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Abstract
DNA chromosomal DSBs (double-strand breaks) are potentially hazardous DNA lesions, and their
accurate repair is essential for the successful maintenance and propagation of genetic information.
Two major pathways have evolved to repair DSBs: HR (homologous recombination) and NHEJ (non-
homologous end-joining). Depending on the context in which the break is encountered, HR and NHEJ
may either compete or co-operate to fix DSBs in eukaryotic cells. Defects in either pathway are
strongly associated with human disease, including immunodeficiency and cancer predisposition.
Here we review the current knowledge of how NHEJ and HR are controlled in somatic mammalian
cells, and discuss the role of the chromatin context in regulating each pathway. We also review
evidence for both co-operation and competition between the two pathways.
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INTRODUCTION
Chromosomal DSBs (double-strand breaks) can result from either endogenous or exogenous
sources. Naturally occurring DSBs are generated spontaneously during DNA synthesis when
the replication fork encounters a damaged template and during certain specialized cellular
processes, including V(D)J recombination, class-switch recombination at the immunoglobulin
heavy chain (IgH) locus and meiosis. In addition, exposure of cells to ionizing radiation (X-
rays and gamma rays), UV light, topoisomerase poisons or radiomimetic drugs can produce
DSBs and other types of DNA damage [1]. The ends of a DSB may contain additional chemical
modifications, potentially requiring processing prior to the engagement of canonical DSB
repair enzymes.

Failure to repair DSBs, or their misrepair, may result in cell death or chromosomal
rearrangements, including deletions and translocations. This chromosomal instability can
promote carcinogenesis and accelerate aging. Two major pathways have evolved to repair
DSBs and thereby suppress genomic instability. Repair by HR (homologous recombination)
can be error-free, but requires the presence of a homologous template, such as a sister chromatid
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(reviewed in [2,3]). The NHEJ (non-homologous end-joining) pathway joins the two ends of
a DSB through a process largely independent of homology. Depending on the specific
sequences and chemical modifications generated at the DSB, NHEJ may be precise or
mutagenic (reviewed in [4]). Inherited defects in NHEJ account for approx. 15% of human
severe combined immunodeficiency [4], whereas inherited defects in HR contribute to a variety
of human cancers [5] (Table 1).

NON-HOMOLOGOUS END-JOINING
NHEJ is an efficient DSB repair pathway in multicellular eukaryotes such as mice and humans.
NHEJ provides a mechanism for the repair of DSBs throughout the cell cycle, but is of particular
importance during G0-, G1- and early S-phase of mitotic cells [6,7]. Briefly, the Ku70/Ku80
(Ku) protein binds with high affinity to DNA termini in a structure-specific manner and can
promote end alignment of the two DNA ends [8,9]. The DNA-bound Ku heterodimer recruits
DNA-PKcs (DNA-dependent protein kinase catalytic subunit), and activates its kinase function
[10]. Together with the Artemis protein, DNA-PKcs can stimulate processing of the DNA ends
[11]. Finally, the XRCC4 (X-ray repair complementing defective repair in Chinese hamster
cells 4)–DNA ligase IV complex, which does not form a stable complex with DNA but interacts
stably with the Ku–DNA complex, carries out the ligation step to complete repair [12] (Figure
1). A great deal is known about the process of NHEJ; however, due to space constraints we
can only cover a small portion of the relevant literature.

Recognition
NHEJ is initiated by the binding of a heterodimeric complex composed of Ku70 and Ku80 to
both ends of the broken DNA molecule. Ku interacts with many proteins in vitro, including
DNA-PKcs [13] and the XRCC4–DNA ligase IV complex [14]. Association of Ku with DNA
ends may serve as a scaffold for the assembly of the NHEJ synapse. The Ku–DNA complex
recruits DNA-PKcs , a 460 kDa member of the PIKKs (phosphoinositide 3-kinase-like family
of protein kinases) [13]. Ku then moves inward on the DNA, allowing DNA-PKcs to contact
DNA [15]. The association of DNA-PKcs with both DNA and Ku leads to activation of the
serine/threonine kinase activity of DNA-PKcs [10]. Inward translocation of Ku also allows two
DNA-PKcs molecules to interact across the DSB, forming a molecular ‘bridge’ or synapse
between the two DNA ends [16].

In yeast, the MRX (MRE11-RAD50-XRS2) complex participates in both NHEJ and HR, and
is one of the first complexes to interact with a DSB [17]. The orthologous MRN [Mre11–
Rad50–Nbs1 (Nijmegen breakage syndrome 1)] complex in vertebrates has an established role
in HR [18,19]. Recent evidence suggests that mammalian MRN is also involved in NHEJ
[20,20a–20c]. The Rad50 protein contains a high-affinity DNA-binding domain and a two-
cysteine Zn2+ -binding hook that may assist synapsis [21]. In yeast, this is in fact the case, as
DSB ends remain associated after break induction only when the MRX complex is intact
[22,23].

The Mre11 polypeptide exhibits an in vitro nuclease function, cleaning hairpin structures and
3′ single-strand overhangs at the ss (single-stranded)/ds (double-stranded) DNA junction as
well as harbouring a 3′-to-5′ exonuclease activity [24,25]. This nucleolytic function of Mre11
is not essential in yeast, and the major function of the MRX complex in yeast NHEJ appears
to be to tether DNA ends and recruit the ligase complex [24]. Interestingly, the nuclease
function of Mre11 is essential in mammals, perhaps reflecting a critical role in HR [26].
Vertebrate DNA-PKcs may function in parallel with MRN as a DNA end-bridging factor for
NHEJ [16,23]. This partial redundancy may explain why, in yeast, where no orthologues of
DNA-PKcs have been identified, NHEJ is relatively inefficient.
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DNA-PKcs can phosphorylate a number of substrates in vitro, including Ku70, Ku80, XRCC4,
XLF, Artemis and DNA ligase IV [27–31]. However, it is not clear to what extent these
phosphorylation events are required for NHEJ in vivo. Indeed, the best candidate substrate for
DNA-PK is DNA-PKcs itself; a number of autophosphorylation sites in DNA-PKcs have been
identified and in vivo phosphorylation of DNA-PKcs occurs in response to DNA damage
[32–35]. The phosphorylation status of DNA-PKcs is known to influence its conformation and
dynamics, probably serving to relieve the blockage of the ends by DNA-PKcs, thus allowing
further processing of the DNA [36].

Processing
Since DSBs can occur with a variety of different ends, a number of processing enzymes may
be required to repair breaks. Ends must be transformed to 5′-phosphorylated ligatable ends in
order for repair to be completed. One key end-processing enzyme in mammalian NHEJ is
Artemis, a member of the metallo-β-lactamase superfamily of enzymes, which may be recruited
to DSBs through its ability to interact with DNA-PKcs [11,37]. Artemis possesses both a DNA-
PKcs-independent 5′-to-3′ exonuclease activity and a DNA-PKcs-dependent endonuclease
activity towards DNA-containing ds–ssDNA transitions and DNA hairpins, each of which
might be important for processing of DNA termini during NHEJ [11,38]. Inactivation of
Artemis results in radiation sensitivity; however, cells lacking Artemis do not have major
defects in DSB repair, suggesting that only a subset of DNA lesions are repaired in an Artemis-
dependent manner in vivo [39].

Processing of complex lesions might lead to the creation of DNA gaps that must be filled in
by DNA polymerases to enable break repair. The DNA polymerase X family of polymerases,
including polymerase μ, polymerase λ and terminal deoxyribonuc-leotidyltransferase, have
been implicated in fulfilling this role during NHEJ (reviewed in [40]).

Resolution
NHEJ is completed by ligation of the DNA ends, a step that is carried out by X4–L4 (a complex
containing XRCC4, DNA ligase IV and XLF) [12]. XRCC4 has no known enzymatic activity,
but is required for both NHEJ and V(D)J recombination [41]. It forms a homodimer that acts
as a scaffold, interacting with Ku [14] and DNA [42]. The ligase activity of DNA ligase IV is
stimulated by both XRCC4 [43] and XLF [44]. DNA ligase IV can ligate blunt DNA ends as
well as those with compatible overhangs [12]. X4–L4 has the unique ability to ligate one DNA
strand independent of the other, which might allow processing enzymes to act concurrently
with the ligation machinery [45]. In addition to this ability, the complex is able to ligate across
gaps of several nucleotides and can ligate some incompatible DNA ends with short overhangs
[46,47]. NHEJ occurs even in the absence of X4-L4, suggesting that another ligase can partially
substitute for DNA ligase IV [48].

ALTERNATIVE PATHWAYS OF NHEJ
A loosely defined alternative end-joining pathway operates in the absence of classical NHEJ
factors such as Ku, XRCC4 or DNA ligase IV. These repair events frequently involve small
deletions and entail short stretches of homology at the break point [48–52]. This MMEJ
(microhomology-mediated end-joining) pathway dominates during alternative end-joining.
However, MMEJ and alternative end-joining are not synonymous, since error-free ligation can
occur at low frequency in the absence of X4-L4 [51]. Furthermore, MMEJ accounts for a
proportion of V(D)J recombination events in wild-type cells [53,54]. Notably, yeast lacking
MRX reveal reduced repair by MMEJ, but the complete set of genes that participate in
alternative NHEJ in mammalian cells is not yet known [49,52,55].

Hartlerode and Scully Page 3

Biochem J. Author manuscript; available in PMC 2010 November 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Analysis of immune development in mice lacking X4-L4 has shown that alternative end-joining
is fairly robust [48,56,57]. MMEJ also appears to contribute to genomic instability in cancer.
Translocation breakpoints in human cancers very often reveal microhomology, suggesting a
role for MMEJ in translocation [58]. MMEJ may also facilitate chemotherapy resistance by
genetic reversion in cells lacking wild-type BRCA2 (breast-cancer susceptibility gene 2)
[59].In these cases, in-frame microhomologous deletions flanking the original mutation
occurred in the resistant cells. The genetic requirements for MMEJ in cancer remain unclear.

SPECIALIZED FUNCTIONS OF NHEJ
The vertebrate immune system is characterized by intrinsic DSB production and repair as a
mechanism of diversification of the B- and T-lymphocyte repertoire (reviewed in [60]). Core
members of the NHEJ pathway perform direct roles in V(D)J recombination. For example,
Ku-deficient cells [61,62] and DNA ligase IV-deficient cells [63] are defective in both coding
and signal joint formation. Cells harbouring mutations in DNA-PKcs are severely impaired in
their ability to form coding joints, but show little or no defect in signal joint formation [64–
66]. Artemis is also implicated in the formation of coding joints, but not signal joints [67,68].

In contrast with V(D)J recombination, multiple DNA repair pathways are likely to be involved
in CSR (class switch recombination), including base excision repair, mismatch repair and
NHEJ [69]. DNA sequences located between S (switch) regions can be detected in the form
of excised circularized DNA, consistent with the involvement of DSB intermediates in CSR
[70,71]. Sequences from CSR junctions show little or no sequence homology between donor
and acceptor S regions, and often contain short deletions or insertions of nucleotides, all of
which are consistent with DSB repair by NHEJ [72]. Further evidence from knockout mice
also suggests a role for NHEJ in CSR. DNA-PKcs-deficient mice have significantly reduced
levels of serum Ig isotypes, and the only detectable isotype in Ku-deficient mice containing
rearranged IgH and IgL genes is IgM [73–75].

NHEJ also plays a role in telomere biology (reviewed in [76]). The formation of dicentric
chromosomes as a consequence of DNA end-joining is a hallmark of telomere dysfunction.
NHEJ appears to play a central role in the formation of dicentric chromosomes in cells with
telomere dysfunction, since fusion of uncapped telomeres is strictly DNA ligase IV-dependent
[77]. In addition, Ku, DNA-PKcs and the MRN complex participate in multiple facets of normal
telomere biology. All three components of the MRN complex bind telomeres, and disruption
of the MRN complex leads to telomere length deregulation [78,79]. The Ku heterodimer and
DNA-PKcs also play roles in the regulation of normal telomere length [78,80–83].

CHROMATIN RESPONSE IN NHEJ
Chromosomal DSBs in eukaryotes provoke a rapid and extensive response in chromatin
flanking the break, highlighted by phosphorylation of histone H2AX in mammalian cells
(γH2AX), on C-terminal Ser139. γH2AX facilitates repair of the break by either HR or NHEJ
[84–88]. Phosphorylated H2AX is detected within 1 min of damage [89,90]. The H2AX
phosphorylation site, Ser139, is a common recognition site for the PIKKs, and in principle, all
three major PIKK members, ATM (ataxia telangiectasia mutated), ATR (ataxia telangiectasia
mutated- and Rad3-related) and DNA-PKcs , have the potential to phosphorylate H2AX. There
is evidence that each of these kinases can carry out this phosphorylation when the others are
compromised, but ATM seems to be the main kinase associated with γ H2AX formation under
normal physiological conditions [91–93].

The γH2AX mark around a DSB may extend more than 1 Mb from the break [89,90,93]. In
Saccharomyces cerevisiae, γH2AX is present in a 40–50 kb region around an unrepairable
DSB and the greatest enrichment of γ H2AX occurred 3–5 kb on either side of the break, with
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γH2AX absent in sequences 1–2 kb on both sides of the DSB [94]. In mammalian cells, γH2AX
is bound by MDC1 (mediator of DNA damage checkpoint 1), which interacts constitutively
with the MRN complex and thereby activates ATM [95–97]. The interaction of MDC1 and
γH2AX has therefore been proposed to amplify the γH2AX signal [95,97,98]. However, recent
chromatin immunoprecipitation analysis suggests a more nuanced picture, whereby MDC1
may reinforce an existing γH2AX signal, but the extent of spread of the signal is not dependent
upon MDC1 [93]. This recent work raises the possibility that the signal that generates the
γH2AX mark is diffusable.

A number of DNA damage response proteins, such as MDC1, the MRN complex, ATM, 53BP1
(p53-binding protein 1) and BRCA1/BARD1 [BRCA1-associated RING (really interesting
new gene) domain 1], accumulate on γH2AX-containing chro-matin. MDC1 is a critical
adaptor protein that directly interacts with γH2AX [95]. 53BP1, BRCA1 and MRN/ATM can
also associate with DSBs in H2AX−/− cells, suggesting H2AX-independent roles at the DSB
[99]. The recruitment of 53BP1 and BRCA1 to γ H2AX chromatin is indirect, requiring the
activity of the E3 ubiquitin ligases RNF8 (RING finger protein 8) [100–103] and RNF168
[104,105].

γH2AX accumulates in an AID (activation-induced cytidine deaminase)-dependent manner at
the IgH locus in cells undergoing switching [87], and B-cells from H2AX null mice reveal
defects in CSR [85,86]. H2AX is not required for switch targeting, initial lesion formation or
end-processing during CSR, suggesting that γH2AX affects the efficiency of repair itself [86,
106]. However, V(D)J recombination appears to be unaffected by H2AX deletion [85].

Studies of CSR at the IgH locus and of the fusion of dysfunctional telomeres have revealed
quantitative roles for H2AX, MDC1 and 53BP1 in ‘long-range’ NHEJ [107,108]. These defects
are more severe in 53BP1-null mice than in H2AX- or MDC1-null mice, but less severe than
that observed in cells lacking classical NHEJ [109]. 53BP1 localizes rapidly to DSBs and
colocalizes with IR (ionizing radiation)-induced γH2AX nuclear foci, but can also accumulate
in the absence of H2AX [99,110]. 53BP1-deficient mice are immunodeficient, predisposed to
T-cell lymphomas, and reveal severely diminished CSR but normal V(D)J recombination
[109,111–113]. 53BP1 has also been implicated inXRCC4-dependent NHEJ of a conventional
DSB [114]. 53BP1 accumulation on γH2AX-containing chromatin is mediated by interaction
of the 53BP1 tandem Tudor domain with the exposed constitutive chromatin mark, H4K20me2
(histone H4 dimethylated at Lys20) [115]. It is not yet clear whether the same 53BP1–
H4K20me2 interaction mediates the H2AX-independent functions of 53BP1.

HOMOLOGOUS RECOMBINATION
Several distinct mechanisms of ‘homology-directed repair’ have been identified. In yeast, these
include HR, SSA (single-strand annealing) and BIR (break-induced replication; reviewed in
[2]). Whereas HR potentially results in conservative repair of a DSB, both SSA and BIR are
mutagenic pathways. Early steps in HR are the resection of the DNA ends to yield 3′-ssDNA
overhangs (Figure 2, pathway A), followed by Rad51-mediated homologous DNA pairing and
strand exchange (Figure 2, pathway B). In SSA, a DSB in or near one of two direct repeats
leads to the annealing of complementary strands from each repeated sequence, yielding a
homologous deletion (Figure 2, pathway F). In contrast with HR, BIR in yeast requires lagging-
strand synthesis and appears to be mediated by formation of a replication fork (Figure 2,
pathway G) [116]. Consequently, BIR can involve extensive copying from the donor, leading
to non-reciprocal translocations and other types of genomic instability [117,118]. Although
BIR has been invoked to explain some examples of genomic instability in mammalian cells,
direct evidence for a mammalian BIR pathway is lacking.
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Recognition
The MRN complex plays a critical role in the early DSB response. MRN complexes on adjacent
DNA ends are thought to associate via Rad50 homodimerization to connect the DNA ends
prior to repair [21,23,119]. In post-replicative repair, the broken ends may also be kept in close
proximity with the neighbouring sister chromatid. Genetic studies in yeast link the cohesin
complex (SMC1/3) and the related SMC5/6 complex to HR by maintaining close association
of sister chromatids (reviewed in [120,121]). In addition to its role in tethering DNA ends, the
MRN complex also recruits and activates the catalytic function of the ATM protein kinase
through direct interaction of ATM and Nbs1 [122,123]. ATM phosphorylates numerous
substrates in the DNA damage response, including histone H2AX, making H2AX
phosphorylation an early marker in chromatin of DSB formation [93,124].

Processing
HR requires processing of the DSB to yield ssDNA containing a 3′-hydroxyl overhang. Genetic
evidence in yeast suggests that this end processing involves the MRX complex, as deletions
of MRE11, RAD50 and XRS2 slow down the rate of 5′-to-3′ exonuclease activity in vivo
[125–127]. However, Mre11 possesses a 3′-to-5′ ATP-independent exonuclease activity, rather
than the 5′-to-3′ exonuclease activity required for generation of ssDNA with a 3′-hydroxyl end
[25,124a,124b].

Recent evidence in yeast paints a more complex picture of 5′-end resection. In S. cerevisiae,
Sae2 interacts with the MRX complex, and these proteins collaborate to trim the DNA ends to
an intermediate form [124c]. The DSB is then processed more extensively by either the 5′-to-3′
exonuclease activity of Exo1 or by the Sgs1 helicase in conjunction with an as-yet unidentified
single-strand specific nuclease [124d,125]. Sae2, Exo1 and Sgs1 each have orthologues in
mammalian cells {CtIP [CTBP (C-terminus-binding protein of adenovirus E1A)-interacting
protein], Exo1 and BLM (Bloom’s syndrome protein) respectively}, suggesting a general
mechanism for DSB processing in eukaryotes. Indeed, mammalian CtIP, in association with
BRCA1, has been implicated in DSB end-processing [133,134].

ssDNA is rapidly bound by the ssDNA-binding protein RPA (replication protein A), which
melts the DNA’s secondary structure [3]. However, the DNA strand invasion and homology
search steps of HR require formation of a nucleoprotein filament composed of multimers of
the Rad51 recombinase bound to ssDNA. Since RPA binds more avidly to ssDNA than Rad51,
additional activities are required to load Rad51 on to RPA-coated ssDNA and to displace RPA.
In mammalian cells, a critical mediator complex appears to include BRCA1/BARD1 and
BRCA2(FANCD1)/DSS1, probably bridged by the PALB2 (partner and localizer of BRCA2)
(FANCN) polypeptide [135,136]. Although each of these protein complexes is required for the
formation of IR-induced Rad51 nuclear foci, the direct Rad51-loading function is provided by
BRCA2, which interacts directly with Rad51 [137–139]. Studies on the Ustilago maydis
BRCA2 orthologue Brh2, and a polypeptide harbouring critical functional domains of the
human BRCA2 protein, have provided direct biochemical evidence of the Rad51-loading
function of BRCA2 [140,141].

Many proteins involved in Rad51 function are products of hereditary cancer predisposition
genes (Table 1), implying that failure to adequately regulate HR, and the consequent genomic
instability, plays a causal role in cancer. The critical role of HR in suppressing genomic
instability is reflected in the early embryonic lethality of mice lacking Rad51, BRCA1 or
BRCA2. The abundance of chromatid-type errors observed in such mutant cells suggests that
the major function of these genes is to control SCR (sister chromatid recombination) [142,
143].
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Resolution
The Rad51 nucleoprotein filament then captures duplex DNA and searches for homology.
Studies using bacterial RecA indicate that the homology search probably occurs by way of
random collisions between the nucleoprotein filament and the duplex DNA, thereby testing
segments of the dsDNA in an iterative fashion until homology is found [144]. Following
synapsis, the invading strand sets up a D-loop intermediate, whereby the 3′-end primes DNA
synthesis using the duplex DNA as a template. It is presently unclear which polymerase(s)
mediate D-loop extension in vivo, but Pol η (DNA polymerase η) can perform this function in
vitro [145].

If the DSBs have occurred during the S- or G2-phases of the cell cycle, the homology search
may capture the neighbouring intact sister chromatid as a repair template for potentially error-
free repair [146,147]. Most somatic HR events in either yeast or mammalian cells entail copying
only a short tract from the donor DNA molecule (STGC; ‘short tract’ gene conversion). A
small proportion of HR events in mammalian cells entail LTGC (‘long tract’ gene conversion),
in which several kilobases are copied from the donor [147,148]. Mutation of the Rad51
paralogues, XRCC3, Rad51C or XRCC2, skews HR in favour of LTGC [149–151]. However,
it is not clear whether STGC and LTGC represent different outcomes of a common HR
mechanism, or whether LTGC is the product of a distinct mechanism, such as BIR. Thus far,
the longest gene conversions identified in mammalian cells are <10 kb [152]; much less than
the hundreds of kilobases that can be copied during BIR in yeast [117].

Strand invasion into a homologous sequence forms a D-loop intermediate and the 3′-end of the
invading strand is extended by a polymerase. If the D-loop captures the second end of the break,
the HJs (Holliday junctions) formed could yield crossover or non-crossover products (Figure
2, pathway E). However, crossing over is rare during somatic HR [147,150,153]. The SDSA
(synthesis-dependent strand annealing) model was advanced to explain this fact. One SDSA
model proposes that, following extension by ‘bubble migration’ (i.e. a minimal migrating D-
loop), the invading strand is displaced and pairs (i.e. anneals) with the processed second end
of the break (Figure 2, pathway C). In contrast, the ‘double-strand break repair’ model posits
an extended D-loop, which captures the second end of the break, leading to the formation of
double HJs (Figure 2, pathway D). Although it seems likely that SDSA is the major HR
mechanism in somatic mammalian cells, double HJs probably arise during other recombination
processes, such as daughter strand gap repair. HJ resolution is therefore relevant to somatic
HR and genomic instability.

Once a HJ has been formed, it is able to undergo branch migration along DNA, generating
increasing or decreasing lengths of heteroduplex DNA depending on the direction of junction
travel (reviewed in [154]). Specialized enzymes in prokaryotes promote branch migration, and
human Rad54 shows a strong preference for binding to branched substrates that resemble one
end of a D-loop and can promote branch migration in either the 3′ -to-5′ or 5′-to-3′ direction
in an ATP-dependent manner [155]. Mammalian homologues of the Escherichia coli RecQ
helicase, namely WRN (Werner’s syndrome protein), BLM and RECQ5β, can catalyse branch
migration, but disrupt HJs and show anti-recombinogenic characteristics in vitro [156].

The resolution of a HJ is probably executed by several distinct enzyme complexes. The product
of the Bloom’s syndrome gene, BLM, in complex with topoisomerase IIIa can dissolve double
HJs to form non-crossover products [157]. Alternatively, the MUS81-EME1 complex may
cleave HJs to produce crossovers with an exchange of flanking markers [158,159]. Recently,
another HJ resolvase was identified in human cells, GEN1, which promotes junction resolution
by a symmetrical cleavage mechanism that would be expected to give rise to crossovers and
non-crossovers with equal efficiency [160]. There may also be other HJ resolvase activities
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yet to be identified. In this regard, four recent papers have demonstrated a role for SLX4 in HJ
resolution in higher eukaryotes [124a–124d].

SPECIALIZED FUNCTIONS OF HR IN SOMATIC CELLS
During DNA replication, a lesion encountered on one of the parental strands may cause the
DNA polymerase complex to stall, potentially collapsing the replication fork. Arrested forks
may be processed to form a DSB or replication may be reinitiated downstream of the lesion,
leaving a ssDNA lesion that cannot be filled in due to the presence of the blocking lesion. These
so-called DSGs (daughter strand gaps) could be repaired via sister chromatid recombination
in an error-free manner (reviewed in [161]). Studies in the fission yeast Schizosaccharomyces
pombe revealed that a replication fork barrier is capable of promoting recombination and
chromosomal rearrangements at that locus [162]. Treatment of cells with HU (hydroxyurea)
induces replication fork arrest, generating tracts of ssDNA on the lagging strand, but generating
few DSBs in normal cells [163]. Structurally, HU-induced ssDNA may resemble DSGs and
the accumulation of BRCA1, BRCA2 and Rad51 at sites of replication arrest in HU-treated
cells suggests a probable role for these proteins in mediating repair of DSGs at stalled
replication forks [164,165].

Cells maintain telomeric DNA repeats at a critical length that allows the assembly of ‘T-loop’
structures that protect the chromosome ends. Telomeric capping sequesters the 3′ telomeric
tail away from DNA damage sensors and processing activities within the cell (reviewed in
[166]). Maintenance of telomere length normally requires telomerase, but this protein is non-
essential in cells, indicating the existence of an alternative mechanism for telomere length
maintenance. S. cerevisiae cells lacking telomerase gradually lose their telomeres and die, but
rare survivors maintain telomeres through Rad52-dependent HR [167,168]. In these cases,
telomere elongation can occur through BIR or gene conversion in which one telomere serves
as a template for elongation of another [169,170].

In mammalian cells, the existence of an ALT (alternative lengthening of telomeres) pathway
has been shown in cells lacking telomerase (reviewed in [171]). These cells exhibit sub-nuclear
compartments containing telomeric DNA, telomere-binding proteins, recombination proteins
such as Rad51 and Rad52, the MRN complex, RPA, and the WRN and BLM helicases [172].
In ALT cells, telomeric DNA is copied to other telomeres by means of HR and copy switching
[173]. In support of this, Rad51D and Rad54 were reported to act at telomeres [174,175].

CHROMATIN RESPONSE IN HR
H2AX contributes to HR and SCR in a manner dependent upon the ability of H2AX to be
phosphorylated on Ser139, and upon the ability of γH2AX to interact with MDC1 [88,95,
114]. Consistent with its role as a critical γH2AX adaptor, MDC1 mediates H2AX-dependent
HR, but the mechanisms responsible for this are not known. Possible mediators include RNF8
[100–102], MRN and BRCA1/BARD1 [96,98,176]; however, genetic analysis revealed that a
MDC1 mutant lacking the domain required for recruitment of MRN, RNF8, BRCA1 or 53BP1
to chromatin nonetheless retains HR function [114]. This separation of function is underscored
by the fact that the major HR function of BRCA1 is independent of H2AX and, indeed,
independent of the E3 ubiquitin ligase activity of BRCA1 itself [88,177].

BRCA1 exists in a number of distinct complexes in mammalian cells. The BRCA1–BARD1–
Abraxas–MERIT40– Rap80 complex is recruited to IR-induced foci in a manner dependent
upon the UIM (ubiquitin-interacting motif) of Rap80 [103,178–180]. Lys63-linked
polyubiquitin chains appear to be involved in DNA damage signalling, and recent studies have
identified RNF8, a RING domain-containing E3 ubiquitin ligase as a key enzyme for this
modification at DSBs [100–103]. RNF8 is also a direct binding partner of the MDC1 SQ-rich
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domain and mediator of both 53BP1 and BRCA1 recruitment to chromatin [100–103]. RNF8
probably ubiquitinates H2A via a second E3 ubiquitin ligase, RNF168, to reinforce BRCA1
recruitment via Rap80 and 53BP1 through an uncharacterized mechanism [104,105].

COMPETITION BETWEEN NHEJ AND HR
Cells lacking classical NHEJ genes reveal a DSB repair bias in favour of HR, suggesting that
these two major pathways normally compete to repair DSBs [181]. During V(D)J
recombination, the RAG proteins play a role in specifying the preference for repair by NHEJ
in these cells [182]. However, other rules must apply for unscheduled DSBs. The balance
between NHEJ and HR shifts during the cell cycle, presumably reflecting the availabilty of a
sister chromatid synthesized during S-phase [146,147]. A study in chicken DT40 cells deficient
in NHEJ or HR factors revealed that NHEJ mutants were highly sensitive to IR in the G1- and
early S-phase of the cell cycle, whereas HR mutants were sensitive primarily in the S-/G2-
phase [6]. Similar studies in mammalian cells demonstrated that NHEJ-deficient cells have
reduced repair at all cell cycle stages, whereas HR-deficient cells have a minor defect in G1,
but a greater impairment in S-/G2-/M-phase [183,184].

Recent evidence suggests that the shift from NHEJ to HR as the cell cycle progresses is actively
regulated. Analysis of end resection at an HO-induced DSB at MAT in yeast revealed that
G1-arrested cells failed to initiate efficient end resection, which prevented loading of RPA and
Rad51, and blocked Mec1/ATR activation [185]. This effect correlated with low levels of
activity of the major cyclin-dependent kinase, CDK1 (cyclin-dependent kinase 1)/Cdc28 and,
critically, inhibition of CDK1 activity in G2-phase prevented end resection and checkpoint
activation. Under these conditions, Mre11 persists at the DSB site, consistent with the idea that
processing of the break has stalled. This suggests that CDK1 controls Mre11-associated
nuclease function at a DSB, but not the recruitment of Mre11 to DNA ends. Cdk activity also
regulates HR in fission yeast [186].

Sae2 controls the initiation of DNA end resection in both meiotic and mitotic yeast and is itself
a DNA endonuclease [130,187]. Recently, Sae2-mediated control of DSB resection in yeast
was shown to depend on its CDK phosphorylation status [188]. Mutation of Sae2 Ser267 to a
non-phosphorylatable residue (S267A) causes an end-processing phenotype comparable with
deletion of Sae2 [188]. In contrast, a S267E mutant that mimics constitutive phosphorylation
complements these phenotypes and overcomes the need for CDK activity in DSB end resection.
The Sae2-null and S267A mutants show delayed HR and enhanced NHEJ, whereas the S267E
mutant showed slightly enhanced recombination and a decrease in NHEJ efficiency. Thus
CDK1/Cdc28-mediated phosphorylation of Sae2 modulates the balance between NHEJ and
HR during the cell cycle. These results support a model in which the commitment to DSB end
resection is regulated to ensure that a cell engages the most appropriate DSB repair pathway
to optimize genome stability (Figure 3A). The motif encompassing Ser267 of Sae2 is highly
conserved amongst orthologues in higher eukaryotes, and mutation of the analogous residue
in human CtIP also produces hypersensitivity to camptothecin [188]. These results suggest that
similar CDK control of DNA end resection operates in other organisms. CtIP is one of several
proteins that interact with the BRCA1 C-terminal tandem BRCT repeat, and this interaction is
important for efficient end resection. This, in turn, suggests that the BRCA1-CtIP interaction
influences the balance between HR and NHEJ [134].

CO-OPERATION BETWEEN NHEJ AND HR
At the organismal level, HR and NHEJ clearly collaborate to suppress genomic instability.
However, HR and NHEJ may also collaborate more directly to repair a subset of mammalian
DSBs. This was revealed in work on a subpathway of HR termed LTGC. The majority of
recombination events resolve after only a few hundred base pairs have been copied from the
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donor. However, a small proportion of HR events involve more extensive copying from the
donor, generating a LTGC spanning several kilobases [147–149,150,189]. Some of these
LTGC events terminate without homology, presumably by use of NHEJ [147] (Figure 4). In
a study of interchromosomal recombination, direct sequencing of the joints demonstrated that
repair had occurred by NHEJ, with microhomology observed at approximately half of the
junctions [189]. The genes involved in this coupled mechanism remain to be identified. Work
from our laboratory suggests that both XRCC4-dependent and XRCC4-independent NHEJ
pathways are capable of terminating LTGC in mammalian cells (A.J. Hartlerode and R. Scully,
unpublished work). Therefore, both classical NHEJ and MMEJ may participate in resolving
LTGCs.

Coupling of HR and NHEJ has also been observed in a less direct manner during other forms
of recombination. In a study of ectopic recombination in S. cerevisiae between two unlinked
homologous loci, a novel class of gene conversion events was observed that included extensive
lengths of non-homologous sequence [190]. Co-operation between HR and NHEJ has also
been deduced in some gene targeting events [191–193]. In Drosophila melanogaster, examples
of incomplete LTGC events have been identified where repair is completed by an end-joining
pathway that is independent of DNA ligase IV [194].

CONCLUSIONS
Significant progress in understanding the regulation of DSB repair in mammalian cells has
been made in recent years. However, it is clear that much remains to be understood about these
repair pathways and the complex interactions between them. Discoveries made in yeast have
greatly advanced the understanding of both HR and NHEJ; however, the relationship between
DSB repair pathways in yeast and higher eukaryotes is not always clearcut. Many protein
complexes involved in DSB repair appear to function in more than one pathway. This highlights
the need for more sophisticated tools to simultaneously examine HR and NHEJ in mammalian
cells. Elucidation of these important disease-associated DSB repair functions may reveal new
therapeutic targets in cancer and other disease states.

Abbreviations used

53BP1 p53-binding protein 1

ALT alternative lengthening of telomeres

ATM ataxia telangiectasia mutated

ATR ataxia telangiectasia mutated- and Rad3-related

BARD1 BRCA1-associated RING domain 1

BIR break-induced replication

BRCA breast-cancer susceptibility gene

CDK cyclin-dependent kinase

CSR class switch recombination

CtIP CTBP (C-terminus-binding protein of adenovirus E1A)-interacting
protein

DNA-PKcs DNA-dependent protein kinase catalytic subunit

DSB double-strand break

dsDNA double-stranded DNA
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DSG daughter strand gap

HJ Holliday junction

HR homologous recombination

HU hydroxyurea

IR ionizing radiation

Ku Ku70/Ku80

LTGC ‘long tract’ gene conversion

MDC1 mediator of DNA damage checkpoint 1

MMEJ microhomology-mediated end-joining

MRN complex Mre11–Rad50–NBS1 complex

MRX complex MRE11–RAD50–XRS2 complex

NBS1 Nijmegen breakage syndrome 1

NHEJ non-homologous end-joining

PALB2 partner and localizer of BRCA2

PIKK phosphoinositide 3-kinase-like family of protein kinase

RING really interesting new gene

RNF RING finger protein

RPA replication protein A

S region switch region

SCR sister chromatid recombination

SDSA synthesis-dependent strand annealing

SSA single-strand annealing

ssDNA single-stranded DNA

STGC ‘short tract’ gene conversion

X4-L4 complex containing XRCC4, DNA ligase IV and XLF

XRCC X-ray repair complementing defective repair in Chinese hamster cells
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Figure 1. NHEJ in mammalian cells
Induction of a DSB forms DNA ends that are bound by the Ku heterodimer. Ku translocates
inwards, allowing recruitment of DNA-PKcs to the DNA termini. The two DNA-PKcs
molecules can then interact to tether the DSB ends together. Synapsis of DNA-PKcs triggers
phosphorylation of DNA-PKcs [including autophosphorylation (autophos.)], altering the
conformation and dynamics of DNA-PKcs. Phosphorylation of DNA-PKcs allows for
recruitment of Artemis and other end-processing factors such as Pol X (DNA polymerare X)
family members to generate the proper DNA ends required for ligation. Once the ends are
processed, the X4-L4 complex, along with XLF, ligates the ends, repairing the break.
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Figure 2. Homology-directed repair in eukaryotic cells
(A) Induction of a DSB is recognized by the MRN complex, which tethers the DNA ends
together and participates in end processing. The CtIP–BRCA1–BARD1 complex co-operates
with the MRN complex to aid in end resection. ssDNA is initially bound by the ssDNA-binding
protein RPA to keep the ssDNA from forming secondary structures. BRCA1/BARD1 promotes
accumulation of BRCA2 via PALB2. (B) BRCA2 catalyses the nucleation of Rad51 on to the
free 5′ end of a dsDNA–ssDNA junction. Once the Rad51 filament is assembled it captures
duplex DNA and searches for homology. (C) The SDSA model predicts that a migrating D
loop fails to capture the second DNA end and, following extension, the invading strand is
displaced and anneals with the resected second end. (D) The DSB repair model predicts that
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the second DNA end is captured by annealing to the extended D loop, forming two HJs. (E)
The double HJ structure is then resolved to yield either crossover or non-crossover products.
(F) The SSA pathway: a break near one of two direct repeat sequences leads to annealing of
complementary strands from each repeated sequence. The product of this repair event contains
a single copy of the repeat with a deletion of the intervening sequences. (G) BIR occurs when
the 3′ end of the invading strand leads to the formation of a replication fork, potentially copying
long tracts from the donor DNA molecule. Dotted arrows indicate new DNA synthesis.
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Figure 3. Relationships between HR and NHEJ in mammalian cells
(A) One of the early ‘choices’ in DSB repair is the extent to which the DNA ends are processed.
In classical NHEJ, end resection may be minimal or absent. Should the ends be processed to
yield a 3′ overhang, repair can occur through either HR, SSA or MMEJ. (B) Defects in NHEJ
skew DSB repair in favour of HR.
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Figure 4. Model for termination of LTGC
In many LTGC events, gene conversion is thought to be terminated by homologous pairing.
However, in a proportion of events, gene conversion is terminated without the use of homology,
by NHEJ/MMEJ. This type of termination might result in chromosomal translocations.
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Table 1
Disease and cancer incidence associated with impaired DSB repair

A summary of some human hereditary cancer predisposition syndromes that are known to be associated with
germ-line mutation of individual DSB repair genes. The chromosome location is the location of the human gene
on the chromosome. AD, autosomal dominant; AR, autosomal recessive; EBV, Epstein–Barr virus.

Gene Inheritance Chromosome location Disease association Cancer predisposition

Ku70 AR 22q11-13 T-cell lymphomas

Ku80 AR 2q35 Pro-B cell lymphomas

Artemis AR 10p Severe combined immunodeficiency EBV-associated lymphomas

DNA ligase IV AR 13q22-24 Ligase IV (LIG4) syndrome Lymphoid malignancies

Cernunnos (XLF) AR 2q35 Severe combined immunodeficiency

BRCA1 AD 17q21 Hereditary breast cancer Breast and ovarian cancer

BRCA2 (FANCD1) AD (AR) 13q12.3 Hereditary breast cancer (Fanconi
anaemia)

Breast and ovarian cancer

Mre11 AR 11q21 Ataxia telangiectasia-like disorder

Rad50 AR 5q31 Slightly elevated breast cancer
risk

Nbs1 AR 8q21 Nijmegen breakage syndrome Haematologic malignancies

ATM AR 11q22.3 Ataxia telangiectasia Haematologic malignancies

ATR AR 3q22-24 Seckel syndrome

FANCD2 AR 3p25.3 Fanconi anaemia Acute myeloid leukaemia,
squamous cell carcinoma

BLM AR 15q26.1 Bloom’s syndrome Broad spectrum (leukaemia,
lymphoma, carcinoma)

PALB2 (FANCN) AR 16p12 Fanconi anaemia Breast and ovarian cancer

BRIP1 (BACH1/FANCJ) AR 17q22 Fanconi anaemia Breast cancer

CHEK2 AR 22q12.1 Li–Fraumeni syndrome 2 Breast cancer, sarcomas, brain
tumours

WRN AR 8p12-11.2 Werner’s syndrome Sarcomas
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