ in the presence of 15 μ l of 0.1 M-HCl or 15 μ l of 0.1 M-NaOH respectively. Samples were incubated at room temperature in the dark for 1 h, mixed with 30 μ l of a freshly prepared solution of ascorbic acid (0.1 M), and centrifuged for 2 min at 14000 g. The supernatant was removed and stored at -20 °C. Before analysis, pteridines were extracted with solid-phase cartridges (SCX; Varian, Palo Alto, CA, U.S.A.) and directly eluted on to a reversed-phase h.p.l.c. column (Lichrosorb RP-18; Merck, Darmstadt, Germany) by means of an automated device (AASP; Varian) as previously described [24]. Biopterin was detected by fluorescence (excitation 353 nm, emission 438 nm), and the amount of tetrahydrobiopterin calculated from the difference between biopterin after oxidation in acidic and alkaline medium respectively [25].

Statistical analysis

All experiments were performed in triplicate with at least two different batches of endothelial cells. Unless otherwise indicated, the results are expressed as means \pm S.E.M. The statistical significances were evaluated by one- or two-way analysis of variance using Scheffe's *F*-test.

RESULTS

Stimulation of endothelial cells with $1 \mu M$ Ca²⁺-ionophore A23187 increased the release of NO from 20.7 to 53.8 pmol/min per 10⁶ cells (Table 1). Inhibition of H₄biopterin biosynthesis by pretreating endothelial cells for 72 h with 20 mm-DAHP antagonized this stimulatory effect. The diminished response of endothelial cells to A23187 correlated with reduced intracellular H₄biopterin levels. Under control conditions, a H₄biopterin level of 0.40 pmol/10⁶ cells was found, whereas DAHP treatment reduced this value to less than the detection limit of $0.05 \text{ pmol}/10^6$ cells. To investigate a possible relationship between intracellular H₄biopterin levels and A23187-induced release of NO, we preincubated endothelial cells with DAHP and sepiapterin. As shown in Table 1, addition of 0.1 mm-sepiapterin and 20 mm-DAHP to the preincubation medium increased the intracellular concentration of H₄biopterin to 127.6 pmol/10⁶ cells and completely restored the response of endothelial cells to A23187. When endothelial cells were preincubated with sepiapterin in the absence of DAHP, H₄biopterin levels were raised to 248.2 pmol/ 10⁶ cells, but no effect of sepiapterin on the release of NO was observed.

Similar results were obtained when the formation of NO was measured as increases in intracellular cyclic GMP levels (Table 2). Under control conditions, maximally active concentrations of bradykinin and A23187 increased cyclic GMP 3.6- and 7.5-fold respectively. Sodium nitroprusside, a direct activator of soluble guanylate cyclase, raised cyclic GMP levels about 14-fold. Preincubation of endothelial cells with DAHP did not significantly affect basal cyclic GMP levels. Addition of 1 μ M-A23187 to DAHP-pretreated cells slightly increased cyclic GMP levels from 0.72 to 1.45 pmol/10⁶ cells, which was less than 25% of the

Table 2. Effect of DAHP and sepiapterin (SP) on intracellular cyclic GMP levels

Confluent monolayers of endothelial cells were preincubated for 72 h in the absence or presence of 20 mm-DAHP or/and 0.1 mm-sepiapterin (SP). Cells were washed with PBS, preincubated for 15 min with 1 mm-IBMX and 1 μ m-indomethacin and stimulated with bradykinin (1 μ m), A23187 (1 μ m) or sodium nitroprusside (1 mm) for 4 min. Intracellular cyclic GMP levels were measured by radioimmunoassay as described in the Materials and methods section. Data are means ± S.E.M. (n = 12). *P < 0.01 versus the respective value obtained with cells without pretreatment.

Pretreatment	Intracellular cyclic GMP level (pmol/10 ⁶ cells)				
	Control	Bradykinin	A23187	Nitroprusside	
None DAHP (20 mм) SP (0.1 mм) DAHP+SP	$\begin{array}{c} 0.96 \pm 0.05 \\ 0.72 \pm 0.08 \\ 1.23 \pm 0.15 \\ 0.97 \pm 0.07 \end{array}$	3.49 ± 0.33 $0.78 \pm 0.09^*$ $4.72 \pm 0.33^*$ 4.28 ± 0.10	$7.18 \pm 1.45 \\ 1.45 \pm 0.10^* \\ 8.61 \pm 0.66 \\ 8.57 \pm 0.66$	$13.64 \pm 0.73 \\13.74 \pm 1.33 \\13.34 \pm 0.82 \\12.88 \pm 1.53$	

Table 3. Effect of increasing concentrations of DAHP on intracellular H₄biopterin and cyclic GMP levels

Confluent monolayers of endothelial cells were preincubated for 72 h in the absence or presence of various concentrations of DAHP. Cells were washed with PBS, and intracellular H₄ biopterin was determined as described in the Materials and methods section. For cyclic GMP measurements, cells were preincubated for 15 min with 1 mM-IBMX and 1 μ M-indomethacin and incubated for 4 min more in the absence or presence of A23187 (1 μ M). Intracellular cyclic GMP levels were measured by radioimmunoassay as described in the Materials and methods section. Data are means ± s.E.M. (n = 3-6). *P < 0.01 versus the respective value obtained with cells without pretreatment.

Pretreatment (тм-DAHP)	H₄biopterin level (pmol/10 ⁶ cells)	Cyclic GMP level (pmol/10 ⁶ cells)	
		Control	A23187
0	0.61 ± 0.03	1.02±0.04	5.00±0.18
0.3	$0.18 \pm 0.01*$	0.90 ± 0.04	4.96±0.18
1	$0.10 \pm 0.01*$	0.78±0.04*	3.11±0.19*
3	< 0.05	0.69±0.05*	2.57±0.10*
10	< 0.05	0.64±0.04*	1.77±0.07*
20	< 0.05	0.71+0.06*	1.47±0.05*

A23187 effect obtained under control conditions. Bradykinin, which produces in cultured endothelial cells a considerably lower NO formation than A23187, completely failed to stimulate cyclic GMP production in DAHP-treated cells. Direct activation of soluble guanylate cyclase by sodium nitroprusside, however, was unaffected by DAHP treatment, which clearly demonstrates that DAHP did not exert its effect via inhibition of guanylate cyclase. Addition of sepiapterin to the preincubation medium completely antagonized the inhibitory effects of DAHP on bradykinin- and A23187-stimulated cyclic GMP production.

In a further set of experiments, endothelial cells were preincubated in the presence of increasing concentrations of DAHP. As Table 3 shows, DAHP at a concentration of 0.3 mM reduced endothelial H₄biopterin levels from 0.61 to 0.18 pmol/10⁶ cells, but did not significantly affect cyclic GMP production. At higher concentrations DAHP further reduced H₄biopterin levels below the detection limit and concomitantly decreased cyclic GMP levels in a concentration-dependent manner with an IC₅₀ (concn. causing 50 % of maximal inhibitory effect) value of about 1 mM.

DISCUSSION

H₄biopterin was found to stimulate cytokine-inducible NO synthase obtained from murine macrophages [13,14] and was recently described as modulating cytokine-induced NO biosynthesis in intact fibroblasts [15]. The possibility of a regulatory role for H₄biopterin in Ca²⁺/calmodulin-dependent NO biosynthesis, however, is still under discussion. Here we demonstrate, using intact endothelial cells, that H₄biopterin is essential for the Ca²⁺-induced formation of NO, which was measured as release of NO from the cells as well as increase in intracellular cyclic GMP levels [22,26].

Inhibition of H_4 biopterin biosynthesis by DAHP [20] not only reduced intracellular H_4 biopterin levels, but also almost completely abolished the effects of bradykinin and A23187 on NO formation. The inhibitory effect of DAHP on intracellular H_4 biopterin levels was directly linked to a diminished NO production, since enhancing H_4 biopterin levels by sepiapterin completely restored the formation of NO. Concentrationresponse studies with DAHP revealed that a reduction of H_4 biopterin levels to less than 30% of the respective control was required to reduce significantly the formation of NO. In contrast with Ca²⁺-stimulated NO formation, basal NO biosynthesis is less sensitive to DAHP inhibition, indicating that the cells can keep basal NO formation with only small amounts of H_4 biopterin.

Our data demonstrate that intracellular concentrations of H₄biopterin modulate the amount of NO formed by endothelial cells. Since a continuous release of endothelial NO is apparently necessary to maintain a lowered blood pressure in vivo [27], our data provide an explanation of the molecular mechanism that may link the observed reduced capacity of H₄biopterin biosynthesis and the increase of blood pressure in spontaneously hypertensive rats [28]. In addition to those observed in neurological disorders, declines in H₄biopterin synthesis or recycling have also been observed to occur, e.g., with age or in metal poisoning [29-32]. Although it remains to be seen to what extent endothelial cells are responsible for and/or afflicted by these declines, our results clearly suggest that alterations in H₄biopterin levels may alter the formation of endothelium-derived NO also in vivo. This offers a rationale for a new approach to therapeutic intervention into EDRF biosynthesis by drugs influencing pteridine metabolism.

This work was supported by grants (P-7290 and P-8231) of the Fonds zur Förderung der Wissenschaftlichen Forschung in Österreich.

The excellent technical assistance of Mrs. M. Rehn is gratefully acknowledged.

REFERENCES

- Moncada, S., Palmer, R. M. J. & Higgs, E. A. (1991) Pharmacol. Rev. 43, 109-142
- 2. Ignarro, L. J. (1991) Biochem. Pharmacol. 41, 485-490
- 3. Mayer, B., Schmidt, K., Humbert, P. & Böhme, E. (1989) Biochem. Biophys. Res. Commun. 164, 678–685
- 4. Busse, R. & Mülsch, A. (1990) FEBS Lett. 265, 133-136
- Förstermann, U., Pollock, J. S., Schmidt, H. H. H. W., Heller, M. & Murad, F. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 1788–1792
- Knowles, R. G., Palacios, M., Palmer, R. M. J. & Moncada, S. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 5159–5162
- 7. Mayer, B. & Böhme, E. (1989) FEBS Lett. 256, 211-214
- Palacios, M., Knowles, R. G., Palmer, R. M. J. & Moncada, S. (1989) Biochem. Biophys. Res. Commun. 165, 802–809
- Radomski, M. W., Palmer, R. M. J. & Moncada, S. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 5193–5197
- Bredt, D. S. & Snyder, S. H. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 682–685
- 11. Mayer, B., John, M. & Böhme, E. (1990) FEBS Lett. 277, 215-219
- Marletta, M. A., Yoon, P. S., Iyengar, R., Leaf, C. D. & Wishnok, J. S. (1988) Biochemistry 27, 8706–8711
- Tayeh, M. A. & Marletta, M. A. (1989) J. Biol. Chem. 264, 19654–19658
- Kwon, N. S., Nathan, C. F. & Stuehr, D. J. (1989) J. Biol. Chem. 264, 20496–20501
- Werner-Felmayer, G., Werner, E. R., Hausen, A., Reibnegger, G. & Wachter, H. (1990) J. Exp. Med. 172, 1599–1607

Received 8 October 1991/6 November 1991; accepted 11 November 1991

1.1

- Knowles, R. G., Palacios, M., Palmer, R. M. J. & Moncada, S. (1990) Biochem. J. 269, 207–210
- Dwyer, M. A., Bredt, D. S. & Snyder, S. H. (1991) Biochem. Biophys. Res. Commun. 176, 1136–1141
- Mülsch, A. & Busse, R. (1991) J. Cardiovasc. Pharmacol. 17 (Suppl. 3), S52–S56
- Mayer, B., John, M., Heinzel, B., Werner, E. R., Wachter, H., Schultz, G. & Böhme, E. (1991) FEBS Lett. 288, 187–191
- Gál, E. M., Nelson, J. M. & Sherman, A. D. (1978) Neurochem. Res. 3, 69–88
- Nichol, C. A., Smith, G. K. & Duch, D. S. (1985) Annu. Rev. Biochem. 54, 729-764
- Schmidt, K., Mayer, B. & Kukovetz, W. R. (1989) Eur. J. Pharmacol. 170, 157–166
- 23. Feelisch, M. & Noack, E. A. (1987) Eur. J. Pharmacol. 139, 19-30
- Werner, E. R., Fuchs, D., Hausen, A., Reibnegger, G. & Wachter, H. (1987) Clin. Chem. 33, 2028–2032
- 25. Fukushima, T. & Nixon, J. C. (1980) Anal. Biochem. 102, 176-188
- 26. Martin, W., White, D. G. & Henderson, A. H. (1988) Br. J. Pharmacol. 93, 229–239
- Rees, D. D., Palmer, R. M. J. & Moncada, S. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 2275–2278
- Abou-Donia, M. M., Daniels, A. J., Nichol, C. A. & Viveros, O. H. (1983) in Chemistry and Biology of Pteridines (Blair, J. A., ed.), pp. 777-785, Walter de Gruyter, Berlin and New York
- Williams, A. C., Levine, R. A., Chase, T. N., Lovenberg, W. & Calne, C. N. (1980) J. Neurol. Neurosurg. Psychiatr. 43, 735-738
- Leeming, R. J. & Blair, J. A. (1980) Clin. Chim. Acta 108, 103-111
 Anderson, J. M., Hamon, C. G. B., Armstrong, R. A. & Blair, J. A. (1986) in Chemistry and Biology of Pteridines (Cooper, B. A. & Whitehead, V. M., eds.), pp. 327-330, Walter de Gruyter, Berlin and New York
- Altman, P., Al-Salihi, F., Butter, K., Cutler, P., Blair, J. A., Leeming, R. J., Cunningham, J. & Marsh, F. (1987) New Engl. J. Med. 317, 80-84